
The Resource Action Language: Towards Designing

Reactive RDF Stores

Jean-Yves Vion-Dury and Nikolaos Lagos

Xerox Research Centre Europe
{jean-yves.vion-dury, nikolaos.Lagos}@xrce.xerox.com

Keywords: Streaming, RDF query, context, ReAL.

Abstract. In an interconnected world such as the one envisioned by pervasive

computing, systems should be able to react to stimuli received from the envi-

ronment in a streaming fashion. Reactions may include not only performing lo-

cal updates, but also sending and asking for information from other systems,

waiting for responses, and requesting for changes. In this paper we give a short

introduction to the main principles of a language we are developing to achieve

that, ReAL. Key elements of ReAL in that context include the introduction of

explicit operators to deal with concurrency, nested transactions, and streams.

1 Introduction

In an interconnected world such as the one envisioned by pervasive computing,

systems should be able to react to stimuli received, for instance thanks to sensors,

from the environment. Reactions may include not only sending information but also

asking for information from other systems, waiting for responses, and requesting for

changes in a continuous, streaming fashion. Streaming extensions to the standard

Semantic Web query language (SPARQL) have been developed for dealing with con-

tinuous data flows [1-5], with the most interesting in our context being EP-SPARQL

[3] that uses events as triggers of query execution. However, we observed that interac-

tion with other systems, and the effects on the design of a corresponding query lan-

guage, have not been explicitly considered up to now.

In this paper we give a short introduction to the main principles of a language we

are developing to bridge this gap, ReAL (Resource Action Language). The overall

objective is to provide a means for describing the dynamic behavior of RDF stores in

a streaming fashion, i.e. handle queries within a specific execution context, perform

(potentially transformative) actions on the store itself, and allow interaction with ex-

ternal services. The design principles include.

 Offer an explicit mechanism of (nested) transactions, thus allowing the execution

context to be clearly defined at query time.

mailto:%7bjean-yves.vion-dury,%20nikolaos.Lagos%7d@xrce.xerox.com

 Use a concurrency model to allow coordination with other services – we do that

based on a “Triple Space” derived from “Tuple Space” as formerly done in coordi-

nation languages like Linda [6].

 Follow a streaming execution model to enumerate solutions one by one, thus prop-

agating solutions as soon as possible.

 Allow a synthesis of query and production-rule languages (to define actions and

their impacts within the query).

 Aim for modular and highly compositional programming structures (procedures).

In this paper we don’t target exhaustivity. In particular, many general purpose

primitive actions are missing, as we essentially focus on some of the most interesting

features of ReAL in our context. Other higher level actions (e.g. time-oriented and

memory-protection-oriented primitives) are work in progress.

We have to note here that ReAL can be seamlessly linked to the LRM upper level

ontology [7], being developed in the PERICLES project
1
. An example of such inte-

gration will be described in the paper. The LRM OWL ontology has been designed to

address dynamicity in the digital preservation field, with a focus on change manage-

ment through sophisticated model to handle intentional dependencies, versioning

mechanisms and reflexive metadata modeling. If ReAL is designed as a “natural in-

frastructure” to support LRM based services, we do believe that its more fundamental

qualities are not bound to any particular data model.

2 Matching, Bindings and Basic Actions

Triples are represented through a syntax similar to the one adopted by the abstract

syntax of SWRL [8], using functional notation like predicate(subject, object). where

any of the three components can be an IRI using a prefixed form or a variable ?name.

The object component can additionally be a string like “3.1416”, a decimal/integral

number, or a symbol like true, false. Note that triples extended with language tags or

typing IRI are captured by an additional argument (separated by “|”), e.g.:

rdf:label(test:c1,”my class” | en)

ex:weight(test:c1,”0.12456” | xsd:decimal)

Based on this notation, we introduce next the most basic primitive constructs to

perform reading and writing in the RDF store. They constitute what we like to call

basic actions.

Simple reading. The following reading expression (illustrative)

rdf:type(?sub, ?class) (1)

will succeed if at least one solution can be read in the triple store. Solution here des-

ignates all triples matching the expression. The result is of the form <boolean, Bind-

1 http://pericles-project.eu/

ing>, where boolean (true or false) denotes whether a solution is found, and Binding

denotes the set
2
 of pairs (variable, term

3
). Failing queries always return <false,{}>. A

new Binding is streamed whenever a matching solution is found, and can be defined

as a mapping relating all variables (e.g. ?sub) to subterms such that the filtering terms

are made equal to the matching terms. In other words, a Binding represents the substi-

tutive solution that equates the filter to the instance. The substitution operation of an

expression e using a binding B is a new expression noted B(e). Note that the expres-

sion (1) above, if changed into e.g.

rdf:type(ex:nantes-triptych, ex:Artwork) (1b)

could stream a unique solution (an empty binding {}) in a context where the triple is

indeed present in the RDF store.

Destructive reading. To express that you want not only to filter-out the RDF store, but

also to withdraw the matching solutions, you may use a “-” operator as a prefix.

- rdf:type(?sub, ex:Artwork) (2)

Note that the store is immediately modified, so that unforeseen “side effects” may

occur when such an instruction is combined with others, even if those do not return

any solution eventually (this is one reason why nested transactions are relevant in

ReAL, as we will see later). Destructive reading may fail if the triple is write-

protected (such protection mechanisms will not be presented here).

Explicit inference invocation. When one needs to extract more complex information

from the store, he may use inference to stream solutions, thanks to the “!” prefix.

! rdf:type(?sub, ex:Artwork) (3)

The type of inference is dependent on the context and on the configuration of the

corresponding infrastructure, but typically, it could exploit a background taxonomy or

ontology. For instance, provided that relations like rdfs:subClassOf (ex:VideoArt,

ex:Artwork) and rdfs:subClassOf (ex:SoftwareBasedArt, ex:Artwork) are included in

the underlying knowledge base, corresponding inference (based on the

rdfs:subClassOf) could be used to infer that the instances of ex:VideoArt and

ex:SoftwareBasedArt are solutions of query (3).

Writing triples. In order to insert a new triple inside the store, one may use the “+”

prefix:

+ rdf:type(ex:nantes-Triptych, ex:Artwork) (4)

2 The set can be empty if the pattern does not involve any variable, or only jokers, noted ?
3 Here the term’s syntax is defined by the non-terminal BItem of the formal grammar provided

in the appendix.

When one wants to write a triple into the store, the operation might fail if: the triple

already exists; the triple is not well formed (remaining unbound variables, bad ele-

ment organization, such as a string placed at the subject position) - this is an error

case; the triple is write-protected (individual triples, or families of triples can be

write-protected by a lock - not developed here); the store forbids the writing of such

triples (similarly, one can specify access rights; not developed here). If the operation

is successful, it will stream a unique solution: the empty binding.

3 Blocking Actions

Reading and writing actions can be suspended until completion when specified with

the WAIT primitive. It means that the ReAL process will be suspended until the ac-

tion can be fulfilled in the current context. This is a powerful way to synchronize and

communicate information between concurrent ReAL processes through the interme-

diary of the RDF triple store (à la LINDA [6]). As an illustration, the three expres-

sions below

WAIT rdf:type(ex:nantes-triptych, ex:Artwork)

WAIT -rdf:type(ex:nantes-triptych, ex:Artwork)

WAIT +rdf:type(ex:nantes-triptych, ex:Artwork)

will wait for the triple if not initially present at evaluation time. For the last one, a

writing action, the waiting process will not start if the problem is linked to a badly

formed triple issue (the action will just fail).

4 Stream-based Logical Connectors

Considering that an expression becomes “true” if at least one solution exists, we pro-

pose to consider our set of combinators (as described below) as being dual, each of

them being both a logical combinator and a stream-based composition operator as

well.

AND. The binary combinator “AND” allows combining solutions from both oper-

ands. An (e1 AND e2) expression first looks for solutions of e1; for each correspond-

ing binding B1, it is applied to e2 (applying a binding means doing a substitution: if

e2 shares variables with e1, they will be instantiated) and then the operator looks for

solutions for B1(e2) and streams them as results. As an illustration,

rdf:type(?sub,ex:ArtWork) AND ex:creator(?sub,ex:BillViola) (5)

will stream the subject IRI for all art works by Bill Viola explicitly known in the RDF

store. Now, if we want to do a more powerful operation, for instance replacing the

“ex:BillViola” IRI with another one (where the IRI is more abstract and does not

mention a name), and specifying the artist’s name through the rdfs:label property:

$iri AND

+rdfs:label(?iri,”Bill Viola”) AND

rdf:type(?sub, ex:ArtWork) AND

-ex:creator(?sub, ex:BillViola) AND

+ex:creator(?sub, ?iri)

 Example (6)

The notation $iri is a syntactic sugar for FRESH(?iri), a primitive that streams fresh

and unique IRIs bound to the variable ?iri.

OR. This binary combinator propagates only the left substream if any. Otherwise, it

propagates the right one, if any.

UNION. This binary combinator propagates first the left substream if any. After-

wards, it propagates the right substream if any (meaning that it fails if both sub-

streams fail). Note that like the OR primitive, no junction is done between left and

right terms.

NO. This combinator streams the empty binding if no solution is found for the sub-

expression, fails otherwise. Usage example:

NO rdf:type(?x,rdfs:Class)

FIRST. this unary operator evaluates its subexpression, and just streams the first solu-

tion if any. Albeit the RDF store is not ordered, streams can be ordered, especially

when yielded by inference based queries.

LAST. Same behavior than FIRST, except that only the last solution is found. Note

that (i) it cannot work with infinite streams, and (ii) the substream is delayed until

completion since only the last solution is streamed.

REPEAT. Evaluate the subexpression but do not propagate any solutions. Fails if the

subexpression fails, returns the empty binding when the stream terminates. Usage

example:

REPEAT (rdf:type(?x,ex:Book) AND +rdfs:label(?x,“scanned”))

Repeat can be parameterized by a counting parameter i.e. number of solutions. If the

number cannot be reached, the action will fail. For instance:

REPEAT 1 (rdf:type(?x,rdfs:Class) AND + rdfs:label(?x,“scanned”))

performs only one action. It is not equivalent to FIRST because REPEAT is opaque.

The expression below, will perform as many times as possible the actions of the

subexpression, and will return a binding giving the value of ?count, i.e. the number of

solutions.

REPEAT ?count (rdf:type(?x,rdfs:Class) AND +rdfs:label(?x,“scanned”))

TRUE. Streams the empty binding.

FALSE. Always fails (do not stream anything).

CALL some-IRI (i0 … ik >> o0 … on). This operator executes the actions defined

by some-IRI; parameters i0… ik are passed to the target environment; outputs o0 …

on, when defined, are used to rename the bindings streamed by the action if any.

SPAWN some-IRI (i0 … ik). This action is similar to the CALL action, except that

the action will be executed in a concurrent micro-thread, and cannot stream any solu-

tion (one must use synchronized triples to exchange data). This is therefore an asyn-

chronous call, as opposed to CALL which is synchronous.

STOP some-IRI. This action stops a process (designated by some-IRI) but fails if the

process is not found or is not active anymore.

STOP some-IRI (msg-IRI). Same as the previous combinator, but a message will be

associated (msg-IRI, should be an IRI of a lrm:Message instance) to the

lrm:ActivityStopped event that will be attached to the RDF activity descriptor (aka

some-IRI).

5 Transactions and Sandboxes

Example (6) may raise a problem when the store does not contain any artwork by Bill

Viola. In that case, the global action will fail (not returning any solution/binding)

when evaluating the third operand rdf:type(?subject, ex:Artwork) but however the

store will be eventually modified: a triple rdfs:label(_:b1,”Bill Viola”) will be inserted

as a side-effect. Indeed, the writing action (as specified by the second operand) is

done immediately, as explained in previous sections. One very obvious solution is to

reorder the operands:

rdf:type(?sub, ex:ArtWork) AND

- ex:creator(?sub, ex:BillViola) AND

$iri AND

+ rdfs:label(?iri,”Bill Viola”) AND

+ ex:creator(?sub, ?iri)

 (6b)

Another more generic solution is to use a transaction: all transformative actions are

committed at each streamed solution, if any. If no solution is yielded, the transaction

is aborted and the store stays unchanged. The transaction is specified by enclosing

square brackets […], and transactions can be nested. A transaction is transparent (i.e.

it always propagates the substream).

$iri AND [

 + rdfs:label(?iri,”Bill Viola”) AND

 (6c)

 rdf:type(?sub, ex:ArtWork) AND

 - ex:creator(?sub, ex:BillViola) AND

 + ex:creator(?sub, ?iri)

]

A similar mechanism, called the sandbox, allows to confine all transformative actions

into a temporary substore which will be forgotten after evaluation, be it a success or

not (so it behaves like a transaction that is always aborted). It is denoted by enclosing

brackets {…} and like for transactions, it is transparent (it always propagates the sub-

stream).

6 Handling Graphs

Graphs can be viewed as a way to modularize RDF stores. We propose two combina-

tors to work with graphs: ON and IN. Their behavior is defined according to a dedi-

cated execution structure, namely, a stack of contexts (an RDF graph for instance can

be considered as a context). At the bottom of the stack, there is always the default

context (i.e. the context stack is never empty), and transformative actions (addition

and deletion of triples) are always performed in the context lying on the top of the

stack.

ON <iri> or <var> {action}

If the first parameter is an IRI, it must designate an existing graph. If the parameter is

a variable, the graph will be created, and in extension to the standard RDF 1.1 seman-

tics, a triple rdf:type(iri, rdf:Graph) will be created inside the top context
4
.

This (new) graph will be pushed on the stack, and will become the new active context.

The action associated with the ON operation will be undertaken and solutions

streamed up. Note that transformative actions (insertions and deletions) will only

affect the top context, however reading actions will explore the whole context stack in

the top-down direction.

IN <iri> or <var> {action}

The semantics are pretty much the same, except that IN builds a stack of one unique

context, the one given as parameter of the action. Therefore, transformative and read-

ing actions associated with the IN operations are all confined to the same unique

graph (in that sense, it is much more restrictive: it locally behaves like if the default

store and other graphs do not exist).

7 Summary and Ongoing Work

We have presented the main design principles of a query language for RDF stores

based on the notion of actions. We have presented several combinators to handle con-

4 Actually, all named graphs will be associated with such a triple.

currency, enable interaction with external services, and define the context of execu-

tion via the notion of nested transaction.

Currently we are working on:

 Experimenting the most innovative operators, especially the transactional and

graph related combinators (we expect the former to simplify greatly concurrent

modification and the latter to provide means for simple and efficient safety control

mechanisms).

 Decoupling completely ReAL from LRM. The current version of ReAL is still

dependent for some operators on the LRM ontology (they are both being developed

in the context of the same project, PERICLES). For instance, in the combinator

CALL some-IRI (i0 … ik >> o0 … on) the reference some-IRI must designate to-

day an instance of a specific LRM class (lrm:Action) which, by design, defines a

unique predicate lrm:body where the ReAL code describing the actions is inserted.

Fig. 1 shows an example of such an instance which is used to invoke a certification

service for the versioning of an entity.

Fig. 1. Example of ReAL and LRM integration

Line 237 in Fig. 1 defines the input signature, which must be matched with the in-

put parameters (order and cardinal of the list are both significant and must match;

also true for the output) given by the caller; the line 238 defines the output signa-

ture: these parameters will be streamed back to the caller if solutions are found.

 Defining the formal semantics for ReAL.

 Analyzing the relation of SPARQL (and streaming variants) to ReAL.

The results of the above three actions will be made available in the near future.

Acknowledgments. This work takes place in the framework of the PERICLES

project which received funding from the European Union’s Seventh Framework Pro-

gramme for research, technological development and demonstration under grant

agreement no. 601138. We thank our colleagues and partners for the fruitful exchang-

es we shared. We also thank Mehreen Ikram and Stéphane Jean for their valuable

collaboration into bridging formally the semantics of the above language with the one

of SPARQL.

8 References

1. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF Streams

with C-SPARQL. SIGMOD Record 39(1): 20-26 (2010)

2. Calbimonte, J.-P., Jeung, H., Corcho, Ó., Aberer, K.: Enabling Query Technologies for the

Semantic Sensor Web. Int. J. Semantic Web Inf. Syst. 8(1): 43-63 (2012)

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: A Unified Language for

Event Processing and Stream Reasoning, WWW 2011. Proceedings of the Twentieth In-

ternational World Wide Web Conference, India (2011)

4. Dehghanzadeh, S., Dell’Aglio, D., Gao, S., Della Valle, E., Mileo, A., Bernstein, A.: Ap-

proximate Continuous Query Answering over Streams and Dynamic Linked Data Sets. In:

15th International Conference on Web Engineering (ICWE 2015), Rotterdam, The Nether-

lands. pp. 307–325. Springer (2015)

5. Dell’Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL Semantics: a Unify-

ing Query Model to Explain Heterogeneity of RDF Stream Processing Systems. IJSWIS

10(4), 17–44 (2015)

6. Wells, G.: Coordination languages: Back to the future with linda. In Proceedings of the

Second International Workshop on Coordination and Adaption Techniques for Software

Entities (WCAT05) 87-98 (2005).

7. Vion-Dury, J.-Y., Lagos, N., Kontopoulos, E., Riga, M., Mitzias, P., Meditskos, G., Wad-

dington, S., Laurenson, P. and Kompatsiaris, I.: Designing for Inconsistency - The De-

pendency-based PERICLES Approach. In T. Morzy, P. Valduriez, L. Bellatreche (Ed.),

New Trends in Databases and Inf. Systems, 539, 458-467. Springer Berlin Heidelberg

(2015)

8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A

semantic web rule language combining OWL and RuleML. W3C Member submission 21,

79 (2004)

9. PERICLES European project. http://www.pericles-project.eu/

Appendix: EBNF Grammar

ReAL ::= '[' ReAL ']' |

'{' ReAL '}' |

'IN' Pattern '{' ReAL '}' |

'ON' Pattern '{' ReAL '}' |

ReAL 'AND' ReAL |

ReAL 'UNION' ReAL |

ReAL 'OR' ReAL |

'NO' ReAL |

http://www.pericles-project.eu/

'FIRST' ReAL |

'LAST' ReAL |

'REPEAT' ReAL |

'REPEAT' Item ReAL |

'(' ReAL ')' |

'TRUE' |

'FALSE' |

Action

Action ::=

'CALL' CallPattern |

'SPAWN' CallPattern |

'STOP' Pattern |

'STOP' CallPattern |

'EXPAND' CallPattern |

’!' TriplePattern |

Iri '!' TriplePattern |

'$' <symbol> |

'WAIT' BasicAction |

BasicAction

BasicAction ::=

'+' TriplePattern |

'++' TriplePattern |

'-' TriplePattern |

TriplePattern

TriplePattern ::=

Pattern '(' Pattern ',' Item ')' |

Pattern '(' Pattern ',' Item, '|' Pattern ')' |

Pattern '(' Pattern ',' BTree ')'

CallPattern ::=

Iri '(' ItemList? ')' |

Iri '(' ItemList? ‘>>’ ItemList? ')'

Item ::= Pattern | Atom

Pattern ::= Iri | Var

Iri ::= <symbol> ':' <symbol>

Var ::= '?' | '?' <symbol>

Atom ::= <string> | <number> | <symbol>

ItemList ::= Item ',' ItemList | Item

BTree ::= '[' BItem BTreeList ']'

BTreeList ::= BItem BTreeList | BItem

BTree ::= '{ ' BList '}'

BList ::= BItem "," BList |

 BItem BList |

 '|' BItem | BItem

BItem ::= BTree | Item

