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Abstract. In an interconnected world such as the one envisioned by pervasive 

computing, systems should be able to react to stimuli received from the envi-

ronment in a streaming fashion. Reactions may include not only performing lo-

cal updates, but also sending and asking for information from other systems, 

waiting for responses, and requesting for changes. In this paper we give a short 

introduction to the main principles of a language we are developing to achieve 

that, ReAL. Key elements of ReAL in that context include the introduction of 

explicit operators to deal with concurrency, nested transactions, and streams.  

1 Introduction 

In an interconnected world such as the one envisioned by pervasive computing, 

systems should be able to react to stimuli received, for instance thanks to sensors, 

from the environment. Reactions may include not only sending information but also 

asking for information from other systems, waiting for responses, and requesting for 

changes in a continuous, streaming fashion. Streaming extensions to the standard 

Semantic Web query language (SPARQL) have been developed for dealing with con-

tinuous data flows [1-5], with the most interesting in our context being EP-SPARQL 

[3] that uses events as triggers of query execution. However, we observed that interac-

tion with other systems, and the effects on the design of a corresponding query lan-

guage, have not been explicitly considered up to now.

In this paper we give a short introduction to the main principles of a language we 

are developing to bridge this gap, ReAL (Resource Action Language). The overall 

objective is to provide a means for describing the dynamic behavior of RDF stores in 

a streaming fashion, i.e. handle queries within a specific execution context, perform 

(potentially transformative) actions on the store itself, and allow interaction with ex-

ternal services. The design principles include. 

 Offer an explicit mechanism of (nested) transactions, thus allowing the execution

context to be clearly defined at query time.
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 Use a concurrency model to allow coordination with other services – we do that

based on a “Triple Space” derived from “Tuple Space” as formerly done in coordi-

nation languages like Linda [6].

 Follow a streaming execution model to enumerate solutions one by one, thus prop-

agating solutions as soon as possible.

 Allow a synthesis of query and production-rule languages (to define actions and

their impacts within the query).

 Aim for modular and highly compositional programming structures (procedures).

In this paper we don’t target exhaustivity. In particular, many general purpose

primitive actions are missing, as we essentially focus on some of the most interesting 

features of ReAL in our context. Other higher level actions (e.g. time-oriented and 

memory-protection-oriented primitives) are work in progress. 

We have to note here that ReAL can be seamlessly linked to the LRM upper level 

ontology [7], being developed in the PERICLES project
1
. An example of such inte-

gration will be described in the paper. The LRM OWL ontology has been designed to 

address dynamicity in the digital preservation field, with a focus on change manage-

ment through sophisticated model to handle intentional dependencies, versioning 

mechanisms and reflexive metadata modeling. If ReAL is designed as a “natural in-

frastructure” to support LRM based services, we do believe that its more fundamental 

qualities are not bound to any particular data model. 

2 Matching, Bindings and Basic Actions 

Triples are represented through a syntax similar to the one adopted by the abstract 

syntax of SWRL [8], using functional notation like predicate(subject, object). where 

any of the three components can be an IRI using a prefixed form or a variable ?name. 

The object component can additionally be a string like “3.1416”, a decimal/integral 

number, or a symbol like true, false. Note that triples extended with language tags or 

typing IRI are captured by an additional argument (separated by “|”), e.g.: 

rdf:label(test:c1,”my class” | en) 

ex:weight(test:c1,”0.12456” | xsd:decimal) 

Based on this notation, we introduce next the most basic primitive constructs to 

perform reading and writing in the RDF store. They constitute what we like to call 

basic actions. 

Simple reading. The following reading expression (illustrative) 

rdf:type(?sub, ?class) (1) 

will succeed if at least one solution can be read in the triple store. Solution here des-

ignates all triples matching the expression. The result is of the form <boolean, Bind-

1 http://pericles-project.eu/ 



ing>, where boolean (true or false) denotes whether a solution is found, and Binding 

denotes the set
2
 of pairs (variable, term

3
). Failing queries always return <false,{}>. A 

new Binding is streamed whenever a matching solution is found, and can be defined 

as a mapping relating all variables (e.g. ?sub) to subterms such that the filtering terms 

are made equal to the matching terms. In other words, a Binding represents the substi-

tutive solution that equates the filter to the instance. The substitution operation of an 

expression e using a binding B is a new expression noted B(e). Note that the expres-

sion (1) above, if changed into e.g. 

rdf:type(ex:nantes-triptych, ex:Artwork)            (1b) 

could stream a unique solution (an empty binding {}) in a context where the triple is 

indeed present in the RDF store.  

Destructive reading. To express that you want not only to filter-out the RDF store, but 

also to withdraw the matching solutions, you may use a “-” operator as a prefix. 

- rdf:type(?sub, ex:Artwork)             (2) 

Note that the store is immediately modified, so that unforeseen “side effects” may 

occur when such an instruction is combined with others, even if those do not return 

any solution eventually (this is one reason why nested transactions are relevant in 

ReAL, as we will see later). Destructive reading may fail if the triple is write-

protected (such protection mechanisms will not be presented here). 

Explicit inference invocation. When one needs to extract more complex information 

from the store, he may use inference to stream solutions, thanks to the “!” prefix. 

! rdf:type(?sub, ex:Artwork)             (3) 

The type of inference is dependent on the context and on the configuration of the 

corresponding infrastructure, but typically, it could exploit a background taxonomy or 

ontology. For instance, provided that relations like rdfs:subClassOf (ex:VideoArt, 

ex:Artwork) and rdfs:subClassOf (ex:SoftwareBasedArt, ex:Artwork ) are included in 

the underlying knowledge base, corresponding inference (based on the 

rdfs:subClassOf) could be used to infer that the instances of ex:VideoArt and 

ex:SoftwareBasedArt are solutions of query (3).  

Writing triples. In order to insert a new triple inside the store, one may use the “+” 

prefix: 

+ rdf:type(ex:nantes-Triptych, ex:Artwork)           (4) 

                                                           
2 The set can be empty if the pattern does not involve any variable, or only jokers, noted ? 
3 Here the term’s syntax is defined by the non-terminal BItem of the formal grammar provided 

in the appendix.  



When one wants to write a triple into the store, the operation might fail if: the triple 

already exists; the triple is not well formed (remaining unbound variables, bad ele-

ment organization, such as a string placed at the subject position) - this is an error 

case; the triple is write-protected (individual triples, or families of triples can be 

write-protected by a lock - not developed here); the store forbids the writing of such 

triples (similarly, one can specify access rights; not developed here). If the operation 

is successful, it will stream a unique solution: the empty binding. 

3 Blocking Actions 

Reading and writing actions can be suspended until completion when specified with 

the WAIT primitive. It means that the ReAL process will be suspended until the ac-

tion can be fulfilled in the current context. This is a powerful way to synchronize and 

communicate information between concurrent ReAL processes through the interme-

diary of the RDF triple store (à la LINDA [6]). As an illustration, the three expres-

sions below 

WAIT rdf:type(ex:nantes-triptych, ex:Artwork)  

WAIT -rdf:type(ex:nantes-triptych, ex:Artwork)  

WAIT +rdf:type(ex:nantes-triptych, ex:Artwork)  

will wait for the triple if not initially present at evaluation time. For the last one, a 

writing action, the waiting process will not start if the problem is linked to a badly 

formed triple issue (the action will just fail). 

4 Stream-based Logical Connectors 

Considering that an expression becomes “true” if at least one solution exists, we pro-

pose to consider our set of combinators (as described below) as being dual, each of 

them being both a logical combinator and a stream-based composition operator as 

well. 

AND. The binary combinator “AND” allows combining solutions from both oper-

ands. An (e1 AND e2) expression first looks for solutions of e1; for each correspond-

ing binding B1, it is applied to e2 (applying a binding means doing a substitution: if 

e2 shares variables with e1, they will be instantiated) and then the operator looks for 

solutions for B1(e2) and streams them as results. As an illustration, 

rdf:type(?sub,ex:ArtWork) AND ex:creator(?sub,ex:BillViola) (5) 

will stream the subject IRI for all art works by Bill Viola explicitly known in the RDF 

store. Now, if we want to do a more powerful operation, for instance replacing the 

“ex:BillViola” IRI with another one (where the IRI is more abstract and does not 

mention a name), and specifying the artist’s name through the rdfs:label property: 



$iri AND  

+rdfs:label(?iri,”Bill Viola”) AND  

rdf:type(?sub, ex:ArtWork) AND  

-ex:creator(?sub, ex:BillViola) AND  

+ex:creator(?sub, ?iri) 

 

        Example (6) 

The notation $iri is a syntactic sugar for FRESH(?iri), a primitive that streams fresh 

and unique IRIs bound to the variable ?iri.  

OR. This binary combinator propagates only the left substream if any. Otherwise, it 

propagates the right one, if any. 

UNION. This binary combinator propagates first the left substream if any. After-

wards, it propagates the right substream if any (meaning that it fails if both sub-

streams fail). Note that like the OR primitive, no junction is done between left and 

right terms. 

NO. This combinator streams the empty binding if no solution is found for the sub-

expression, fails otherwise. Usage example:  

NO rdf:type(?x,rdfs:Class) 

FIRST. this unary operator evaluates its subexpression, and just streams the first solu-

tion if any. Albeit the RDF store is not ordered, streams can be ordered, especially 

when yielded by inference based queries. 

LAST. Same behavior than FIRST, except that only the last solution is found. Note 

that (i) it cannot work with infinite streams, and (ii) the substream is delayed until 

completion since only the last solution is streamed. 

REPEAT. Evaluate the subexpression but do not propagate any solutions. Fails if the 

subexpression fails, returns the empty binding when the stream terminates. Usage 

example: 

REPEAT (rdf:type(?x,ex:Book) AND +rdfs:label(?x,“scanned”)) 

Repeat can be parameterized by a counting parameter i.e. number of solutions. If the 

number cannot be reached, the action will fail. For instance: 

REPEAT 1 (rdf:type(?x,rdfs:Class) AND + rdfs:label(?x,“scanned”)) 

performs only one action. It is not equivalent to FIRST because REPEAT is opaque. 

The expression below, will perform as many times as possible the actions of the 

subexpression, and will return a binding giving the value of ?count, i.e. the number of 

solutions. 

REPEAT ?count (rdf:type(?x,rdfs:Class) AND +rdfs:label(?x,“scanned”)) 



TRUE. Streams the empty binding. 

FALSE. Always fails (do not stream anything). 

CALL some-IRI ( i0 … ik >> o0 … on ). This operator executes the actions defined 

by some-IRI; parameters i0… ik are passed to the target environment; outputs o0 … 

on, when defined, are used to rename the bindings streamed by the action if any.  

SPAWN some-IRI ( i0 … ik). This action is similar to the CALL action, except that 

the action will be executed in a concurrent micro-thread, and cannot stream any solu-

tion (one must use synchronized triples to exchange data). This is therefore an asyn-

chronous call, as opposed to CALL which is synchronous. 

STOP some-IRI. This action stops a process (designated by some-IRI) but fails if the 

process is not found or is not active anymore. 

STOP some-IRI (msg-IRI). Same as the previous combinator, but a message will be 

associated (msg-IRI, should be an IRI of a lrm:Message instance) to the 

lrm:ActivityStopped event that will be attached to the RDF activity descriptor (aka 

some-IRI). 

5 Transactions and Sandboxes 

Example (6) may raise a problem when the store does not contain any artwork by Bill 

Viola. In that case, the global action will fail (not returning any solution/binding) 

when evaluating the third operand rdf:type(?subject, ex:Artwork) but however the 

store will be eventually modified: a triple rdfs:label(_:b1,”Bill Viola”) will be inserted 

as a side-effect. Indeed, the writing action (as specified by the second operand) is 

done immediately, as explained in previous sections. One very obvious solution is to 

reorder the operands: 

rdf:type( ?sub, ex:ArtWork) AND  

- ex:creator(?sub, ex:BillViola) AND  

$iri  AND  

+ rdfs:label(?iri,”Bill Viola”) AND  

+ ex:creator(?sub, ?iri)  

        (6b) 

 

Another more generic solution is to use a transaction: all transformative actions are 

committed at each streamed solution, if any. If no solution is yielded, the transaction 

is aborted and the store stays unchanged. The transaction is specified by enclosing 

square brackets […], and transactions can be nested. A transaction is transparent (i.e. 

it always propagates the substream). 

$iri  AND [  

 + rdfs:label(?iri,”Bill Viola”) AND  

        (6c) 



 rdf:type( ?sub, ex:ArtWork) AND  

 - ex:creator(?sub, ex:BillViola) AND  

 + ex:creator(?sub, ?iri) 

] 

A similar mechanism, called the sandbox, allows to confine all transformative actions 

into a temporary substore which will be forgotten after evaluation, be it a success or 

not (so it behaves like a transaction that is always aborted). It is denoted by enclosing 

brackets {…} and like for transactions, it is transparent (it always propagates the sub-

stream). 

6 Handling Graphs 

Graphs can be viewed as a way to modularize RDF stores. We propose two combina-

tors to work with graphs: ON and IN. Their behavior is defined according to a dedi-

cated execution structure, namely, a stack of contexts (an RDF graph for instance can 

be considered as a context). At the bottom of the stack, there is always the default 

context (i.e. the context stack is never empty), and transformative actions (addition 

and deletion of triples) are always performed in the context lying on the top of the 

stack. 

ON <iri> or <var> {action} 

If the first parameter is an IRI, it must designate an existing graph. If the parameter is 

a variable, the graph will be created, and in extension to the standard RDF 1.1 seman-

tics, a triple rdf:type(iri, rdf:Graph) will be created inside the top context
4
. 

This (new) graph will be pushed on the stack, and will become the new active context. 

The action associated with the ON operation will be undertaken and solutions 

streamed up. Note that transformative actions (insertions and deletions) will only 

affect the top context, however reading actions will explore the whole context stack in 

the top-down direction. 

IN <iri> or <var> {action} 

The semantics are pretty much the same, except that IN builds a stack of one unique 

context, the one given as parameter of the action. Therefore, transformative and read-

ing actions associated with the IN operations are all confined to the same unique 

graph (in that sense, it is much more restrictive: it locally behaves like if the default 

store and other graphs do not exist). 

7 Summary and Ongoing Work 

We have presented the main design principles of a query language for RDF stores 

based on the notion of actions. We have presented several combinators to handle con-

                                                           
4 Actually, all named graphs will be associated with such a triple. 



currency, enable interaction with external services, and define the context of execu-

tion via the notion of nested transaction.  

Currently we are working on: 

 Experimenting the most innovative operators, especially the transactional and 

graph related combinators (we expect the former to simplify greatly concurrent 

modification and the latter to provide means for simple and efficient safety control 

mechanisms). 

 Decoupling completely ReAL from LRM. The current version of ReAL is still 

dependent for some operators on the LRM ontology (they are both being developed 

in the context of the same project, PERICLES). For instance, in the combinator 

CALL some-IRI ( i0 … ik >> o0 … on ) the reference some-IRI must designate to-

day an instance of a specific LRM class (lrm:Action) which, by design, defines a 

unique predicate lrm:body where the ReAL code describing the actions is inserted. 

Fig. 1 shows an example of such an instance which is used to invoke a certification 

service for the versioning of an entity.  

 

 

Fig. 1. Example of ReAL and LRM integration 

Line 237 in Fig. 1 defines the input signature, which must be matched with the in-

put parameters (order and cardinal of the list are both significant and must match; 

also true for the output) given by the caller; the line 238 defines the output signa-

ture: these parameters will be streamed back to the caller if solutions are found. 

 Defining the formal semantics for ReAL.  

 Analyzing the relation of SPARQL (and streaming variants) to ReAL. 

The results of the above three actions will be made available in the near future. 
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Appendix: EBNF Grammar 

ReAL ::=  '[' ReAL ']'   |    

'{' ReAL '}'   |   

'IN' Pattern '{' ReAL '}'   |  

'ON' Pattern '{' ReAL '}'   |  

ReAL 'AND'  ReAL  |            

ReAL 'UNION'  ReAL  |             

ReAL 'OR'  ReAL  |     

'NO'  ReAL  |                    
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'FIRST'  ReAL    |        

'LAST'  ReAL    |    

'REPEAT'  ReAL     |    

'REPEAT'  Item ReAL     |    

'(' ReAL ')'     | 

'TRUE'  | 

'FALSE' | 

Action 

                    

Action  ::=   

'CALL' CallPattern      |     

'SPAWN' CallPattern      |     

'STOP'  Pattern      |    

'STOP' CallPattern      |     

'EXPAND' CallPattern   |     

’!' TriplePattern      |     

Iri '!' TriplePattern      |   

'$' <symbol>      | 

'WAIT' BasicAction     |   

BasicAction 

 

BasicAction    ::= 

'+' TriplePattern    |    

'++' TriplePattern    |    

'-' TriplePattern    |    

TriplePattern  

                             

TriplePattern  ::=   

Pattern '(' Pattern ',' Item ')'  |  

Pattern '(' Pattern ',' Item, '|' Pattern ')'  |   

Pattern '(' Pattern ',' BTree  ')' 

 

CallPattern  ::=   

Iri '(' ItemList?  ')' |   

Iri '(' ItemList? ‘>>’ ItemList? ')' 

 

Item  ::= Pattern |  Atom 

Pattern  ::= Iri  |  Var  

Iri   ::=  <symbol> ':' <symbol>    

Var   ::=  '?'  |   '?' <symbol>             

Atom  ::= <string> |  <number> |  <symbol> 

ItemList   ::=  Item ',' ItemList  |  Item  

BTree   ::= '[ ' BItem   BTreeList ']'   

BTreeList  ::= BItem  BTreeList   |  BItem  

BTree   ::= '{ '  BList '}'   

BList  ::= BItem  "," BList   |   

    BItem  BList   |    

    '|' BItem  |  BItem 

BItem  ::= BTree | Item 

 

 


