
Tool Support for model-based Generation of Advanced 
User-Interfaces 

Andreas Wolff, Peter Forbrig 
University of Rostock 

Institute of Computer Science 
Albert Einstein Str. 21, 

18059 Rostock, Germany 
[rusty|pforbrig]@informatik.uni-rostock.de 

 

Daniel Reichart 
University of Rostock 

Institute of Computer Science 
Albert Einstein Str. 21, 

18059 Rostock, Germany 
 dr007@informatik.uni-rostock.de 

 
 
ABSTRACT 
A lot of research and work has been done in the past, to 
develop XML based user-interface definition languages. 
Also languages to describe graphics and animations were 
created. 

In an attempt to combine two of those languages with 
model-based user-interface generation, we demonstrate an 
idea of how a specific toolset, originally developed to 
support UI-Pattern based development, can be used to 
create advanced user interfaces based on models. 

Author Keywords 
Model-Based Design, Task Models, Patterns, XUL, XIML, 
SVG. 

ACM Classification Keywords 
HCI 

INTRODUCTION 
Model-based development of software systems has become 
popular in particular along with the enhancing capabilities 
of mobile devices. In this domain it is especially necessary 
to design user interfaces in an abstract way, because there is 
a diversity of different platforms with specific features. 
These varying platforms have to be supported in an 
economic way by new interactive applications.  

We consider model based software development as a 
sequence of transformations of models that is not performed 
in a fully automated way, but supported by humans using 
interactive tools.  Figure 1 provides a graphical 
representation of that approach. 

It is our opinion that software engineers and user interface 
designers; have to base their work on the same models. Our 
work is especially focused on methods and tools supporting 
transformations by patterns.  

In the past a number of tools were developed to support 
different aspects of the MDA approach mentioned above.  
In this paper we focus on those tools that assist designers in 
the user interface development process.   

 

   

 

 

 

 

 

 

 

task 
model

b.-object
model

device 
model

class 
diagram

(analysis)
Transformation Implementation

dialog 
graph

abstract 
user interface 

application
model

UI
model

Design

Design 

Design

user 
model

class 
diagram 

(analysis) 

Transformation by patterns

Transformation by patterns

task 
model

b.-object
model

device 
model

class 
diagram

(analysis)
Transformation Implementation

dialog 
graph

abstract 
user interface 

application
model

UI
model

Design

Design 

Design

user 
model

class 
diagram 

 (design) 

Transformation by patterns

Transformation by patterns

Figure 1 - General view on a transformational model-based 
development process. 

A proposal is presented, how two of our tools could be used 
in combination to generate and design advanced user-
interfaces that are based on and derived from models.  

This paper is structured in such a way that after discussing 
some related work our envisioned development process is 
presented, which includes a short introduction to the 
supporting tools. 

Afterwards a small sample user-interface is developed that 
demonstrates the capabilities to create an advanced user-
interface based on models. This paper does not document 
an already achieved state of work, but is meant to discuss 
the idea. An overlook on remaining future work is given at 
the end. 

RELATED WORK 
Our work is generally related to the “mapping problem” 
that was first mentioned by Puerta and Eisenstein. They 
stated that the mapping problem is the key problem to make 
model-based development acceptable for programmers.  
The mappings mentioned include mappings from abstract to 
concrete models and between models of the same level.  
Mappings from concrete to abstract models are considered 
by Clerckx, Luyten and Coninx in [1]. This level of 
mappings is of minor relevance for the purpose of this 



paper. Mapping from concrete models to abstract ones is 
more important. 

Limbourg and Vanderdonckt [5] address the “mapping 
problem” by supporting transformation of abstract models 
to more concrete ones by graph grammars. The user 
interface specification is based on UsiXML [8]. 

UsiXML – USer Interface eXtensible Markup Language – 
is a XML language for describing the UI for multiple 
contexts of use. It can be used for Graphical-, Character-, 
Auditory-, and Multi-Modal User Interfaces. A UsiXML 
UI-description is independent from an underlying 
computing platform. Currently it seems to be that UsiXML 
could be a living standard to express models.  

UsiXML possibly can play the role, which XIML [10] 
originally wanted to gain.  The initiative for XIML started 
in 1999 and was focused on device-independence primarily 
of mobile devices. XIML is model-based but it needs a 
specific tool to create a specific type of user interface. Our 
tool DiaTask was developed to make use of XIML. Within 
DiaTask task models, user models, and object models with 
our metaphor of artefacts and tools are represented as 
XIML specifications. However, there seems to be no further 
support for XIML. Still there is a lack of tool support, for 
example for designing a concrete user interface. That was 
the reason for our group to look for user interface 
specifications, which are already supported by tools. We 
found XUL as a candidate for that.  

XUL was presented in 1999 by the Mozilla project to 
specify Graphical User Interfaces of the Mozilla-browser in 
platform-independent matter. XUL allows the specification 
of interactive objects like buttons, labels, and text fields.  

SVG [12] – Scalable Vector Graphics – was standardized in 
2001 by W3C, as a XML based language for the description 
of animated and static 2-dimensional vector graphics. For 
use in mobile devices there are two separate standards Tiny 
and Basic which contain only a subset of SVG. SVG can be 
embedded into XUL user-interface definitions and by 
making use of defined scripting languages it is possible to 
create advanced user-interfaces. 

To design concrete user-interfaces a GUI editor for XUL – 
called XUL-E – was developed [9], it is based on an already 
existing Eclipse plugin. XUL-E was built in such a way that 
co-operation with task models and generated user interfaces 
became possible.   

In the following XUL-E and DiaTask will be used to 
generate a XUL/SVG user-interface from a task-model. 

DEVELOPMENT PROCESS OF A USER INTERFACE 
According to Figure 1, the development of an application 
starts with (1) creating different models.  Based on them a 
(2) dialog-graph is created, which is used to find an (3) 
abstract user-interface as basis for (4) concrete user-
interfaces. Transformations between those steps should be 
done by using patterns. 

We try to establish an evolutionary approach that covers all 
four phases. This consists of a mechanism to reflect 
changes to one model in other affected models. Such 
mechanism enables us to let each model evolve step-by-step 
but keeping consistency between the models. Indeed, it 
becomes possible to integrate a new task into an already 
existing concrete user interface, without going through all 
the previously mentioned steps again. We do not believe 
that this can be done in a fully automated manner, but will 
require user intervention. 

For now we will concentrate on task-models as initial 
models of an application. Typically task-models get 
designed in CTTE-notation [2]. For an example see Figure 
2. 

As second step a pattern based transformation should result 
in a dialog-graph (see e.g. [4]). Currently there is no 
satisfying way of doing this. However, one can use our tool 
“DiaTask” to generate dialog-graphs manually.  

By using DiaTask, a user at first has to decide, how many 
views are desired for an application, and whether each of 
them is a modal, single or multiple one. Next step is to 
assign relevant tasks to views. The task model of the 
application determines the set of tasks, which can be 
distributed on views. Thereafter a designer has to model 
transitions between tasks and views.  DiaTask does support 
necessary operations to do this. 

Given a dialog graph DiaTask can generate an initial 
abstract user-interface prototype in a WIMP style that 
mainly reflects the navigation structure of the user 
interface. Windows are used to represent views and 
elements of the views are mapped to buttons. Other task-
element mappings can be achieved by applying a different 
presentation model. This generated abstract user-interface is 
currently stored in XUL format. At this point it is already 
possible to animate the AUI, which can be useful for testing 
purposes.  

Following the generation of the abstract user interface, in a 
next step a concrete user interface (CUI) is to be designed. 

We support this step with our XUL editing tool (XUL-E) 
[9]. Beside its graphical editing features its main purpose is 
to support our evolutionary approach. For that some 
information exchange between editor and DiaTask is 
necessary. This is handled by a slightly enhanced version of 
the XUL language, which is called XULM. These 
enhancements include task-control data, administration data 
and elements to support UI-patterns. 

XUL-E uses DiaTask’s generated AUI as starting point for 
layout refinements. The basic idea of an integrated editing 
process, as presented here, is to edit by replacements. To 
design the user interface for a certain task, one replaces its 
current visualization by another one.  

Replacements are done interactively by “drag & drop” and 
can be either a simple graphical element, e.g. a checkbox, 



or a pre-designed component. This controlled replacement 
process enables XUL-E to maintain any task-related 
attribution of an element and accordingly keep connections 
to task and dialog model.  

For example, in the context of a mail application, a minor 
task as “Choose always send receipt-notification” could be 
replaced by a checkbox; while more complex task, such as 
“Save attachments”, might be replaced by a component 
consisting of a list-box and some control buttons. It depends 
on the abstraction level of each single task and the 
availability of pre-designed components. 

Replacing a single graphical element, such as a button of 
the initial AUI, by a more complex component raises the 
problem of where to attach task-related information. XULM 
offers fine-grained control on this matter. It is possible to 
define for each element inside a pre-designed component 
whether it should have task-control-data applied or not. 

For logical and organizational reasons XULM offers to 
group components into packages. Those packages again can 
contain packages, creating a hierarchy in this way. The 
main idea is to group different visualizations for the same 
kind of task(s) into one (sub-) package. Those 
visualizations should cover different contexts-of-use. An 
application AUI will carry references to such packages, so 
applying a user interface of an application to a different 
context-of-use is ideally reduced to referencing a specific 
component of the same package. 

After finishing the replacement process for each view, it is 
possible to animate the resulting concrete user-interface 
within DiaTask or another XUL interpreter. As already 
mentioned, XUL-E is embedded within our evolutionary 
process. For details see [11].  

SAMPLE APPLICATION 
In the following the outlined approach is used to generate a 
very small sample application whose concrete user-
interface will make use of SVG and XUL.  

Context of the application is a garage. It shall enable its 
users, which are mechanists, to select a broken engine part 
on a screen, optionally further describe the failure and then 
order fitting spare parts from a distributor. An initial task-
model, in CTTE-notation, is presented in Figure 2. 

 

 

 

 

Figure 2 – CTT for sample application 

The created task-model is used as input for DiaTask, as 
described earlier. After assigning, user affected, tasks to 
views the result might be a dialog-graph as in Figure 3. 

Note, that no view got task “Detect spare parts” assigned, as 
it is a task without user interaction. 

 

 

 
 

 

 

 

Figure 3 – Dialog-graph for sample application 

The generated abstract user-interface would consist of three 
small XUL windows, each containing a labelled button, 
with the name of the assigned task. It is not displayed here, 
because of lack of space. 

Last step in creating a concrete user-interface for this 
application is done by using XUL-E. We will design the 
view “Select Repair” to contain an SVG designed engine. 
SVG itself cannot be created by the editor; it needs to be 
provided by external editors, e.g. by “Inkscape” [13]. 

To integrate it into a view, XUL-E’s components 
mechanism is used. An engine first needs to be drawn and 
is afterwards stored as a component in a package to which 
the editor has access to. If desired, different SVG drawings 
for an engine can be stored into that package, e.g. one using 
all elements of standard SVG and another one using only 
elements of SVG Tiny to support PDA or cell phones.  

SVG supports zooming and multi-level drawings. A 
mechanist is expected to define the broken part of the 
engine by zooming in and selecting it within the SVG-
image. Therefore application logic, to determine which part 
is selected, might be needed. It would be written in a script 
language and should possibly be embedded within the 
resulting XML concrete user-interface description. This can 
be achieved by putting those scripts into another component 
and add it to the designed interface. 

 

 

 

 

 

 

 

 

Figure 4 – “Select Repair” view as XUL/SVG combination, 
interpreted by Mozilla 

 



As the editor and XULM are designed in respect of 
applying UI-patterns to an abstract or concrete user-
interface, XULM offers to logically combine multiple 
components to a single one. Such a single component is 
required by XUL-E for its replacement process, as 
mentioned above. The combination and replacement 
process can further be controlled on XULM and editor 
level, to allow semi-automatic adaptation to different 
contexts of use. This process is omitted in this paper. 

Figure 4 shows the view with a sketched engine, a select 
and two zoom buttons as part of the applications control 
logic component. SVG is not limited to such simple 
graphics; it is only a simplified example for demonstration 
purposes. 

The view “Describe Repair” is designed with a textbox, e.g. 
for inputting key numbers, and the task “Describe defect” 
itself is replaced by an “OK-Cancel”-component. Inserting 
the functionality “Cancel” requires adapting the dialog-
graph with a transition back to view “Select Repair”. 

View “Order from distributor” is replaced by a pre-
designed component “mailform”, which contains a layout 
of XUL elements to write an email and an “OK-Cancel”-
component. Adaptation of the applications dialog-graph is 
therefore also required. The result of the transformations for 
those views is displayed in Figure 5. 

 

 

 

 

 

Figure 5 – Describe and Order views in XUL-E 

CONCLUSION AND FURTHER WORK 
We have shown that the combination of the DiaTask and 
XUL-E tools can support model-based development of user 
interfaces. Starting with a task model the designer can 
interactively create and design an abstract and concrete user 
interface for an application. As the resulting specifications 
for abstract and concrete UI are in XUL format, there is a 
chance of converting them into native code for 
programming languages by using specialized compilers. 

Furthermore we proposed a method for integrating SVG 
into the overall process.  Contained within components 
vector graphics can be included into a concrete UI just as 
any XUL element or component. Using features of XULM 
there is a fine-grained control over the resulting concrete 
user interface and it also is adaptable to different contexts 
of use. 

As SVG offers animation, zooming and can be accessed via 
a scripting language, which itself can be embedded within 

XULM components, it is possible to create advanced user-
interfaces. In order to demonstrate the application of our 
approach the development of the UI of a small sample 
application was presented. 

With our current toolset we can support the operations, 
which were needed to generate the results of Figures 4 and 
5. However, momentarily viewing and editing SVG 
graphics within XUL-E still remain manual activities.  

Another limiting factor is XULM; basic functionalities such 
as tracking tasks over models and views are already 
implemented. Defining components using XULM, 
especially in term of UI-patterns, is still under development. 

REFERENCES 
1. Clerxkx, T.; Luyten K.; Conix, K.: The Mapping 

Problem Back and Forth: Customizing Dynamic Models 
while preserving Consitency, Proc. TAMODIA 2004, P. 
33-42. 

2. CTTE: The ConcurTaskTree Environment. 
http://giove.cnuce.cnr.it/ctte.html. 

3. Dittmar, A., Forbrig, P., Heftberger, S., Stary, C.: Tool 
Support for Task Modelling – A Constructive 
Exploration. Proc. EHCI-DSVIS’04, 2004. 

4. Elwert, T., Schlungbaum, E.: Dialogue Graphs – A 
Formal and Visual Specification Technique for 
Dialogue Modelling. In Siddiqi, J.I., Roast, C.R. (ed.) 
Formal Aspects of the Human Computer Interface, 
Springer Verlag, 1996. 

5. Limbourg, Q., Vanderdonckt, J.: Addressing the 
Mapping Problem in User Interface Design with 
USIXML, Proc TAMODIA 2004, Prague, P. 155-164 

6. López-Jaquero, V.; Montero, F. ; Molina, J.,P.; 
González, P.: A Seamless Development Process of 
Adaptive User Interfaces Explicitly Based on Usability 
Properties, Proc. EHCI-DSVIS’04, p. 372-389, 2004. 

7. Paterno, F.; Mancini, C.; Meniconi, S: 
ConcurTaskTrees: A Diagrammatic Notation for 
Specifying Task Models, Proc. Interact 97, Sydney, 
Chapman & Hall, p362-369, 1997. 

8. UsiXML: http://www.usixml.org/ 

9. Wolff, Andreas: Ein Konzept zur Integration von 
Aufgabenmodellen in das GUI-Design, Master Thesis, 
University of Rostock, 2004. 

10. XIML: http://www.ximl.org 

11. Wolff, A.; Forbrig, P.; Dittmar, A.; Reichart, D.: 
Linking GUI Elements to Tasks – Supporting an 
Evolutionary Design Process, accepted for TAMODIA 
2005, Gdansk 

12.SVG: http://www.w3.org/Graphics/SVG/ 

13.Inkscape:  http://www.inkscape.org 
 

http://giove.cnuce.cnr.it/ctte.html
http://www.usixml.org/
http://www.ximl.org/
http://www.w3.org/Graphics/SVG/

	 
	 
	ABSTRACT 
	Author Keywords 
	ACM Classification Keywords 
	INTRODUCTION 
	RELATED WORK 
	DEVELOPMENT PROCESS OF A USER INTERFACE 
	SAMPLE APPLICATION 
	 
	 
	 
	CONCLUSION AND FURTHER WORK 
	REFERENCES 


