Entity Extraction from Social Media using Machine
Learning Approaches

Sombuddha Choudhury

Jadavpur University, India
sbc.cs73@gmail.com

Paolo Rosso
UPV, Spain
prosso@dsic.upv.es

ABSTRACT

In this work, we describe an automatic entity extraction sys-
tem for social media content in English as part of our partic-
ipation in the shared task on Entity Extraction from Social
Media Text in Indian Languages (ESM-IL) organized by Fo-
rum for Information Retrieval Evaluation (FIRE) in 2015.
Our method uses simple features such as window of words,
capitalization, dictionary word, part of speech tags, hash-
tag, etc. The performance of the system has been evaluated
against the testset released in the FIRE 2015 shared task
on ESM-IL. Experimental results show encouraging perfor-
mance in terms of precision, recall and F-measure.

CCS Concepts

eComputing methodologies — Artificial intelligence;
Natural language processing; eInformation systems —
Information extraction;

Keywords

Entity extraction, named entity, social media

1. INTRODUCTION

Named entities refer to specific concepts which are not
listed in the grammars or the lexicons. Automatic identifi-
cation and classification of NEs benefit text processing due
to their significant presence in the text documents. Recog-
nition of named entity is a task that seeks to locate and
classify NEs in a text into predefined categories such as the
names of persons, organizations, locations, expressions of
times, quantities, etc. The NE recognition task has im-
portant significance in many NLP applications such as Ma-
chine Translation, Question-Answering, Automatic Summa-
rization, Information Extraction, etc. On the other hand,
with the advent of smart phones more people are using so-
cial media such as twitter, facebook to comment on people,
products, services, organizations, goverments, etc. Thus,
NE recognition on various social media data such as web-
sites, blogs, tweets, emails, chats, social media posts has
gained significance recently [7][1][4][5][3].

2. TASK DESCRIPTION

In this task, one has to identify the named entities (NE)
from a collection of raw tweets and tag them with appropri-
ate NE tags.

Somnath Banerjee
Jadavpur University, India

sb.cse.ju@gmail.com

Sudip Kumar Naskar
Jadavpur University, India
sudip.naskar@cse.jdvu.ac.in

Sivaji Bandyopadhyay
Jadavpur University, India

sivaji_cse_ju@yahoo.com

103

Input: A collection of tweets Ti,T>...T,, where each
tweet T; is a set of words (W1, Wa,...W,,) and every word
W; is some standard or non-standard English word. By
standard we mean that those words have their presence
in an English dictionary. A set of named entity classes
{C1,C5,...Cy} were also provided by the task organizsers
where each class determines a specific type of named entity
like Person, Organization, Location, etc.

Output: For every tweet, the system has to identify which
words classify as named entities and then tag them with a
suitable named entity class. The format of the input and
output is specified in the next section.

3. DATA

In this section, we describe the dataset provided to the
shared task participants for the task. We were provided
with two sets of data, namely training set and test set. For
the training set, we were provided with two different files
one of which contained a collection of tweets along with their
tweet-id’s and user-id’s; the other was an annotation file that
contained the named entities and their tags for the tweets
in the raw file. The annotation file consisted of 6 columns
separated by tabs: <Tweet ID User ID NETAG NE Index
Length>

For example: Tweet 1D:123456789012345678 User 1d:1234567890

NETAG:ORGANIZATION NE:SonyTV Index:43 Length:6

The training corpus consists of 5941 tweets and 23483
unique tokens. The different NEs provided in the training
annotation file and their corresponding counts are shown in
table 1. The testset contains 9595 tweets and 39464 unique
tokens.

4. SYSTEM DESCRIPTION

4.1 Pre-processing

For the raw training file, we first separated the tweet text
from the user ids as they were redundant. The tweet ids were
however preserved as they serve as keys to the tweet text as
each tweet has a unique tweet id. In the same way, we re-
moved the presence of all urls and hyperlinks from the tweet
text. After this we applied a POS tagger on the new file
generated. For POS tagger we used ark-tweet-nlp-0.3.211
[6] to generate pos tags in CoNLL format. From the anno-
tation file, for each tweet id we get the list of words that

"http:/ /www.ark.cs.cmu.edu/TweetNLP/

are named entities and their associated NE tags. We scan
every word of every single tweet and assign that word its
corresponding named entity tag. We used the BIO type of
chunking for this purpose. If a sequence of words belongs
to an NE with a particular NE tag, we marked the first
word of the entity as NE tag B(beginning) and the sub-
sequent words as NE tag I(intermediate). For words that
are not NEs, we tag them as O(other). For example, if we
have a tweet like Chief Minister Arvind Kejriwal Wishes
Luck to Special Olympics Participants and the annotation
file has entries like “NETAG:PERSON NE:Chief Minister
Arvind Kejriwal”, then the tagging of the tweet is done
as: “Chief PERSON_B Minister PERSON_I Arvind PER-
SON_I Kejriwal PERSON_I Wishes_O Luck O to_O Spe-
cial O Olympics_O Participants_O”. The annotation file has
a total of 22 classes/tags. By our format of encoding the to-
tal number of tagged classes becomes 2 %22 41 = 45 classes
(2 tags, i.e. _B and _I, for each class and 1 for O). The same
tagging format was applied for the test file.

4.2 Classification Features

We have used simple features for classification which are
described in the next subsections.

4.2.1 Window of Words

The unique words in the corpus are mapped into integer
vector, i.e., each unique word is assigned an integer value.
Various work [2][8] on NER employed preceding or following
words of the target word to determine its category. There-
fore, we also employed a window of words approach which
have the size 3. In our work, previous word and next word
along with target word are considered to build the window.

4.2.2 Part of Speech (POS) Tag

The POS of the target word and surrounding words may
be useful feature for NER. In the context of NER, noun tag is
very useful because NEs are always noun phrases. We have
used a POS tagger[6] specially developed for social media
text.

4.2.3 Capitalization

Although this feature is not that effective for tweets or
user generated content in social media, still a fairly large
number of entities that are capitalized turn out to be named
entities. Thus we included this feature as a binary feature
that can be formally defined as:

Capitalization(word) = { é ft}zfe(ﬁi:éarts with capital

4.2.4 Presence of Numeric Values

This feature is very helpful to identify time expression,
measurement and numerical quantities (such as currencies).
This could be used as a binary feature that can be defined
as:

if word has has numerals

Is_Numeric(word) = { é otherwise

4.2.5 Hashtag

A word having a hash(‘#’) is very useful feature in tweets.
Often a word with hash (such as #India, #ATK etc.) de-
notes a topic or trend in the tweets which turns out to be

104

NEs. Therefore, we included this feature as a binary feature
which is defined as:

starts_with_Hashtag(word) = { 0 otherwise

4.2.6 At the Rate

This is similar to the previous feature and can be defined
as :

starts_with_attherate(word) = { 0 otherwise

4.2.7 Dictionary Word

This feature checks whether a given word has its presence
in the dictionary or not. We incorporated the English dic-
tionary provided by PyEnchant® (an open source dictionary
available for python). The main motivation behind using
this feature is that words that appear in the dictionary have
a fairly low probability of qualifying as a named entity. This
is again a binary feature that can be described as:

is_in_Dictionary(word) = { (1) i)fthrlﬂ:rfislz the Eng dict.

4.3 C(lassifiers

In this work, we have employed in total four different clas-
sifiers, namely Naive Bayes (NB), Conditional Random Field
(CRF), Margin Infused Relaxed algorithm (MIRA) and De-
cision Tree (DT). For Naive Bayes and Decision Tree, we
used the WEKA toolkit®. For CRF and MIRA we used the
open source implementation of CRF++ toolkit* and miral-
ium?®.

4.4 Output Generation

After the classifiers generated the corresponding NE tags,
post-processing was done to convert the predicted tagged file
into the same format as provided in the training annotation
file. This was simply a reverse procedure of what we did for
pre-processing of the training file. For every word that was
tagged as one of the 45 named entity tags, we entered that
word and the corresponding tweet-id, user-id, starting index
and length of the entity into the output file. When we had
a chunk of words (where a particular _B tag was followed by
1 or more _I tags) we simply clubbed those words together
as a single named entity until we reached a word with O tag
or B tag or the end of the tweet. For multiple word NEs,
we considered the starting index of the first word (with _B
tag) as Index entry and the total length of all the words in
the NE (including blank spaces) as the length of that NE.
Another very important part of the post-processing phase
was proper identification of the tagged tweets since in the
tagged file obtained from the classifiers there is no way to
identify which tweet belongs to which tag. Again for this we
maintained a line-tweet correspondence where the starting
word of a tweet had a one-one correspondence to the line
number in which it appeared in the file obtained from the
classifier.

https:/ /pythonhosted.org/pyenchant/
Shttp://www.cs.waikato.ac.nz/ml/weka/
“https://taku910.github.io/crfpp/
®https://code.google.com/p/miralium/

1 if word begins with #

1 if word begins with @

S. EXPERIMENT

This section basically emphasizes on exemplifying the sys-
tematic steps performed in generating the training models
using the four different classifiers as mentioned in Section
4.3 and then identifying the NEs and their corresponding
NE tags in the given test file using the trained models gen-
erated from the training files.

5.1 Training the Classifiers

We performed pre-processing on the two training files pro-
vided to us and the detailed description of the pre-processing
is discussed in Section 4.1. We have prepared four models
with all of the features (discussed in Section 4.2) using the
four classifiers, i.e., NB, DT, CRF and MIRA.

The descriptions of the models follow:

Model 1: Generated using the CRF classifier.

Model 2: Generated using the MIRA Classifier.

Model 3: Generated using the J-48 Classifier.

Model 4: Generated using the Naive Bayes Classifier.

The NE tags together with their frequency of occurrence
in the training data are shown in table 1.

Table 1: NE tags statictics in training file

NE Tag Count
ENTERTAINMENT 486
LIVTHINGS 14
ARTIFACT 96
FACILITIES 124
MATERIALS 40
DATE 78
PLANTS 1
DAY 111
LOCATION 2806
ORGANIZATION 2470
LOCOMOTIVE 521
SDAY 7
COUNT 572
PERIOD 209
DISEASE 27
YEAR 111
DISTANCE 18
MONEY 95
MONTH 23
PERSON 3145
TIME 30
QUANTITY 19

5.2 Testing

Again the test file was made to undergo the same set of op-
erations as the training phase where the raw test file was con-
verted into a format suitable to be evaluated by the models
generated. These set of operations were the pre-processing
steps and the feature extraction steps. Then we ran our test
file using each of the 4 models and generated 4 test runs
where test runl was generated using modell (CRF), test
run?2 using model2 (MIRA), test run3 using model3 (J-48)
and test run4d using model4 (Naive Bayes). Finally output
format preparation steps as mentioned in Section 4.4 were
performed for each of the output test runs and converted into
formats that are similar to the one specified in the training

105

annotation file.

6. RESULTS

We have submitted four different runs using the approaches
discussed in the previous section. In this section, we discuss
about the performance of each of our submitted runs and
our overall performance in comparison to the other partic-
ipating teams. Standard Precision, Recall and F-Measure
parameters were used for evaluation. The values of these
metrics for the different runs that we submitted are shown
in Table 2.

Table 2: Evaluation of the submitted runs

Precision Recall F-Measure
Run 1 46.92 32.41 38.34
Run 2 58.09 31.85 41.15
Run 3 49.10 31.59 38.45
Run 4 46.50 30.20 36.61

In runl, run2, run3 and run4 the correctly detected and
classified named entities are 11771, 8901, 11016 and 11122
respectively. We obtained a best F-measure of 41.15 for run2
using MIRA classifier which ranked third among all the runs
submitted by the participating teams. CRF (runl) and J-
48 (run3) perform almost at par while Naive Bayes (run4)
performs the worst among the four classifiers.

The training sample had a lot of words that were non-
NEes and thus that somehow may affected the detection of
NEes in the test set as the entire training was done on the
training set. Some classes of NEes like Plants, Sday(Special
Day), Distance etc. had a very less number of words tagged
into them and thus their appearance in the classified outputs
were also fairly low. J-48 classifier worked quite in detection
of NEes but was unable to properly identify the appropriate
NE tags for an entity. Similar was the case with Naive Bayes
for example Tata’s in Tata’s narrow cars ... was wrongly
classified as Person instead of Organization and iPhone in
I really want the iPhone 6s Rose Gold was misclassified as
Person instead of Artifact. This was mainly caused due
to the large disparity in number of the different NEes in
the training set and lack of proper features for proper fine-
graining. We also avoided the use of gazetteer lists in this
task which might otherwise have helped us in detection of
some special kinds of NEes. Another drawback of some of
our systems was that when NEes involving more than one
words were present, classifiers like J-48 and Naive Bayes
skipped some part of that entity for example if a named
entity like Mr. Narendra Modi was present in some tweet
text, these classifiers, in some instances, classified only Mr.
Narendra as a Person. This error was less in case of CRF
or MIRA as these classifiers are more suitable for sequence
labelling operations. There were some other instances when
a non-NE was misclassified as a NE.

7. CONCLUSIONS

In this paper, we have presented a brief overview of our
machine learning based systems to address the automatic
NE identification problem on social media. We have ob-
served that the MIRA based approach provides better re-
sults than the systems which are developed using CRF, DT,
NB classifiers. For our participation in ESM-IL subtask, we

have submitted four runs and the obtained results confirm
that the overall accuracy of Run2 is more than almost 3%
higher when compared to other runs, i.e. Runl. Run3 and
Run4.

As future work, we would like to explore more sophisti-
cated features to handle NE tags and apply post-processing
heuristics to improve the performance of system. We also
plan to incorporate more language specific feature in our
future work to improve the accuracy of the system.

8. ACKNOWLEDGMENTS

We acknowledge the support of the Department of Elec-
tronics and Information Technology (DeitY), Government of
India, through the project “CLIA System Phase III".

The research work of the second last author was carried
out in the framework of WIQ-EI IRSES (Grant No. 269180)
within the FP 7 Marie Curie, DIANA-APPLICATIONS (
TIN2012-38603-C02-01) projects and the VLC/CAMPUS
Microcluster on Multimodal Interaction in Intelligent Sys-
tems.

9. REFERENCES

[1] S. Ashwini and J. D. Choi. Targetable named entity
recognition in social media. arXiv preprint
arXiv:1408.0782, 2014.

[2] S. Banerjee, S. Naskar, and S. Bandyopadhyay. Bengali
named entity recognition using margin infused relaxed
algorithm. Text, Speech and Dialogue, pages 125-132,
2014.

[3] N. Dewdney. Named entity trends originating from
social media. In Workshop on Information Extraction
and Entity Analytics on Social Media Data, pages 1-16.
COLING 2012, 2012.

[4] L. D. et al. Analysis of named entity recognition and
linking for tweets. In Inf. Process. Manage, pages
32-49, 2015.

[5] W. Murnane. Improving accuracy of named entity
recognition on social media data. Master Thesis,
University of Maryland, 2010.

[6] O. Owoputi, C. Dyer, K. Gimpel, N. Schneider, and
N. A. Smith. Improved part-of-speech tagging for online
conversational text with word clusters. In NAACL,
2013.

[7] A. Ritter, S. Clark, and O. Etzioni. Named entity
recognition in tweets: An experimental study. In
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1524-1534, 2011.

[8] S. K. Saha, S. Chatterji, S. Dantapat, S. Sarkar, and
P. Mitra. A hybrid approach for named entity
recognition in indian languages. In
NERSSEAL-IJCNLP-08, pages 17-24, 2008.

106

