Proceedings

»PNSE’16«
International Workshop on
Petri Nets and Software Engineering

Satellite event of the
37th International Conference on
Application and Theory of Petri Nets
and Concurrency

16th International Conference on
Application of Concurrency to
System Design

Toruń, Poland, June, 2016

including papers of

»BioPPN’16«
International Workshop on
Biological Processes and Petri Nets
Preface

These are the proceedings of the International Workshop on Petri Nets and Software Engineering (PNSE'16) in Toruń, Poland, June 20–21, 2016. It is a co-located event of

- Petri Nets 2016 – the 37th International Conference on Applications and Theory of Petri Nets and Concurrency and
- ACSD 2016 – the 16th International Conference on Application of Concurrency to System Design.

More information about the workshop can be found at

http://www.informatik.uni-hamburg.de/TGI/events/pnse16/

For the successful realization of complex systems of interacting and reactive software and hardware components the use of a precise language at different stages of the development process is of crucial importance. Petri nets are becoming increasingly popular in this area, as they provide a uniform language supporting the tasks of modeling, validation and verification. Their popularity is due to the fact that Petri nets capture fundamental aspects of causality, concurrency and choice in a natural and mathematically precise way without compromising readability. The use of Petri nets (P/T-nets, colored Petri nets and extensions) in the formal process of software engineering, covering modeling, validation and verification, is presented as well as their application and tools supporting the disciplines mentioned above.

We have chosen Gabriele Taentzer and Yann Thierry-Mieg as invited speakers. We received twenty-three high-quality contributions. The program committee has accepted eleven of them for full presentation. Four papers were accepted as short presentations, two as short papers and one as poster presentation.

The international program committee was supported by the valued work of David Mosteller, Camille Coti, Dimitri Racordon, Yann Ben Maissa, Alban Linard, Thomas Wagner, Maciej Szreter, Benjamin Meis, Michal Knapik as additional reviewers. Their work is highly appreciated. Furthermore, we would like to thank our colleagues in the local organization team at the Nicolaus Copernicus University in Toruń for their support. Without the enormous efforts of authors, reviewers, PC members and the organizational team, this workshop would not provide such an interesting booklet.

Thanks!

Lawrence Cabac, Lars Michael Kristensen, Heiko Rölke
Hamburg, June 2016
Program Committee

Kamel Barkaoui (France)
Robin Bergenthum (Germany)
Didier Buchs (Switzerland)
Lawrence Cabac (Germany) (Chair)
Piotr Chrzastowski-Wachtel (Poland)
Gianfranco Ciardo (USA)
José-Manuel Colom (Spain)
Jörg Desel (Germany)
Raymond Devillers (Belgium)
Susanna Donatelli (Italy)
Giuliana Franceschinis (Italy)
Nicolas Guelfi (Luxembourg)
Stefan Haar (France)
Kunihiro Hiraishi (Japan)
Peter Kemper (USA)
Ekkart Kindler (Denmark)
Hanna Klaudel (France)
Michael Köhler-Busmeier (Germany)
Radek Koci (Czech republic)
Maciej Koutny (United Kingdom)
Lars Kristensen (Norway) (Chair)
Łukasz Mikulski (Poland)
Daniel Moldt (Germany)
Berndt Müller (Great Britain)
Wojciech Penczek (Poland)
Laure Petrucci (France)
Lucia Pomello (Italy)
Heiko Rölke (Germany) (Chair)
Yann Thierry-Mieg (France)
Henricus M.W. (Eric) Verbeek (Netherlands)
Jan Martijn van der Werf (Netherlands)
Karsten Wolf (Germany)
Preface BioPPN

This volume contains the peer-reviewed papers accepted for BioPPN 2016 – the 7th International Workshop on Biological Processes & Petri Nets held on June 20, 2015 in Toruń as satellite event of PETRI NETS 2016 and ACSD 2016.

The workshop had been organised to provide a platform for researchers aiming at fundamental research and real life applications of Petri nets and other concurrency models in Systems and Synthetic Biology. Systems and Synthetic Biology are full of challenges and open issues, with adequate modelling and analysis techniques being one of them. The need for appropriate mathematical and computational modelling tools is widely acknowledged.

Petri nets offer a family of related models, which can be used as umbrella formalism – models may share network structure, but vary in their kinetic details. This undoubtedly contributes to bridging the gap between different formalisms, and helps to unify diversity. Thus, Petri nets have proved their usefulness for the modelling, analysis, and simulation of a diversity of biological networks, covering qualitative, stochastic, continuous and hybrid models. The deployment of Petri nets to study biological applications has not only supported the development of original models, but has also motivated research of formal foundations.

The workshop was opened by an invited talk on Quasi-Steady State Petri Nets given by Andrzej M Kierzek, Head of Systems Modeling, Simcyp a Certara company, Sheffield, UK and Visiting Professor of Systems Biology, Faculty of Health and Medical Sciences, University of Surrey, UK.

In addition, there was a Poster Session, and each poster was briefly introduced by a short talk.

Each submission was reviewed by up to eight program committee members, supported by an external subreviewer, followed by an intensive and thorough discussion. The list of reviewers comprised 16 professionals of the field coming from 9 different countries and writing in total 25 reviews, most of them of substantial length. The programme committee finally decided to accept two papers, involving 3 authors coming from two different countries, and three posters, with authors all coming from Poland, the hosting country. The two full papers got substantially improved in their final version – credits go to the detailed reviews.

For more details see the workshop’s website http://www-dssz.informatik.tu-cottbus.de/BME/BioPPN2016.

June 12, 2016
Cottbus
Anna Gambin
Monika Heiner
Program Committee BioPPN

Gianfranco Balbo
University of Torino, Computer Science Department, Italy

Marco Becutti
University of Torino, Computer Science Department, Italy

Rainer Breitling
University of Manchester, Manchester Institute of Biotechnology, UK

Ming Chen
Zhejiang University, College of Life Sciences, Department of Bioinformatics, China

Piotr Formanowicz
Poznan University of Technology & Polish Academy of Sciences, Poland

Anna Gambin
University of Warsaw, Division of Mathematics, Informatics and Mechanics, Computational Biology Group, Poland

David Gilbert
Brunel University, Centre for Systems and Synthetic Biology, UK

Simon Hardy
Université Laval, Institut universitaire en santé mentale de Québec, Canada

Monika Heiner
Brandenburg University of Technology Cottbus-Senftenberg, Computer Science Institute, Germany

Mostafa Herajy
Port Said University, Mathematics and Computer Science Department, Egypt

Peter Kemper
College of William and Mary, Department of Computer Science, USA

Hanna Klaudel
Universite d'Evry-Val d'Essonne, IBISC, France

Michal Komorowski
Polish Academy of Sciences, Institute of Fundamental Technological Research, Division of Modelling in Biology and Medicine, Poland

Chen Li
Zhejiang University, School of Medicine, Center for Genetic & Genomic Medicine, China

Fei Liu
Harbin Institute of Technology, Control and Simulation Center, China

Wolfgang Marwan
Otto von Guericke University Magdeburg & Magdeburg Centre for Systems Biology, Germany

Hiroshi Matsuno
Yamaguchi University, Graduate School of Science and Engineering, Japan

Annergret K. Wagler
Université Blaise Pascal (Clermont-Ferrand II), Faculty of Sciences and Technology
Contents

Part I Invited Talks

Model-Driven Development of Mobile Applications: Towards Context-Aware Apps of High Quality
Gabriele Taentzer and Steffen Vaupel......................... 17

Bridging the Gap Between Formal Methods and Software Engineering Using Model-based Technology
Yann Thierry-Mieg.. 30

Part II Long Presentations

Time in Structured Occurrence Nets
Anirban Bhattacharyya, Bowen Li and Brian Randell........... 35

Formal Modelling and Analysis of Distributed Storage Systems
Jordan de la Houssaye, Franck Pommereau and Philippe Deniel...... 56

Introducing Refactoring for Reference Nets
Max Friedrich and Daniel Moldt 76

Verification of Nested Petri Nets Using an Unfolding Approach
Irina A. Lomazova and Vera O. Ermakova 93

Practical Use of Coloured Petri Nets for the Design and Performance Assessment of Distributed Automation Architectures
Moulaye Ndiaye, Jean-François Pétin, Jean-Philippe Georges and Jacques Camerini 113
Kleene Theorem for Labelled Free Choice Nets without Distributed Choice
Ramchandra Phawade ... 132

Distributed Change Region Detection in Dynamic Evolution of Fragmented Processes
Ahana Pradhan and Rushikesh K. Joshi 153

Extending Renew’s Algorithms for Distributed Simulation
Michael Simon and Daniel Moldt ... 173

Model-based Development for MAC Protocols in Industrial Wireless Sensor Networks
Admar Ajith Kumar Somappa and Kent Inge Fagerland Simonsen 193

Stubborn Set Intuition Explained
Antti Valmari and Henri Hansen .. 213

Decomposed Replay Using Hiding and Reduction
Henricus M.W. Verbeek ... 233

Part III Short Presentations

Formally Proving and Enhancing a Self-Stabilising Distributed Algorithm
Camille Coti, Charles Lakos and Laure Petrucci 255

Refining the Quick Fix for the Petri Net Modeling Tool Renew
Jan Hicken, Michael Haustermann and Daniel Moldt 275

Layered Data: a Modular Formal Definition without Formalisms
Alban Linard, Benoît Barbot, Didier Buchs, Maximilien Colange,
Clément Démoulins, Lom Messan Hillah and Alexis Martin 287

From eHornets to Hybrid Agent and Workflow Systems
Thomas Wagner, Daniel Moldt and Michael Köhler-Büßmeier 307

Part IV Short Papers

Khanh Le, Thang Bui, Tho Quan and Laure Petrucci 329
CSCB Tools: A Tool to Synthesize Pareto Optimal State Machine Models from Choreography Using Petri Nets
Toshiyuki Miyamoto .. 335

Part V Poster Presentation

Case Studies of the Renew Meta-Modeling and Transformation Framework
David Mosteller, Michael Haustermann 343

Part VI BioPPN Papers

Analysis of the Signal Transduction Dynamics Regulating mTOR with Mathematical Modeling, Petri Nets and Dynamic Graphs
Simon V. Hardy and Mathieu Pagé Fortin 347

Discrete-Time Leap Method for Stochastic Simulation
Christian Rohr ... 362