
A Framework for Fast Congestion Detection in
Wireless Sensor Networks Using Clustering and

Petri Net-based Verification

Khanh Le1, Thang Bui1, Tho Quan1, and Laure Petrucci2

1 Ho Chi Minh City University of Technology, Vietnam
{lnkkhanh,thang,qttho}@cse.hcmut.edu.vn

2 LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité, France
Laure.Petrucci@lipn.univ-paris13.fr

Abstract. Applications of Wireless Sensor Networks (WSN) in harsh
conditions usually cover a vast area with sensors randomly deployed by
an uncontrolled method, e.g. dropped by helicopters. Thus the actual
topology is unpredictable and can suffer from possible congestion. We
propose the FCD framework for congestion detection, based on clustering
techniques combined with Petri nets modelling and verification.

1 Introduction

The congestion problem in Wireless Sensor Networks (WSNs): A
WSN is a collection of hundreds or thousands of sensors. Sensors are cheap, low
energy consuming devices, with limited memory and processing capabilities [1].
They can communicate with one another using WiFi. Depending on the targeted
application, a WSN is deployed in a dense or sparse mode. Environment moni-
toring WSNs are usually implemented on a dense network topology [6] whereas
some applications require sparsely spreading sensors over a large geographical
area, e.g. for tracking transportation in a city [8]. The limited processing capac-
ity and energy of sensors has some disadvantages, hence the necessity of some
QoS (Quality of Service) constraints such as delay, security or congestion. We
here focus on congestion detection.

Following [11], congestion depends on the network topology and the trans-
mission rate. Indeed, sensors in a dense network are deployed at very close dis-
tances, thus some packets transmitted over the same paths may collide. Also,
the processing rate of sensors may be smaller than their receiving rate: if the
transmission rate is too high, the sensor’s buffer overload can induce congestion.
Similarly, the congestion also occurs during transmission in sparse deployment
networks if a huge number of packets are sent within a short time. Packets loss
and retransmission may cause the overload at some sensors.

Tools for Congestion Detection: The main approaches to congestion de-
tection are simulation or model based. In the first case, a simulator is used to
mimic the operations of the WSN, measure the performance, and check whether
a certain anomaly like congestion occurs or not. Widely used simulators include



ns2 [7] and Omnet++ [10]. In these, a WSN is considered as a network with sen-
sors, channels and their activity (protocols). Hence, users must program their
models according to the protocol used. The model-based approach enjoys two
immediate advantages over simulator approaches: (1) the WSN is modelled at a
higher level of abstraction, only including sensors and channels, thus it is inde-
pendent of the framework used ; (2) the model defines all scenarios and allows
for exhaustively model-checking desired properties.

Petri Nets (PNs) are well-suited for modelling WSNs. To the best of our
knowledge, WSN-PN [5] is the sole framework so far to model a WSN by a PN.
WSN-PN allows users to model a WSN (using a domain specific input for WSNs),
which is then translated into a PN; then WSN-PN verifies congestion on the PN
model by means of model-checking. In WSN-PN, users do not need to work with
the details of the PN model. Instead, they only need to specify the topology and
parameters setting of a WSN; the corresponding PN is automatically generated.

The proposed FCD framework: Congestion detection becomes intractable
due to the state space explosion when the number of sensors increases. Thus, FCD
combines WSN-PN [5] for modelling and verification, and COCA (Congestion-
Oriented Congestion Algorithm for WSNs) clustering algorithm [3] in order to
reduce the state space explosion problem. COCA detects groups of sensors that
have a high chance of congestion and that can be verified individually. If these are
congestion free, they are abstracted and combined with the remaining sensors to
introduce a new abstracted WSN whose size is significantly reduced compared
to the original oneand that can in turn be verified.

2 Petri Net-Based Verification of WSNs

We adopt a Component-based PNs approach for modelling, which allows conve-
nient abstraction of components [4] for congestion detection.

Petri net generation for a WSN: A WSN is defined as WSN = {S, C},
where S is the set of sensors and C is the set of channels. Sensors can be source,
sink or intermediate nodes. A channel is established between two communicating
sensors. Information on sensors and channels forms the topology of the WSN.

To build the corresponding PN model, sensors and channels are first modelled
individually as Component PNs. Then, these Component PNs are combined
together, forming the global model. For example, Fig. 1a models a source sensor.

It is also necessary to attach to transitions some code that manipulates the
quantitative values: sensor buffer size, sending rate and processing rate [5].

Component-based abstraction: Depending on the topology and transmission
rate, it is often the case that congestion detection only requires considering
sensors or channels but not both. The Component-based PN approach supports
the abstraction of components for more efficient verification. For example, in
Fig. 1b, sensors are abstracted as individual places, depicted larger and dashed,
in case only channels are needed.

330 PNSE’16 – Petri Nets and Software Engineering



input

generate
packet

int

send
packet

output

(a) Source node

S1

T1 con

T1 in

T1 rec

T1 int

T1 send

T1 out

T2 con

S2

(b) Sensor abstraction model

Fig. 1: Component PN and Component Based Abstraction models of a sensor

Congestion detection: WSN-PN uses the PAT model-checker [9] to verify the
following LTL congestion property: #assert WSN() |= []<> Congestion

3 FCD Framework Processes
The overall process has three main parts.

Congestion-oriented clustering: The clustering step groups the sensors with
a high chance of congestion into clusters, using COCA. It operates according to
two metrics: physical distance and imbalance of transmission rate of sensors,
which are major congestion factors. The clusters generated by COCA are sub-
networks with a high chance of congestion. The sensors not included in clusters
are named abandoned sensors. For instance, Fig. 2a illustrates the clustering of
a simple WSN. The three clusters C1, C2, C3 are pictured by ellipses.

PN models of clusters and local verification: The clusters are considered
as sub-WSNs and modelled using the Petri Net-based technique presented in
Section 2. However, they miss important information such as source and sink
sensors, e.g. in Fig. 2a, cluster C1 misses both source and sink.

If a cluster misses source/sink, external sensors are chosen to serve as aux-
iliary ones, such that: (1) the source is an external sensor that sends incoming
packets to the cluster; (2) the sink is an external sensor that receives outgoing
packets from the cluster. The original cluster C1 in Fig. 2b is replaced by Fig. 2c,
i.e. both sensors S17 and S18 become sources while S20 becomes sink.

Each sensor being modelled by a PN, the size of whole PN model increase with
multiple sources/sinks. However, according to [2], their number can be reduced:
(1) all sinks can be merged since congestion only occurs in intermediate nodes;
(2) sources are merged when they send to the same sensor and the new sending
rate is the sum of previous ones.

Abstracted clustered global models and verification: To limit state space
explosion, clusters are abstracted, then composed together with the abandoned
sensors. Congestion-less clusters are abstracted as “virtual” sensors. Dummy
channels are created to mimic real channels. Finally, the PN model is generated
and the congestion property verified.

K. Le et al.: A Framework for Fast Congestion Detection in WSN 331



S1

S2

S3

S4
S5

S6

S7

S8

S9

S10

S11 S12

S13

S14

S15

S16S17
S18

S19

S20

C1

C2

C3

(a) Clusters generated by COCA

S7

S8

S9

S10

S11

S17
S18

S20

(b) Original cluster C1

S7

S8

S9

S10

S11

Source1
Source2

Sink

(c) Re-establishing Source and
Sink for cluster C1

S8

S9

S10

S17
S18

S20

(d) Abstraction of cluster C1

Fig. 2: Illustration of FCD Processes

S1

S2

S3

S8

S9

S10

S12
S13

S14

S15

S17
S18

S19

S20

C1

C2

C3

Fig. 3: Abstracted network topology

Clusters are abstracted as follows:
their intermediate sensors are removed
while sensors with incoming/outgoing
channels to/from the cluster are kept as
well as sources and sinks. For example, ab-
straction of cluster C1 is shown in Fig. 2d.
The inner arcs in the cluster are computed
according to transmission rates, thus cre-
ating dummy channels that mimic the
original behaviour.

Dummy channels depend on the in-
coming and outgoing packet rates. The
incoming packet rate of a sensor si, de-
noted by In(si), is the total number of
packets that are sent to sensor si. Its out-

going packet rate, denoted by Out(si), is the minimum value of the incoming
packets rate of si and its processing rate, i.e. Out(si) = min(In(si), pr(si)).

A dummy channel cij is created between sensors si and sj if and only if there
exists a path from si to sj . Its transfer rate, trd(cij) is the minimum value of

332 PNSE’16 – Petri Nets and Software Engineering



S7
{10}

S8
{10}

S9{5}

S10

{10}

S11 {8}

S17{10}S18 {5}

S20

{15}{10}{3}

{15}
{15}

{10}
{20}

{10}

{20}

{20}

(a) Original cluster C1

S8
{10}

S9{5}

S10

{10}

S17{10}S18 {5}

S20

{15}
{3}

{5} {5}

{10}
{20}

{20}

{20}

(b) Dummy channel creation

Fig. 4: Illustration of dummy channel creation

outgoing packets of sensor sk and transfer rate tr(ckj), for all sensors sk along
the path, i.e.: trd(cij) = minsk∈path(si,sj),sk′ =succ(sk) min(Out(sk), tr(ckk′)).

Consider cluster C1 in Fig. 4a where the red numbers are the processing rates
of sensors, and the blue ones the transfer rates of channels. Figure Fig. 4b illus-
trates the dummy channels creation when removing S7 and S11. The abstracted
clusters and the remaining abandoned sensors lead to an abstracted network, as
shown in Fig. 3. WSN-PN is used again to verify congestion on this new network.

4 Experiments

FCD was experimented with WSNs modelled by WSN-PN under random topolo-
gies having 70 to 10, 000 sensors, as shown in Table 1.

Table 1: Experimental results
Nb Nb of

Sensors
Nb of
Channels

Nb of
Clusters

Verification
Result

Nb of Sensors in
Congested Cluster

Time (s) Note

1 40 60 3 Congested at Cluster 1 17 21.96
2 70 100 17 Congested at Cluster 1 19 32.32
3 100 135 11 Congested at Cluster 2 36 264.08 Takes more than 145s to verify

Cluster 1 which contains 43 sensors
4 800 931 467 No Congestion 330.00
5 800 1000 568 Congested at Cluster 12 52 399.91
6 1,000 1590 793 Congested at Cluster 88 16 1,168.01
7 100 100 77 Congested at Cluster 5 5 38.13
8 350 130 233 Congested at Cluster 17 44 320.28 Takes time to verify Cluster 12
9 800 500 713 Congestion on new network topology 7,240.80
10 800 600 624 Congested at Cluster 3 7 107.41
11 5,000 2000 4,845 Congested at Cluster 19 11 176.31
12 10,000 6000 9,444 Congested at Cluster 71 5 1,379.34
13 800 920 722 Timeout after 8 hours 7 minutes Cannot verify Cluster 127

which contains 73 sensors
14 8000 3000 78 Timeout after 12 hours Cannot verify Cluster 5

which contains 111 sensors
15 10,000 12,000 8,975 Timeout after 9 hours 25 minutes Cannot verify new network

topology which contains 4,969 sensors

Even though time is spent for clustering and local verification, the total ver-
ification time of FCD is significantly reduced compared to WSN-PN. Topologies

K. Le et al.: A Framework for Fast Congestion Detection in WSN 333



1–6 have a dense deployment, and most sensors are grouped into clusters. The
more the sensors, the longer the verification. In topologies 7–12, the WSNs are
sparsely deployed. Even though most clusters are very small, congestion occurs
in large ones. The last three cases do not allow for getting a result, due to the
limitations of the WSN-PN tool, since the networks to verify are too large.
5 Conclusion
This paper presented FCD, a framework combining clustering technique and for-
mal verification in order to efficiently find possible congestion in WSNs. WSNs
are clustered based on the congestion-oriented measurement first. Then, the ver-
ification process is performed on each individual cluster. Congestion is detected
earlier if it exists within a cluster. Otherwise, the verification process is repeated
on a new abstracted network obtained from abstracted clusters and abandoned
sensors in case clusters are confirmed congestion-free in the previous step. Ex-
periments show that in most cases, congestion is detected on clusters, which
significantly decreases the verification time.
References
1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-

works: a survey. Computer Networks 38(4), 393–422 (2002)
2. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: The Theory of Timed

I/O Automata, Second Edition. Synthesis Lectures on Distributed Computing
Theory, Morgan & Claypool Publishers (2010), http://dx.doi.org/10.2200/
S00310ED1V01Y201011DCT005

3. Le, K., Bui, T., Quan, T., Petrucci, L.: COCA: Congestion-oriented clustering
algorithm for wireless sensor networks. In: ICCSN, Beijing, China (Jun 2016)

4. Le, K., Bui, T., Quan, T., Petrucci, L., André, É.: Component-based abstraction
of Petri net models: An application for congestion verification of wireless sensor
networks. In: SoICT, Hue, Vietnam. pp. 342–349 (Dec 2015), http://doi.acm.
org/10.1145/2833258.2833298

5. Le, K., Bui, T., Quan, T., Petrucci, L., André, E.: Congestion verification on
abstracted wireless sensor networks with the WSN-PN tool. Advances in Computer
Networks 4(1), 33–40 (2016)

6. Moon, S.H., Lee, S., Cha, H.: A congestion control technique for the near-sink
nodes in wireless sensor networks. In: UIC, Wuhan, China. pp. 488–497 (Sep 2006),
http://dx.doi.org/10.1007/11833529_50

7. The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/
8. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data MULEs: modeling and analysis

of a three-tier architecture for sparse sensor networks. Ad Hoc Networks 1(2-3),
215–233 (2003), http://dx.doi.org/10.1016/S1570-8705(03)00003-9

9. Si, Y., Sun, J., Liu, Y., Dong, J.S., Pang, J., Zhang, S.J., Yang, X.: Model checking
with fairness assumptions using PAT. Frontiers of Computer Science 8(1), 1–16
(2014), http://dx.doi.org/10.1007/s11704-013-3091-5

10. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In:
SimuTools, Marseille, France (march 2008), http://dx.doi.org/10.4108/ICST.
SIMUTOOLS2008.3027

11. Wan, C., Eisenman, S.B., Campbell, A.T.: CODA: congestion detection and avoid-
ance in sensor networks. In: SenSys. pp. 266–279. ACM (2003), http://doi.acm.
org/10.1145/958491.958523

334 PNSE’16 – Petri Nets and Software Engineering


