Extending RENEW’s Algorithms for
Distributed Simulation

Michael Simon and Daniel Moldt

Theoretical Foundations of Computer Science (TGI)
Department of Informatics, University of Hamburg, Germany
http://www.informatik.uni-hamburg.de/TGI/

Abstract Distributed Petri net simulations are still a challenge. A speed
up of simulation can be reached, if large applications are distributed over
several computers executing a common simulation. Besides technical im-
plementation hinderances, concepts to implement the inherent simulation
algorithms in a distributed manner are often missing. Former RENEW
simulations have been coupled via asynchronous mechanisms like RMI
and by general communication frameworks, e.g. for multi-agent applica-
tions.

In this contribution, we present a simple prototype that supports the
atomic synchronous firing of an arbitrary number of transition instances
in RENEwW simulations, distributed over several computers. This is easily
modeled with the help of a bidirectional send channel that can traverse
simulation boundaries over a network. This channel type is very similar
to the synchronous channel of the original Java reference net formal-
ism. However, the unification algorithm is not distributed and cannot be
used across send channel calls. The distribution of each algorithm in RE-
NEW'’s simulation cycle is discussed. The usage of our proposed concepts
and tools for distributed simulations of this extended Java reference net
formalism are discussed as well.

Keywords: Petri Nets, Distributed Simulation, Reference Nets, Syn-
chronous Channels, Renew

1 Introduction

Scaling up the simulation of large applications requires the usage of distributed
computing facilities. Regarding Petri nets, several attempts to implement dis-
tributed simulations have been made (see e.g. [4,6,8,11,12,13,15,21]). The former
contributions concentrate either on modeling the distribution on the applica-
tion level in combination with an underlying communication framework, or on
a simple mechanism that transfers tokens (including time / timing informa-
tion / colors etc.) in an unidirectional fashion. The goal of this contribution is
to improve upon this by providing a bidirectional information exchange for an
arbitrary number of synchronized transitions within a single binding. Our mo-
tivation originates from the practice of the PAOSE approach (Petri net-based,

174 PNSE’16 — Petri Nets and Software Engineering

Agent- and Organization-oriented Software Engineering, see [4]): using our Petri
net tool RENEW, we directly execute Petri nets together with Java code in dis-
tributed machines. The approach aims at a Petri net based system development
methodology, which is enhanced by established software engineering concepts.
Up to now, we had to handle the distribution on the application level (by using
concepts of multi-agent systems; see [4] for more details), since there is no native
integration between simulations on multiple machines. Synchronous communi-
cation approaches of the entities at the modeling level (agents, objects or nets)
have been presented in [9], however, without the consideration of distributed
simulations.

Synchronous channels that provide the powerful synchronization mechanism
for our (Java) reference nets in the RENEW tool set (The Reference Net Work-
shop, see [16]), are realized by quite elaborated simulation algorithms. The RE-
NEW algorithms cannot be executed across computers efficiently in general, due
to the inherent data structures and algorithm design. Several attempts have
been made to overcome this limitation. However, a general solution based on the
current design seems impossible without changing the modeling power / expres-
siveness, since a distributed unification algorithm would generate a substantial
communication overhead. Conducting this communication directly over a net-
work connection leads to a slow down that conflicts with the goal of a speed up
of the simulation. Furthermore, directly distributed implementations are highly
complex and hindered by the limitations of Java and its Remote Method Invo-
cation (RMI) system. For more details see Section 3.5.

In this contribution we address how RENEW can be provided with the possi-
bility of distributed simulations by using a restricted kind of synchronous chan-
nels on the modeling level. First of all, we restrict the modeling power of the for-
malism that is used across system boundaries to reduce the number of messages
that need to be exchanged. Then, we provide some extensions of the existing
algorithms for the newly introduced modeling constructs. In order to demon-
strate the applicability of the proposed modifications of the algorithms, a new
RENEW plugin is presented. An extended description of the problem and the pre-
decessor of the solution presented here, can be found in [20]. To provide a better
insight into the internal structures of RENEW, we explain its undistributed simu-
lation in Section 2. Multiple modeling constructs for the distributed simulation,
the implemented approach and the justification for our choice of restrictions
on the general synchronization concept are presented in Section 3. Our central
contribution — the extension of the algorithms to atomically fire an arbitrary
number of transition instances in multiple simulations via channels with bidirec-
tional information exchange — is explained in Section 4. We present some simple
examples in Section 5 to illustrate the different possibilities. We conclude with
the main results and their possible further extensions.

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 175

2 Undistributed Simulations in RENEWwW

This section provides an overview of RENEW’s undistributed simulation algo-
rithms as a basis for the description of their distribution in Section 4. The al-
gorithms are described in detail in [14, Chapter 14| (in German). A shorter
English description is given in [20, Chapter 3]. The suitability for distribution
was not taken into account when the algorithms were originally conceptualized
and implemented. Remote observation of the simulation state was later added
with the REMOTE plugin, but it is not designed for the communication between
simulations and offers no possibility of synchronously firing transition instances
across simulation boundaries.

2.1 RENEW and Its Synchronous Channels

RENEW is a simulator for Java reference nets (and other Petri net formalisms)
(see [14,5]). Java reference nets are colored Petri nets, that may be inscribed
with programming code. The inscription language is based on Java and can
call methods of Java objects. Tokens are nested net instances or arbitrary Java
objects. Transition instances in multiple net instances can be combined with
synchronous channels. They may exchange information with channel parameters
and in the end fire synchronously in an atomic event. The syntax for channels
is ni:ch(x,y) for the downlink and :ch(w,u) for the uplink. ni is a variable that
will get bound to a net instance, in which a transition is inscribed with the
corresponding channel name ch and its parameters x,y. Both match the uplink
channel :ch with its parameters w,u.

RENEW follows an object-oriented design. In a simulation multiple instances
of a single net template can exist.! RENEW’s Java reference net formalism allows
net instances to be created and nested as tokens in other net instances. Thus,
every transition/place of a net template has a corresponding transition/place
instance in each of its net instances.

Figure 1 illustrates two simple channels sO and t(). Transition t1 can always
fire, since it does not have an input place. All other transitions have synchronous
channels attached. Transitions t2 and t3 have a downlink, while t4, t5, t6 and
t7 have an uplink. t4 and t6 can only fire together with t2. For this reason,
they are in conflict with each other. The same holds for t5 and t7, that require
t3 to fire. It is possible for transitions to have several downlinks to the same
uplink (like t3). When t3 is fired, it synchronizes either with t5 and t7, t5
and t5, or t7 and t7. All three transitions are atomically fired in a single step.
It is worthwhile to note, that the assignment of uplinks to downlinks is non-
deterministic. For synchronous channels, the uplink and the downlink are always

! The relationship between a net template (often simply called net) and its net in-
stances in the reference net formalism is analogous to the relationship between a
class and its class instances in object-oriented programming languages. In the same
way, the elements of a net correspond to the internals of a class, e.g. variables. The
instances of variables of an object correspond, e.g., to places in net instances.

176 PNSE’16 — Petri Nets and Software Engineering

in the same simulation. This is also the case, if another net instance is used
instead of this. Our goal is to have a channel similar to the synchronous channel,
that may address transition instances in remote simulations. For a distributed
example employing our send channel, see section 5.

:s() 0

[u}—O)—+e—O—{a—)

this:s() this:t0);

this:t() [t6] . .
:s() 0

Figure 1. Simple synchronous channels.

The simulation can be split up into three algorithms: (a) the search algorithm
that employs a depth-first search to find a valid binding for a transition instance.
(b) the firing algorithm that fires the found binding and (c) the triggering algo-
rithm that selects the next transition instances to be searched and inserts them
into a search queue. This simulation cycle can be directly employed to facilitate
a simulation, but RENEW also allows for more concurrency. Once it is ensured
that a firing will be successful, it can be detached and finished while the cycle
continues concurrently. Furthermore, multiple instances of this cycle can be run
concurrently, using a single search queue for triggered transitions.

RENEW employs a unification algorithm underneath the search algorithm.
Thus, the Java reference net inscription language can be seen as a logic pro-
gramming language. This makes it very expressive and powerful. It is especially
useful for synchronous channels that unify the parameters of both sides in a
mutual manner. In this way information from both sides can be composed and
matched to find the final binding. However, the unification algorithm was not
distributed. Therefore, it is not considered in detail or modified for this paper,
and the newly introduced channel constructs — the send channels — do not offer
the same freedom of information flow as synchronous channels.

2.2 The Triggering Algorithm

In the binding search for a transition instance, RENEW keeps track of the place
instances it has already visited. If no binding can be found, the transition in-
stance is not activated. However, in most cases not all place instances in the
transition instance’s preset have to be visited before the search fails. For ex-
ample, if multiple place instances are empty, the search can fail after examining
only one of them.? Before the transition instance is activated again, the searched
place instances must have received at least one new token. Otherwise, the search

2 Arcs that offer fewer choices of tokens to bind are examined first. This is integral to
the design of the search algorithm described in Subsection 2.3.

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 177

is bound to fail again. The triggering algorithm maintains the sets of transition
instances that the place instances have to trigger. Once a transition instance is
(re)inserted into the search queue, either by being triggered or after a successful
firing, it can be excluded from all of these sets. In the following search it will
again be inserted into the visited place instances. Because these might not be
the same place instances that were visited in the previous search, this reduces
the number of triggering place instances, and thus the number of searches that
are bound to fail.

The concept of single representing places that are sufficient to indicate that
a transition is activated, originates from [7]. The concept of triggering places in
RENEW is mainly inspired by [22]. The idea of using a search queue originates
from [10]. For more information on the background of the development of the
triggering algorithm see [14, Subsection 14.4.1].

As described above, it must be possible to trigger all transition instances in
the set of a single place instance as well as to exclude a single transition instance
from all of these sets. Thus, not only must the transition instances to be triggered
be stored as a set at the place instance, but in reverse each transition instance
must know all sets that include it, so it may exclude itself later. This is handled
by the classes/interfaces shown in Figure 2.

TriggerCollection
+ include(TriggerableCollection)

+ exclude(TriggerableCollection) N triggers
+ clear()
\I/triggerable *
«interface» TriggerableCollection
Triggerable triggerables [, include(Triggerable)
triggers(): TriggerCollection | ~« + exclude(Triggerable)
proposeSearch() + proposeSearch()
triggers triggerables
Transitioninstance Placelnstance

Figure 2. Class diagram of the triggering algorithm. (From [14, Figure 14.17].)

After a place instance changed, the proposeSearch() method of its Trigger-
ableCollection is propagated to all transition instances in its triggerables set,
and they insert themselves into the search queue.

When a transition instance inserts itself into the search queue, it is removed
from all triggering place instances. This is done by the clear() method of its Trig-
gerCollection, which calls both exclude(...) methods. The transition instance is
excluded from all TriggerableCollection instances in TriggerCollection.triggers
and TriggerCollection.triggers is emptied.

In the following search, the transition instance may again be registered at
some place instances by being inserted into their TriggerableCollection in-

178 PNSE’16 — Petri Nets and Software Engineering

stances. These TriggerableCollection instances are in turn inserted into the
transition instance’s TriggerCollection. This is done by the include(...) meth-
ods of both classes.

2.3 The Search Algorithm

Figure 3 shows the three most important classes/interfaces of the binding search
algorithm. A depth first search is facilitated recursively by nested calls of the
Searcher.search() and Binder.bind(Searcher) methods. Implementations of the
Binder interface make choices, and thus narrow the search before calling Searcher.
search(). Most importantly, an ingoing arc tries to bind one token at a time and
a channel downlink tries to bind one uplink at a time. An uplink transition
instance is added to the search by adding new binders, representing it. After
each decision, the searcher tries another binder? by calling its bind(...) method
until the search can no longer be narrowed. In that case, either a valid binding
is found, or the search has to backtrack by ending recursive method calls until
another choice can be tried in a binder. If a valid binding is found, the Finder.
found(Searcher) method is called and decides what to do.* In the simulation
cycle the finder stores the binding, so the firing algorithm can fire it in the next
step.

«interface» Searcher «interface»
Binder il + search() Finder
bindingBadness(Searcher): int| = pinders | + addBinder(Binder) finder found(Searcher)
bind(Searcher) + removeBinder(Binder) isCompleted(): boolean

Figure 3. Class diagram of the basic classes of the search algorithm and their most
important methods. (Based on [14, Figure 14.25].)

2.4 The Firing Algorithm

After a binding is found by the search algorithm, it is fired by the binding algo-
rithm. RENEW fires bindings atomically: either all transition instances occurring
in a binding are fired synchronously, or none at all. RENEW makes sure that
the simulation behaves exactly as if the firing would have occurred at a single
point in time. A firing is split up into multiple executables that represent dif-
ferent actions, that need to be taken in the firing. The exact set of executables
is determined in the binding search by the explored transition inscriptions and
arcs.

3 The searcher always tries a binder with the minimal bindingBadness(...). This esti-
mates its cost by the number of choices that it would try.
* Finder.isComplete() signals the searcher to end the search, if it returns true.

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 179

The executables are further split up into early executables and late executa-
bles. Early executables can be reverted and late executables cannot. Thus, to
archive an atomic firing, its success must already be determined before the late
executables are applied. The most important early executable implementation
represents ingoing arcs. The associated action takes one token from a place. The
most important late executable implementation represents outgoing arcs and
puts out one token. Putting out a token always succeeds, but taking a token
may fail, if another conflicting firing already took the token. The search algo-
rithm is optimistic and assumes that explored tokens will still be present in the
firing. The firing algorithm has to ensure the detection of missing tokens, revert
all changes and let the firing fail. It locks place instances to prevent concurrent
conflicting firings.

The individual steps taken to fire a binding are shown in Table 1. After the
binding search (step 0), multiple steps are taken to execute an early executable.
In step 1, ingoing arcs lock their place instances. To resolve conflicts between
concurrent firings, the place instances are locked in a total order. This order is
given by a unique ID assigned to each place instance. Following this rule, exactly
one of multiple conflicting firings is executed at a time, while the others wait.
Thus, the conflicts are resolved and deadlocks are prevented. This strategy is
based on [21].

Binding search (before firing)

Lock early executables in locking order
Validate possibility of applying early executables
Execute early executables

Unlock early executables
Report success
Execute late executables

| Y x| W N || O

Table 1. Order of steps when successfully firing a binding in RENEW. (Based on |3,
Section 3].)

In step 2, the early executables wvalidate that they can be executed. This is
necessary, because the simulation state could have changed since the binding
search. Actions that must be reversible are also taken in this step. For ingoing
arcs the required token is removed, if it is still present. Because the place in-
stance is not yet unlocked, this does not (yet) have an impact on the rest of
the simulation, and can thus be easily reverted by putting the token back. If
the required token is not present, the validation step fails. All already validated
early executables are reverted and the firing fails.

If the validation step was successful, the early executables are ezecuted in
step 3. At this point, the success of the firing is already determined. In this step,
actions that cannot be reverted are taken. Ingoing arcs report the consumption
of their token to the outside world.

180 PNSE’16 — Petri Nets and Software Engineering

In step 4, the early executables are unlocked (ingoing arcs unlock their place
instances) and in step 5 the success of the firing is reported to the outside world.
Finally, the late executables are ezecuted in step 6. For outgoing arcs, this puts
out the token.

3 Different Modeling Constructs for Synchronous
Channels

This section presents different modeling constructs for distributed channels.
They require different kinds of semantics for their implementation. The more
powerful a modeling construct is, the more general the implementation has to
be designed. We have experimented with several versions to test the feasibility
of different constructs and the implementation of their intended semantics. They
differed in expressiveness, complexity of the implementation, practical usefulness,
the need for additional coordination structures and in the necessary technical
support.

3.1 Integration Into the Simulation Algorithms

One of the most simple distribution approaches involves directly taking tokens
from place instances, passing them to another simulation and putting them into
a place instance there. This concept is very similar to virtual places (there are
several instances on the drawing / visualization level, but only one is relevant
for simulation). The integration into the simulation algorithms is minimal: the
extraction place instance has to be locked to prevent conflicts with concurrent
binding firings. All the rest has to be implemented by the distribution algorithm,
but can be kept very minimal. The most simple methods of addressing the target
place can be chosen. (See Subsection 3.2.)

Within RENEW a tighter integration can be achieved by using the firing
algorithm (Subsection 2.4), but not the search algorithm (Subsection 2.3). A
binding could be constructed by a simpler algorithm and then be fired. This
is most interesting in the source simulation, where the tokens are extracted, as
it offers an easy way to implement the extraction from multiple places without
conflicts. (See Subsection 3.3.)

For an even tighter integration, the search algorithm could also be employed.
It offers all the flexibility of the Java reference net formalism, but may be re-
stricted to limit the possible conflicts between found bindings, or simplify the
implementation. See Subsection 3.4 for a discussion of the integration of a special
kind of channel.

3.2 Addressing the Target

If tokens are to be send to a place instance in a remote simulation, there has
to be a method of assigning the target place instance. The address of the target
must be provided by the modeler of the source net to tell the algorithms in which

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 181

place instance to insert the tokens. Analogously, if a remote transition instance
should be added to a firing, it has to be addressed.

There are different possible methods of how to address a target place instance
or transition instance. These differ in the flexibility they give to the modeler
of the net: a source and a target place instance could be designated externally
without being reflected in the net itself. In this case, the target is not given in the
net, but must be decided elsewhere. E.g. it might be set as a parameter, when the
simulation is started. Alternatively, place/transition instances could be statically
addressed in the net by a simple inscription. Thus, the address may never change
and is independent from the simulation state. Finally, the addressing could be
done dynamically inside a binding search. One solution is the introduction of
a special channel that can be bound on tokens, that represent net instances in
a remote simulation. It is the most elegant and intuitive solution, because it is
analogous to the way different net instances interact in a single simulation. This
is further discussed in Subsection 3.4.

3.3 Synchronization of the Taking of Tokens

Based on the details of the distribution, conflict resolution / deadlock preven-
tion strategies may need to be applied. Furthermore, the distribution may or
may not guarantee an atomic execution depending on whether the movement of
tokens occurs at a single point in time from the viewpoint of concurrent binding
firings. If the distributed implementation fires multiple transition instances, the
atomicity also guarantees that all are either successful, or fail.

3.4 Information Flow of Channels

If the distribution is facilitated in the net by a channel integrated into the binding
search, it might be sufficient to require that its parameters are fully evaluated
before the search crosses the simulation boundaries. This kind of channel is
unidirectional: information can only flow from the calling net instance down to
the called net instance. A bidirectional information flow could be archived by
adding the possibility of a return value, analogous to a function/method call in
most programming languages.

To offer even more flexibility, RENEW’s unification algorithm could be dis-
tributed. This way, it could have the same semantics as synchronous channels
and information from both sides could aggregate freely and narrow the binding.

3.5 The Implemented Approach

For the distribution of RENEW’s simulations, a very tight integration in the
existing algorithms was chosen. All three algorithms in the simulation cycle
(Section 2) were distributed. In the search algorithm, transition instances in
multiple RENEW simulations are combined by a new kind of channel. In the
firing algorithm they are fired as an atomic action without the possibility of
deadlocks to occur. A return value offers bidirectional information exchange.

182 PNSE’16 — Petri Nets and Software Engineering

However, the unification was not distributed, and thus all values have to
be fully unified before being sent to another simulation. Distribution of the
unification algorithm was not possible, since the inherent unification algorithm
has a strict dependence on the identity and comparison of every kind of Java
object. Java only offers the possibility to compare certain kinds of objects in
a distributed fashion.® Especially in complex binding scenarios, the number of
comparisons by the unification algorithm can also become very high and amount
to a significant overhead.

This contribution provides constructs for modeling and executing distributed
synchronous channels that allow: (a) bidirectional exchange of parameters, how-
ever, all values are fully unified, before they are send to the remote simulation,
(b) the number of involved transition instances to be arbitrarily large, (c) one
transition to have an arbitrary number of downlinks, but (as usual in RENEW)
only one uplink, (d) the use of simple generally available technology and (e) a
reasonable performance of the implementation.

4 Discussion of the Algorithm Extensions

This section discusses how each of the algorithms from Section 2 is distributed.

All communication between RENEW processes is facilitated by the Java RMI
system (see [23]). Interfaces that extend java.rmi.Remote are labeled as remote
interface in class diagrams. All their implementing classes are automatically
made available by RMI.

4.1 Distributing the Triggering Algorithm

The classes/interfaces of the triggering algorithm for transition instances and
place instances inside a single RENEW simulation are shown in blue in Figure 4.
The only difference to those shown in Figure 2 is the separation of the classes into
an interface and an implementing class. The fields are inscribed and not drawn as
arcs to reduce the complexity of the diagram. The classes and interfaces in black
augment those to distribute the triggering algorithm. Figure 4 was designed with
a specific scenario in mind. In this scenario, one RENEW simulation started a
search (the parent search) and a channel of a net instance in a second simulation
was bound (by spawning a local child search). The classes are arranged on the
left or the right side, depending on where their instances are used.

The transition instance from the parent search is represented by a Trigger-
ableProxy instance in the child search. The TriggerableProxy instance is added
to the triggerables field of the place instance. (The triggerables field contains a
TriggerableCollectionImpl instance.) Next, the triggers method of the Trigger-
ableProxy instance is called to receive a TriggerCollectionProxy instance that

® In the general case, only serializable objects can be directly used for a distributed
comparison in Java. The comparison of RMI remote objects must be explicitly im-
plemented in further wrapping classes.

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 183

root search child search
«remote interface»
TriggerableAccessor
triggers(): TriggerCollectionAccessor
TriggerableAccessorimpl - 1~ {> proposeSearch()
remoteHashCode(): int
remoteEquals(TriggerableAccessor): boolean

triggerable getlD(): Serializable \
accessor
«interface»
Tri I Tri leP
Transitioninstance -1 - - - - - riggerable - - = - - [- rlgg.erahe rox)f
triggers(): TriggerCollection| j triggers(): TrlggerCoIIectlonProx\{
proposeSearch()
triggers «include and contain in triggerables»
«interface»
TriggerCollectionimpl TriggerCollection
triggers: Set<TriggerableCollection>— [~ — — — inc\ude(TriggerableCoHection)<F — — —|— — —{TriggerCollectionProxy
triggerable: Triggerable exclude(TriggerableCollection)|
/(Iear()— accessor
collection _
«remote interface»
§ ' TriggerCollectionAccessor «use when including TriggerableProxy»
TriggerCollectionAccessorlmpl |- — — — include(TriggerableCollectionAccessor)

exclude(TriggerableCollectionAccessor)|
remoteHashCode(): int

«include and contain in triggers» «interface»
TriggerableCollection TriggerableCollectionimpl
TriggerableCollectionProxy |- — 1~ — — — — include(Triggerable) K|— — — — — - #—4
exclude(Triggerable) = triggerables: Set<Triggerable>
accessor proposeSearch() N@gera‘bles
collection Placelnstance

«remote interface»
TriggerableCollectionAccessor
include(TriggerableAccessor)

;):;qu‘iee(;r;%cgﬁ(r)abIeAccessor) TriggerabIeCoIIectionAccessorlmpl \
remoteEquals(TriggerableCollectionAccessor): boolean| id : long

remoteHashCode(): int

getID(): long

getSimID(): long

Figure 4. Class diagram on the extension of the triggering algorithm with some addi-
tional explanations. (Compare with Figure 2.)

represents the triggers field of the transition instance. (The triggers field con-
tains a TriggerCollectionImpl instance.) This TriggerCollectionProxy instance
is used to add the place instance’s triggerables field to the transition instance’s
triggers field. The triggers field is represented by a TriggerableCollectionProxy
instance in the parent search.

Each proxy object uses a corresponding accessor remote object on the other
side. Additional information, including hash codes and internal IDs, is transmit-
ted by the remote objects, where needed, to recognize proxies of the same original
as equal. The distribution of the triggering algorithm is completely hidden from
the original triggering algorithm code, which was not changed at all.

4.2 Distributing the Search Algorithm

Figure 5 shows the most important classes/interfaces of the distributed search
algorithm.® The classes/interfaces of the undistributed binding search, presented
in Subsection 2.3, are colored blue. The implementation uses all three to tie into

5 The distribution of the search algorithm changed fundamentally since the description
in [20, Section 4.6].

184 PNSE’16 — Petri Nets and Software Engineering

search A search B

«nterface»
Binder [Searcher |

bind(Searcher) [searchAndRecover(Finder, Searchable, Triggerable) |
JAN
«remote interface»
SendChannelBinder |- «use» SearchDistributor distributor{{ DistributeSearcher
[searchCallRemoteSuccessNotifier, ...)|< _ getPrimaryTriggerableAccessor(): TriggerableAccessor

distributor | | getDistributor(): SearchDistributor

createDistributor(): SearchDistributorimpl

deleteDistributor()

searchFirstCall(ChannelTarget, String, Variable, boolean)
searchAdditionalCall(Finder, ChannelTarget, String, Variable, boolean)|

root search |

SearchDisn"ibutorlmpl
searchers: Map<Long, SearcherAccessor>
createExecutables(): Collection<Executable>
abort()

searcher

Py cinterfaces
. Finder

“remote interface» found(Searche)

SearcherAccessor SearcherAccessorimpl isCompleted(): boolean

searchCall(RemoteSuccessNotifier, ...) — — — | primaryTriggerable: Triggerable
i i indil abortRequested: boolean

«create»

o
«creater |
abort) — anonymous Finder
in SearcherAccessorimpl.searchCall(..)
cessNotifierAdapter |....cuse»
«remote interface» e
RemoteSuccessNotifierlmpl H — — — ifier &< ——internat 'e‘“":‘s/a" Va’(‘: e
reportsuccess
reportSuccess(Object) setReturnVariable(Variable)

Figure 5. Class diagram on the distribution of the search algorithm. (Compare with
Figure 3.)

and extend every aspect of the binding search. The interaction of the classes is
shown in Figure 6. Both diagrams are separated into the classes/interfaces that
handle one of three local searches, that make up the distributed search. The
root search is the local search that was first started at the original transition
instance. search A is the local search, where we observe the binding of a send
channel downlink and search B is the local search of the corresponding uplink.
Either the root search and search A are the same, or there has been at least one
other send channel binding before. However, search B is always in a different
RENEW simulation than search A, because the shown classes only handle the
distributed case.

A send channel is bound by the SendChannelBinder.bind(...) method. It
tries to bind it to an uplink transition instance that typically resides in another
RENEW simulation and is addressed by a DistributeNetInstance’ and a chan-
nel name. First, it is ensured that a SearchDistributor exists. Each distributed
search has exactly one such object. It keeps track of all the local searches that
are involved by maintaining a map from the simulation IDs to the SearcherAc-
cessor objects, that may reside in other RENEW simulations. If needed, a new
SearchDistributorImpl is created with a SearcherAccessorImpl for the local
search.

The SearchDistributorImpl.searchCall(...) method in the root search is called
to propagate the request to search a suitable uplink. The distributor makes
sure a SearcherAccessorImpl for the RENEW simulation with the uplink exists.
Then, it propagates the request to search B by calling SearcherAccessorImpl.
searchCall(...). If search B is not currently involved in the distributed search

" A DistributeNetInstance object is a proxy for a net instance, that may re-
side in another RENEw simulation. The example in Section 5 shows how Dis-
tributeNetInstance objects may be exchanged between simulations.

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation

search A
SendChannelBinder, DistributeSearcher
and RemoteSuccessNotifierimpl

SendChannelBinderbind(..)

distributor exists?

root search
SeachDistributorimpl

[new SearchDi:

3 "
herf—Distr her

creation
store SearcherAccessor for local searcher|

03

=

Create TriggerableAccessorimpl
for the Tranisti

Distri e,

SearchDistributor.searchCall(...)]
|-

T cessor;

RemoteSuccessNotifier search accessor of

g target simulation exists?

185

search B
NetInstanceAccessorimpl, SearchAccessorimpl,
RemoteSuccessNotifierAdapter
and multiple instances of DistributeSearcher

[Distril e.C

"E'Accessur(m)}i_srearchD\smbu(or,
rgol

€essor [new SearcherAccessorimpl(...

store SearchDistributor
store TriggerableAccessor

store SearcherAccessor.

SearcherAccessor.searchCall(...)
-

SearcherAccessor.searchCall(...)

SearchAcc T

DistributeNetinstance,

RemoteSuccessNotifier (-

local DistributeSearcher exists?;
new DistributeSearcher(...)

store DistributeSearcher|

==

DistributeSearcher.searchAdditionalCall(...)]
create additional DistributeSearcher:

new DistributeSearcher(this, ...)

i

—
DistributeSearcher.searchFirstCall(....

[=-binding found]

if return value is expected
unify return variable with value]
T T

continue search...

{RemoteSuccessNotifier.reportSuccess(Object)

...finish search

local DistributeSearcher existed before?

forget DistributeSearcher]

forget SearcherAccessor

M

T
—l
M

CT

distributor existed before?
8 (no new distributor was created here?)

Figure 6. Interaction diagram of the creation of remote child searches.

with another uplink to a send channel, it creates a fresh DistributeSearcher.
Otherwise, a DistributeSearcher for the previous (outer) send channel binding
already exists. In that case, a new DistributeSearcher instance is created that
shares part of its internal state with all other DistributeSearcher instances in
this RENEW simulation (search B), that belong to the same distributed search.
This way, a single local binding can be found that incorporates all uplinks bound
as send channels. It also allows the search at one uplink to respect the state of

186 PNSE’16 — Petri Nets and Software Engineering

the search at another uplink in search B. Otherwise, it would be possible that a
binding is found, that tries to consume a single token by two uplink transitions.
While binding the send channel, a RemoteSuccessNotifier object is passed
along. The original RemoteSuccessNotifierImpl is created in the SendChan-
nelBinder.bind(...) method and can be used to report the return value back to
search A. This is done once a valid binding is found by the Finder in Searcher-
AccessorImpl.searchCall(...). At this point, the return value is guaranteed to be
determined. The distributed search then continues normally at search A.

If a valid binding is found at the root search, a DistributeBinding is cre-
ated in every local search to prepare for a synchronous firing as described in
Subsection 4.3. The distributed search is then ended by unraveling the recursive
method call structure across RENEW simulation boundaries. Finally, the binding
can be fired from the root search simulation.

4.3 Distributing the Firing Algorithm

Figure 7 shows the classes of the distributed firing algorithm and Figure 8
shows the coordination of two local firings in a distributed firing. root firing
denotes the RENEW simulation, where the search originally started. This sim-
ulation also coordinates the firing of the distributed binding, found in that
distributed search. The class DistributeBinding represents a local binding in
one RENEW simulation. The root firing is executed in the DistributeBinding.
execute(Stepldentifier, boolean) method by the undistributed firing algorithm,
as described in Subsection 2.4. The DistributeBinding of the root firing is omit-
ted from both figures, because the coordination with the child firing is completely
contained in a single RemoteBindingExecutable instance. Thus, the original fir-
ing algorithm is employed to coordinate multiple local firings and is in this way
transparently distributed.

The RemoteBindingExecutable distributes the conflict resolution strategy
of the undistributed algorithm by defining a total order on all place instances in
all RENEW simulations. It also globally enforces the same order of steps as shown
in Table 1. Thus, the same mechanisms used for a local firing are employed for
the distributed case. The atomicity is preserved and conflicts are resolved.

In the locking step 1 from Table 1, the lock() method of the Remote-
BindingExecutable is called. The order in which RemoteBindingExecutable
instances are locked, is determined by an unique ID given to each RENEW simu-
lation. First, all RemoteBindingExecutable instances with a lower ID than the
root firing simulation are locked in this order. Then, all other early executables
are locked in the order given by the place instance IDs. Finally, the Remote-
BindingExecutable instances with a higher ID are locked. By this strategy, all
place instances are locked in a global total order. In the lock() method the Re-
moteBindingExecutable starts the child firing by remotely calling BindingAc-
cessor.execute(RemoteBindingSynchronizer), which calls the DistributeBind-
ing.execute(Stepldentifier, RemoteBindingSynchronizer) method. It then calls
RemoteBindingSynchronizerImpl. waitUntilLocked() to wait until the locking

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 187

root firing child firing

«interface»
EarlyExecutable
lockPriority(): long|
lock()
unlock()
phase(): int
verify(...)
execute(...)
rollback()

«remote interface»

— BindingAccessor
_emotemndm xecutable [-bindin —|— — — — —{BindingAccessorimpl
9 9 execute(RemoteBindingSynchronizer)| 9 L1

sync getDescription(): String bin\(ﬁing
indi nchronizerimpl «remote interface» Distri indi
waitUntilLocked() Ll indi nchronizer sync] execute(Stepldentifier, boolean): boolean
getSuccess(): boolean reportLocked() execute(Stepldentifier, RemoteBindingSynchronizer,
reportLocalSuccess(boolean) remoteSynchronize(boolean): boolean { getDescription(): String

Figure 7. Class diagram on the extension of the binding firing algorithm. (Based on
[20, Figure 4.9].)

root firing child firing
RemoteBindingExecutable DistributeBinding

RemoteBindingExecutable.lock()

—
[binding.execute(sync)l——RemoteBindingSynchronize
I I

[sync.waitUntilLocked() [lock early executables]
—
. 1sync.reportLocked()

RemoteBindingExecutable.verify(...)

sync.getSuccess() [verify early executables]
T |

- boolean {sync.remoteSynchronize(success)
—

[

L

RemoteBindingExecutable.execute(...)
i success of parent firing

[sync.reportLocalSuccess(true)}
—) g

booleanéD—

RemoteBindingExecutable.unlock()

—
[sync.reportLocalSuccess(false)
L—

g success of both firings

1 1
[execute early executables | [rollback verified|
[unlock early executables]| [unlock early executables]|
L1

report success

[execute late executables]|
L1

Figure 8. Interaction diagram on the extension of the binding firing algorithm. Inter-
action of the RemoteBindingExecutable class with the remote DistributeBinding class
from Figure 7 in steps 1 to 4 from Table 1.

188 PNSE’16 — Petri Nets and Software Engineering

step (1) is finished in the child firing. The child firing signals this by remotely
calling RemoteBindingSynchronizer.reportLocked().

In the validation step (2), the RemoteBindingExecutable.verify(...) method
waits for the child firing to complete the validation step by calling RemoteBind-
ingSynchronizerImpl.getSuccess(). Its return value reflects whether the valida-
tion step was successful. If it was not, the validation of the RemoteBindingEx-
ecutable fails, and thus the root firing fails as well.

After the validation step, the child firing synchronizes itself with the root fir-
ing by calling RemoteBindingSynchronizer.remoteSynchronize(boolean). This
signals the result of the validation step, and thus allows the root firing to con-
tinue, but also waits for the corresponding result from it. If the root firing com-
pleted the validation step successfully, it will eventually call RemoteBindingEx-
ecutable.execute(...) and propagate a positive result. If it was not successful, it
will eventually call RemoteBindingExecutable.unlock() and propagate a neg-
ative result. This concludes the synchronization and the child firing now also
knows whether the distributed firing succeeded. It can then conclude the firing
autonomously and either execute all executables, or revert.

The execution of the late erecutables is not synchronized in the current ver-
sion of the DISTRIBUTE plugin. They are executed in different phases that are
only enforced locally. Late executables from different simulations cannot have a
dependency on each other, because they could only be linked by the unification
algorithm, but that is not used across simulation boundaries. This does, however,
lead to diverging finishing times for the local firings and may seem odd to the
user. Additional synchronization points could be added between all or specific
execution phases to fix this, but it is not necessary semantically. Furthermore,
when late erecutables throw exceptions, one simulation might abort the further
execution of the local firing, while the others are unaffected. This is acceptable,
because the occurrence of exceptions is outside of the Java reference net se-
mantics anyway. However, further research might be necessary in the context of
exception handling extensions as introduced by [3].

5 An Example of a Distributed Simulation

An example is given to present the capabilities of the DISTRIBUTE plugin®. It
involves three net instances that may each be simulated on a different computer.
Every net instance represents a different role in a sales negotiation: the man-
ufacturer in Figure 9 offers items it produced, the dealer in Figure 10 offers a
bundle of two items sold by the manufacturer and the buyer in Figure 11 buys
a specific bundle from the dealer under certain conditions.

The simulation of the manufacturer has to be started first. In the register
transition it registers a DistributeNetInstance object of itself at the registry. Af-
ter this step, its sell transition can be fired from other simulations by binding its

8 A special version of RENEW including the DISTRIBUTE plugin and its User Guide
(distribute.pdf) can be found at https://paose.informatik.uni-hamburg.de/
paose/wiki/distributed-simulation

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 189

import de.renew.distribute.DistributePlugin;

String item; N)

int quality, price; ['chair’, 1, 11;
["chair", 2, 1];

action DistributePlugin.getRegistry() ["cha?r", 2,3l
.registerNetInstance("manufacturer”, ["chair’, 3, 2];

DistributePlugin.wrap(this)); ['sofa", 2, 8];
register ["spaceship”, 0, 9000];
O—[item, quality, Price]—bEl:sell(item) <~ [quality, price];
products sell

Figure 9. The manufacturer net.

import de.renew.distribute.DistributePlugin;
import de.renew.distribute.DistributeNetInstance;
DistributeNetInstance ma;

String il, i2;

intql, q2, pl, p2;

action DistributePlugin.getRegistry()
.registerNetInstance("dealer",
DistributePlugin.wrap(this));
action ma = DistributePlugin.getRegistry()

-getNetInstance("manufacturer”); :sell_bundle(il,i2) <- [Math.min(ql, q2), p1 + p2 + 1];
register and retrieve matsell(i1) -> [q1, p1]:

ma—’O—ma malsell(i2) -> [q2, p2];
sell bundle

Figure 10. The dealer net.

import de.renew.distribute.DistributePlugin;
import de.renew.distribute.DistributeNetInstance;
DistributeNetInstance dealer;

int quality, price;

, o sy : il
action dealer = DistributePlugin.getRegistry() dealer!sell_bundle("chair","chair") -> [quality, price],

.getNetInstance("dealer"); guard qu_allty >='2;
retrieve guard price <= 4;

®_’D—dealer—>0—dea|er_’|:'w’©

buy bought

Figure11. The buyer net.

:sell(...) uplink with a send channel. It takes the string representation of an item
that is offered and returns its quality and price. If it is fired, the corresponding
tuple is removed from the products place to indicate that it is sold.

Second, the simulation of the dealer has to be started. It first retrieves the
manufacturer and registers itself. After this step, the sell bundle transition
can bind the manufacturers :sell(...) channel, if it is bound by a send channel.
Because the manufacturer’s DistributeNetInstance is not consumed when it is
fired, but only accessed by a test arc, it could fire multiple times. Each time the

190 PNSE’16 — Petri Nets and Software Engineering

two items specified by its uplink parameters are bought from the manufacturer,
and the quality and price attributes of the items are combined. The quality is
the lowest of the two items’ qualities and the price is added and increased by
one unit.

Last, the buyer simulation is started. It retrieves the dealer and binds its
sell__bundle(...) uplink in an attempt to buy two chairs. Guards are applied to
the return values to ensure that the quality of the bundle is at least 2 and the
price is not greater than 4 units. When the sell bundle transition of the dealer is
bound, it in turn binds the sell transition of the manufacturer twice to buy two
chairs.? In the binding search every possible combination of quality and price
is tried and returned to the buy transition, until the guards are satisfied. Once
one is found, the distributed binding is fired. As an atomic action, the items are
removed in the manufacturer and the tuple of quality and price is added to the
bought place in the buyer net. The only possible value in bought is [2,4]. If
the buyer net simulation is restarted, the buy transition cannot fire, because
the items are already consumed.

6 Conclusion

The RENEW plugin presented in the paper allows the atomic firing of transition
instances in multiple reference net simulations across a network. The send chan-
nel is introduced, which adapts most of the functionality of the synchronous
channel for distributed net instances, namely bidirectional synchronous com-
munication. However, it does not support the distributed unification of data
structures. The extension of the Java reference net formalism is not only con-
servative, but send channels can be freely mixed with synchronous channels and
all other features.

The three central algorithms of RENEW’s simulation cycle were presented
and different distribution approaches were discussed. The implementation of
the DISTRIBUTE plugin was motivated as being well integrated into the Java
reference net formalism, while still being practical. For each algorithm the most
important aspects of its distribution were explained with class diagrams and
interaction diagrams.

7 Discussion and Future Works

The DISTRIBUTE plugin matured greatly since its early development, docu-
mented in [20]. Nonetheless, it has still not experienced much use. An integration
into other projects based on RENEW would be very beneficial to identify worth-
while improvements. At the same time, the DISTRIBUTE plugin’s synchronous
communication capabilities offered to RENEW projects are very hard to imple-
ment in other ways. It could be integrated into the MULAN agent infrastructure

9 The distributed version of the search algorithm (Subsection 4.2) makes sure that no
binding can be found that would attempt to take the same chair token twice.

M. Simon and D. Moldt: Renew’s Algorithms for Distributed Simulation 191

to realize synchronous communication between distributed agents, as it was pro-
posed, e.g. in [9]. The application to other communication in the MULAN context
is also interesting, such as the persistence (see [18]) or mobility / deployment of
agents and whole platforms (see [17]).

The DISTRIBUTE plugin might also help to improve the ideas of complex
distributed workflow execution (see e.g. [19]): it can be used for simple commu-
nications between simulations that are distributed to make use of the accumu-
lated computational power and storage capacity of multiple computers. In this
scenario, the context of a channel call can often be designed less complex as it
is used in some of our earlier prototypes or the preceding works of others (see
the slightly different approaches following token, place or transition centered de-
signs: [2,6,8,12,21]), and thus does not interfere with the rest of the simulation
or impede its performance. More recently, we integrated some results from RE-
NEw-related Cloud computing (see [1]) with the plugin presented here. Several
technical issues need to be solved to have an efficient implementation, that is
Cloud based.

For future work it will be relevant to check, if the functionality or the mod-
eling power of the here introduced send channel can be extended without sub-
stantial performance loss. As already mentioned, we experienced difficulties with
the performance of more powerful synchronous mechanisms. Another challenge
is to transfer this kind of algorithm to a software package, that could be used in
other Petri net simulation formalisms / tools.

References

1. Bendoukha, S., Moldt, D., Bendoukha, H.: Building cloud-based scientific work-
flows made easy: A remote sensing application. In: Marcus, A. (ed.) 4th Interna-
tional Conference on Design, User Experience and Usability. LNCS, vol. 9187, pp.
277-288. Springer-Verlag (2015)

2. Briz, J., Colom, J.M.: Implementation of weighted place/transition nets based on
linear enabling functions. In: Valette, R. (ed.) Application and Theory of Petri
Nets 1994, 15th International Conference, Zaragoza, Spain, June 20-24, 1994, Pro-
ceedings. LNCS, vol. 815, pp. 99-118. Springer (1994), http://dx.doi.org/10.
1007/3-540-58152-9_7

3. Cabac, L., Simon, M.: Introducing catch arcs to Java Reference Nets. In: Moldt, D.,
Rolke, H. (eds.) PNSE’13, Milano, Italia, June 2013. Proceedings. CEUR Workshop
Proceedings, vol. 989, pp. 155-168. CEUR-WS.org (Jun 2013)

4. Cabac, L.: Modeling Petri Net-Based Multi-Agent Applications, Agent Technology
— Theory and Applications, vol. 5. Logos Verlag, Berlin (2010)

5. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 — towards a comprehensive
integrated development environment for Petri net-based applications. In: Kordon,
F., Moldt, D. (eds.) 37th Int. Conference on Application and Theory of Petri Nets,
Torun, Poland. LNCS, vol. 9698. Springer-Verlag (Jun 2016), (to be published)

6. Chiola, G., Ferscha, A.: Distributed simulation of Petri nets. IEEE Parallel Distrib.
Technol. 1(3), 33-50 (Aug 1993), http://dx.doi.org/10.1109/88.242441

7. Colom, J., Silva, M., Villarroel, J.: On software implementation of Petri nets and
colored Petri nets using high-level concurrent languages. In: Seventh European

192

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

PNSE’16 — Petri Nets and Software Engineering

Workshop on Application and Theory of Petri Nets. pp. 207-241. Oxford, England
(06,/1986 1986)

Ferscha, A.: Concurrent execution of timed Petri nets. In: Proceedings of the
26th Conference on Winter Simulation. pp. 229-236. WSC 94, Society for Com-
puter Simulation International, San Diego, CA, USA (1994), http://dl.acm.org/
citation.cfm?id=193201.194025

Fix, J., Duvigneau, M., Moldt, D.: Bereitstellung eines Synchronisationsmech-
anismus fiir MULAN basierte Agenten. In: Bergenthum, R., Desel, J. (eds.)
18th Workshop AWPN 2011, Hagen, September 2011. pp. 8-14 (2011), http:
//www.fernuni-hagen.de/sttp/download/tagungsbandawpn2011.pdf

Haagh, T.B., Rudmose, T., Contents, H.: Optimising a coloured Petri net simula-
tor. Tech. rep., University of Aarhus, Department of Computer Science (1994)
Hartung, G.: Programming a closely coupled multiprocessor system with high
level Petri nets. In: Rozenberg, G. (ed.) Advances in Petri Nets 1988, LNCS,
vol. 340, pp. 154-174. Springer Berlin Heidelberg (1988), http://dx.doi.org/10.
1007/3-540-50580-6_28

Hauschildt, D.: A Petri net implementation. Fachbereichsmitteilung FBI-HH-M-
145/87, University of Hamburg, Department of Computer Science (1987)

Kaim, W.E., Kordon, F.: An integrated framework for rapid system prototyping
and automatic code distribution. In: Proceedings of IEEE 5th International Work-
shop on Rapid System Prototyping, RSP 1994, Grenoble, France, June 20-23, 1994.
pp. 52-61. IEEE (1994), http://dx.doi.org/10.1109/IWRSP. 1994 .315909
Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002), http://www.
logos-verlag.de/cgi-bin/engbuchmid?isbn=0035&1ng=deu&id=

Kummer, O., Moldt, D., Wienberg, F.: Symmetric communication between
coloured Petri net simulations and Java-processes. In: Donatelli, S., Kleijn, J.
(eds.) Application and Theory of Petri Nets 1999, 20th International Conference,
ICATPN’99, Williamsburg, Virginia, USA. LNCS, vol. 1639, pp. 86—105. Springer-
Verlag (Jun 1999)

Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,
Mosteller, D.: Renew — the Reference Net Workshop. Available at: http://www.
renew.de/ (Jun 2016), http://www.renew.de/, release 2.5

Mollers, K.S.M.: Entwicklung eines P*AOSE-Werkzeugs zur Dynamisierung von
Verteilungsdiagrammen. Bachelor thesis, University of Hamburg, Department of
Informatics (2014)

Mosteller, J.: Persistierung in agentenorientierten Anwendungen — Prototypische
Implementierung im Kontext von RENEW/MULAN. Master thesis, University of
Hamburg, Department of Informatics (Apr 2016)

Reese, C.: Prozess-Infrastruktur fiir Agentenanwendungen, Agent Technology —
Theory and Applications, vol. 3. Logos Verlag, Berlin (2010)

Simon, M.: Concept and Implementation of Distributed Simulations in RENEW.
Bachelor thesis, University of Hamburg, Department of Informatics (Mar 2014)
Taubner, D.: On the implementation of Petri nets. In: Rozenberg, G. (ed.) Advances
in Petri Nets 1988. LNCS, vol. 340, pp. 418-439. Springer-Verlag (1988)

Valette, R., Bako, B.: Advances in Petri Nets 1991, chap. Software implementation
of Petri nets and compilation of rule-based systems, pp. 296-316. Springer Berlin
Heidelberg, Berlin, Heidelberg (1991)

Wollrath, A., Riggs, R., Waldo, J.: A distributed object model for the java system.
Computing Systems 9(4), 265-290 (1996)

