
Time in Structured Occurrence Nets

Anirban Bhattacharyya, Bowen Li, and Brian Randell

School of Computing Science, Newcastle University
Newcastle upon Tyne, United Kingdom

{anirban.bhattacharyya, bowen.li, brian.randell}@ncl.ac.uk

Abstract. This paper presents a new tool-supported formalism based
on collections of related timed occurrence nets, namely, timed struc-
tured occurrence nets (timed sons) for the modelling and analysis of
causally-related events and concurrent events with uncertain or missing
time information in evolving systems of systems. The application domain
of timed sons includes accident and crime investigations. A global dis-
crete time model is used to support consistent causal reasoning about
a system and time intervals are used to capture uncertainty about time
values. We define the timed sons notation and conditions for checking
the consistency of time information, present algorithms of linear compu-
tational complexity for estimating missing time intervals using default
duration intervals and redundant time information, and describe the fa-
cilities provided by the SONCraft tool.

Keywords: timed structured occurrence nets, time intervals, constraint
propagation, algorithms, tools, SONCraft

1 Introduction

The concept of a structured occurrence net (son) [7, 14, 12] is an extension of
that of an occurrence net [2] – a directed acyclic graph that represents causality
and concurrency information about a single execution of a system. sons were
created in order to characterise the behaviour of evolving systems of systems.
Representing time information about such systems is also important. The son
concept originated from a general investigation of failure analysis, the problem of
identifying the faults that might be the causes of an identified computer system
failure. However, we believe that sons are potentially of wide applicability, and
two of the areas that we have been considering are accident and crime investiga-
tion. For example, in a criminal investigation, constructing a timeline of a crime
for each suspected party is helpful in organising the evidence into a cohesive
presentation for a court of law. However, in many cases, the time information
available about an incident is not precise or is incomplete. For instance, it may
not be possible to give an exact time (e.g. 9am) at which a robbery occurred,
but it may be possible give time bounds for the robbery (e.g. 9am to 10am).
Petri net-based research on uncertainty and computation of time information is
limited. Therefore, the contribution of this paper is a new tool-supported for-
malism (timed sons) that is based on collections of related timed occurrence

nets and is designed for modelling and reasoning about causally-related events
and concurrent events with uncertain or missing time information in evolving
systems of systems.

The rest of the paper is organised as follows: sons are briefly described in
Section 2, and the notation of timed sons (based on discrete time intervals)
is given in Section 3. Conditions for checking the consistency of time intervals
are defined in Section 4, and algorithms for estimating and for increasing the
precision of time intervals using default duration intervals and redundant time
information are given in Section 5; the algorithms are of linear computational
complexity in the number of nodes in the son. Support for timed sons is provided
by the SONCraft tool, which is described in Section 6. Related work is briefly
reviewed in Section 7.

2 Structured Occurrence Nets

In this section, we first introduce the concept of occurrence nets, and then recall
from [7, 15] several notions based on the structuring of occurrence nets.

2.1 Occurrence nets

An occurrence net (on) is a directed acyclic graph used to record dependencies
between events in a single execution of a concurrent system. A standard on
consists of three basic elements: conditions (denoted by C), events (denoted by
E), and a binary flow relation (denoted by F). Each tuple of the flow relation
represents an arc of the on from a source condition to a destination event, or from
a source event to a destination condition; the source node (condition or event)
is termed an input of the destination node (event or condition respectively), and
the destination node is termed an output of the source node. For a given node
n, the set of input nodes of n is denoted by •n, and the set of output nodes of
n is denoted by n•. The initial state of an on consists of the conditions with
empty inputs, and the final state of an on consists of the conditions with empty
outputs. Each condition of an on has at most one input event and at most one
output event, and each event of an on has at least one input condition and at
least one output condition. A global state of an on is a maximal set comprising
pairwise concurrent conditions [7]. A phase is a fragment of an on that begins
with a global state and ends with a causally-related subsequent global state and
includes all the causally-related events and conditions between the two global
states. Figure 1 shows an on that has been divided into two phases by three
chosen global states.

Occurrence nets were originally introduced as processes of running pt-nets [3].
Each process unambiguously and explicitly describes the causality and concur-
rency relations between executed events; more precisely, causally dependent oc-
currences of events are ordered, whereas concurrent occurrences of events are
unordered. It is also possible to derive an occurrence net from historic data
(e.g. in log files) in order to represent directly a system’s execution history [13].

36 PNSE’16 – Petri Nets and Software Engineering

condition event

phaseA

phaseB

Fig. 1. An occurrence net divided into two phases by three global states.

However, the generality of causally-related events and concurrent events enables
them to model not only computing systems and their histories, but also compo-
nents and systems involving people and natural processes, for example, parties
involved in a crime investigation – one of the several application areas we have
studied.

Since occurrence nets are acyclic, repetitions of the same condition or event
are recorded as new nodes. Partially ordered sets are suitable as the underlying
mathematical structure of occurrence nets.

2.2 Communication SONs

A standard Petri net represents an asynchronous relation, and does not provide
means to synchronise different transitions directly. Communication structured
occurrence nets (csons) are the basic variant of structured occurrence nets that
can express synchronous (as well as asynchronous) interaction between com-
municating systems. Thus, the cson concept is an extension of the concept of
an occurrence net. Intuitively, a cson model combines multiple related occur-
rence nets into a single structure by letting them communicate via two special
relationships, namely, synchronous and asynchronous communication.

The original definition of csons represented a communication relation by
a directed or undirected dashed line between two events [7]. Subsequently, the
notion of channel place was introduced [6], which results in a more flexible rep-
resentation of synchronous communication, see Figure 2. In a synchronous com-
munication, the two communicating events must be executed simultaneously. In
an asynchronous communication, the two events can be either executed simul-
taneously or the sending event executes before the receiving event.

2.3 Behavioural SONs

A behavioural structured occurrence net (bson) represents the activity of an
evolving system by representing the evolution of the system at different levels of
abstraction.

Using the phase concept, a bson provides a two-level view of execution his-
tory: the structure at the lower level provides the details of the system’s abstract
behaviour represented at the upper level. The behavioural relations (denoted by

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 37

asynchronous
 interaction

synchronous
interaction

Fig. 2. A cson with two interacting occurrence nets.

β and graphically represented by dashed lines) between the two levels express
their consistent dependencies. Figure 3 shows an example of a bson representing
a system undergoing an (online) update. The upper level provides the evolution
information concerning system version change caused by an update event. The
lower level provides a detailed behaviour of the system. The behavioural rela-
tions between the two levels are used to capture the relationships between the
two types of behaviour. In this case, the first half of the system behaviours
(phaseA in Figure 1) belongs to the pre-update state a0, and the second half of
the system behaviours (phaseB in Figure 1) belongs to the post-update state a1.

Fig. 3. A bson portraying system (online) update.

In order to capture causal dependencies between events at different levels of
a bson, we use a special relation causal(e) in bsons that is formally defined
in [8]1.

Intuitively, causal(e) is the relation representing the directed graph of events
that either directly or indirectly cause e or are caused by e. For the bson in
Figure 3, we have:

causal(e0) = {(f0, e0), (f1, e0), (e0, f2), (e0, f3)}
1 We write before(e) instead of causal(e) in [8]; the change to causal(e) is for greater
clarity.

38 PNSE’16 – Petri Nets and Software Engineering

which indicates that f0 and f1 happen before e0, and e0 happens before f2 and
f3.

3 Time Model

In both criminal and accident investigations, it is important to establish the
order in which events have occurred (i.e. the ‘chain of events’) and to establish
the duration between events in order to determine causes and their effects, and
thereby eliminate infeasible hypothesized scenarios and suspects from the inves-
tigation and if possible identify the real culprits of a crime or the actual causes of
an accident. The notion of a global time enables different investigators to order
a given set of events consistently (i.e. in the same order), which facilitates their
cooperation. Therefore, the sons used in an investigation should have a global
time model.

Uncertainty is a common and unavoidable feature of investigations, in par-
ticular, uncertainty about the time of occurrence of an event, or the duration
of the event, or the time at which a state comes into existence, or how long
the state lasts. Fortunately, this uncertainty is often bounded. Such uncertainty
should be modelled and taken into consideration when making causal inferences
during investigations.
Global time. A global clock with a fixed origin and a fixed granularity im-
plements a global time model. A physical clock has a fixed granularity, and
(therefore) cannot order two events with a non-zero separation that is less than
the clock granularity (unless the events occur on different sides of a clock tick).
Hence, arbitrarily close timestamps of a dense global clock cannot be verified em-
pirically in general. On the other hand, a global clock with a fixed granularity
greater than or equal to that of a physical clock supports empirical verification of
event ordering. The fixed origin of the global clock supports the correct ordering
of events using timestamps.

The use of a fixed granularity for the global clock implies that integers can
be used to represent time values, which simplifies computation. The use of dif-
ferent levels of abstraction (in bsons) requires time abstraction, that is, coarser
granularities of time corresponding to higher levels of abstraction, which can be
implemented using clocks with larger units of integer-valued time that corre-
spond to higher abstraction levels. The time unit of the base level of abstraction
of a son can be chosen such that the duration of each event is zero, which fa-
cilitates the computation of missing time values in an investigation. Therefore,
the duration of a node resulting from an abstraction is the maximal sum of the
durations of its states at the base level of abstraction such that no two states
are pairwise concurrent.
Modelling uncertainty. An integer interval is a simple way of representing
a time value or a duration and the bounds on its uncertainty. Thus, the start
time of a state, the finish time of the state, the start time of an event, the finish
time of the event, the duration of the state, and the duration of the event (and
the bounds on their respective uncertainties) can each be represented using an

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 39

integer interval. Certainty about a time value or a duration can be represented
by making the two endpoints of their respective intervals identical.

For example, the occurrence of an instantaneous event at 9.00am can be rep-
resented by the interval [0900, 0900]. A state known to have started sometime
between 9.00am and 12.30pm can be represented using the interval [0900, 1230].
An event known to have occurred at any time before 12.30pm can be repre-
sented using the interval [−∞, 1230], where −∞ denotes an arbitrarily low in-
teger bound. An event known to have occurred at any time after 12.30pm can
be represented using the interval [1230,∞], where∞ denotes an arbitrarily high
integer bound. An unknown time can be represented by the interval [−∞,∞].

Similarly, there are five possibilities for durations of states and of events, and
an unknown duration can be represented by the interval [0,∞].

4 Time Information and its Consistency

We assume that each node of a son (i.e. condition, event, or channel place) has
a start time (Ts) and a finish time (Tf), and that each time value has bounded
uncertainty represented by a specified time interval ([Ts,l, Ts,u] and [Tf,l, Tf,u]
respectively). We also assume the node has a duration (D) with bounded uncer-
tainty represented by a specified duration interval ([Dl, Du]), see Figure 4.

Ts,l
Dl

Ts,u Tf,l Tf,u

D

time

Ts Tf

Du

Fig. 4. Relationship between the unknown time and duration values of a node and
their known bounds on the global timeline.

4.1 Notation

Let n be a node of a son. The time information for n is defined as follows.
The start and finish times of n are denoted by Tn

s and Tn
f respectively.

The start time interval of n represents the bounded uncertainty about the
value of Tn

s , and is denoted by:

Ins , [Tn
s,l, T

n
s,u]

where Tn
s,l and Tn

s,u are the lower and upper bounds respectively on the start
time of n. Ins is well-defined if and only if the following inequality is satisfied:

Tn
s,l ≤ Tn

s,u (1)

40 PNSE’16 – Petri Nets and Software Engineering

The finish time interval of n represents the bounded uncertainty about the
value of Tn

f , and is denoted by:

Inf , [Tn
f,l, T

n
f,u]

where Tn
f,l and Tn

f,u are the lower and upper bounds respectively on the finish
time of n. Inf is well-defined if and only if the following inequality is satisfied:

Tn
f,l ≤ Tn

f,u (2)

We assume the start time of n is at, or before, the finish time of n, which
is expressed by the restriction: Tn

s ≤ Tn
f . In order to ensure consistency with

this restriction, the start and finish time intervals of n must satisfy the following
inequalities:

Tn
s,l ≤ Tn

f,l ∧ Tn
s,u ≤ Tn

f,u (3)

The duration of n is denoted by Dn. The duration interval of n represents
the bounded uncertainty about the value of Dn, and is denoted by:

Ind , [Dn
l , D

n
u]

where Dn
l and Dn

u are the lower and upper bounds respectively on the duration
of n. Ind is well-defined if and only if the following inequality is satisfied:

0 ≤ Dn
l ≤ Dn

u (4)

In this paper, if the node n is clear from the context, we will omit the super-
script n.

4.2 Time consistency

Time consistency in linear ONs. In a linear on, each event has exactly one
input condition and one output condition, and each condition has at most one
input event and at most one output event.

We assume that for any two directly connected nodes (i.e. a condition ending
in an event, or an event that starts a condition), the finish time of the source
node is equal to the start time of the destination node. Therefore, we have the
following:

∀n1, n2∈(E ∪ C) ((n1, n2)∈F =⇒ In1

f = In2
s) (5)

Let n be a node in a linear on. The information with respect to the start
time, finish time, and duration of n is defined to be node consistent if and only
if the following three conditions are satisfied:

[Ts,l +Dl, Ts,u +Du] ∩ [Tf,l, Tf,u] 6= ∅ (6)

[Tf,l −Du, Tf,u −Dl] ∩ [Ts,l, Ts,u] 6= ∅ (7)

[max({0, Tf,l − Ts,u}), Tf,u − Ts,l] ∩ [Dl, Du] 6= ∅ (8)

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 41

Examples of node intervals that satisfy the conditions for node consistency
are shown in Figures 5 – 8, in each of which the entire rectangle represents
the calculated interval and the yellow rectangle represents the intersection. The
specified start time and duration intervals of node n in combination bound un-
certainty about the finish time of n, and Condition (6) verifies the bounds are
consistent (i.e. overlap) with the specified finish time interval of n. Similarly,
the specified finish time and duration intervals of n in combination bound un-
certainty about the start time of n, and Condition (7) verifies the bounds are
consistent with the specified start time interval of n. Condition (8) verifies that
the bounds on uncertainty about the duration of n determined from the spec-
ified start and finish time intervals of n are consistent with the specified du-
ration interval of n. Condition (8) handles two cases, namely, the case where
the uncertainty is such that the start and finish time intervals overlap and can
be identical, when the condition evaluates to [0 ,Tf ,u − Ts,l] ∩ [Dl ,Du] 6= ∅, and
the case where the two intervals are disjoint, when the condition evaluates to
[Tf ,l − Ts,u ,Tf ,u − Ts,l] ∩ [Dl ,Du] 6= ∅.

Ts,l Ts,u Tf,l Tf,u

Ts,l + Dl Ts,u + Du

time

Fig. 5. Example of node intervals that sat-
isfy condition (6).

Ts,l Ts,u Tf,l Tf,u

Tf,l - Du Tf,u - Dl

time

Fig. 6. Example of node intervals that sat-
isfy condition (7).

Ts,l Ts,uTf,l Tf,u

Tf,u - Ts,l

time

durationDl Du0

Fig. 7. Example of overlapping start and
finish time intervals of a node that satisfy
condition (8).

Ts,l Ts,u Tf,l Tf,u

Tf,l - Ts,u Tf,u - Ts,l

time

durationDl Du0

Fig. 8. Example of disjoint start and finish
time intervals of a node that satisfy condi-
tion (8).

A linear on is defined to be time consistent if and only if for all nodes n in
the on, n is node consistent and the flow relation F of the on satisfies Condition
(5).

For example, consider the linear ons shown in Figure 9, produced using
the SONCraft tool. The time interval shown above each arc (prefixed by ‘T:’)
represents the finish time interval of its source node as well as the start time
interval of its destination node, and the duration interval of a node is prefixed
by ‘D:’. The absence of a time or a duration interval of a node indicates that
the information is unspecified, that is, [0000, 9999] (SONCraft represents −∞
as 0000 and ∞ as 9999). Using Condition (6) above, we can see that the time
information of event e1 in (a) is inconsistent, because its estimated finish time

42 PNSE’16 – Petri Nets and Software Engineering

interval is [Ts,l+Dl, Ts,u+Du] = [0910, 1020], and its specified finish time interval
is [1030, 1100], and the two intervals do not intersect. In contrast, event e1 in
(b) is node consistent.

T: 0900-1000 T: 1030-1100

T: 0900-1000 T: 1005-1100

D:10-20

D:10-20

(a)

(b)

Fig. 9. Two linear ons with time information.

Time consistency in concurrent ONs. In a concurrent on, each event has at
least one input condition and at least one output condition, and each condition
has at most one input event and at most one output event.

We assume that for any two directly connected nodes, the finish time of the
source node is equal to the start time of the destination node (as in linear ons).
An event starts if and only if all its input conditions are satisfied, and its output
conditions are satisfied if and only if the event finishes. We assume there is no
delay in the occurrence of the event. Therefore, the finish time of the input
conditions must be the same as the event’s start time, and the start time of the
output conditions must be the same as the event’s finish time. Therefore, we
have the following definition.

Let e be an event in a concurrent on. The time information of e is defined to
be concurrently consistent if and only if the following conditions are satisfied:

∀c∈•e (Icf = Ies) (9)

∀c′∈e• (Ic′s = Ief) (10)

e is node consistent (11)

Thus, for any event e with multiple inputs and outputs, verifying its con-
current consistency consists of verifying that the finish time intervals of •e are
equal to the start time interval of e, that the start time intervals of e• are equal
to the finish time interval of e, and that e is node consistent, that is, the start
time, finish time, and duration intervals of e satisfy Conditions (6), (7), and (8).

A concurrent on is defined to be time consistent if and only if for all con-
ditions c in the on, c is node consistent, and for all events e in the on, e is
concurrently consistent.
Time consistency in CSONs. In csons, communication between events is
represented using channel places – such places behave identically to conditions.
In asynchronous communication, the sending event e executes either before the
receiving event e′, or e and e′ execute simultaneously, and the two events are con-
nected through an asynchronous channel place that records information about
the communication using a condition. In synchronous communication, the two
communicating events execute simultaneously and are connected through two

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 43

synchronous channel places that record the communication information using
conditions and have the same timing characteristics as the events.

Formally, let q be a channel place and let e, e′ be the input and output events
of q respectively. The time information of q is defined to be a/synchronously
consistent if and only if the following conditions are satisfied:

Ief = Iqs (12)

Ie
′

s = Iqf (13)

q is node consistent (14)

Figure 10 shows how time information in a cson can reveal the behaviour of
events during asynchronous communication. In (a) the events f0 and e0 have the
same start and finish time intervals, which indicate that the two events execute
simultaneously. In (b) the time intervals indicate that f0 executes earlier than e0.

(a) (b)

T: 0900-0900

T: 0900-0900

T: 1000-1000

T: 1000-1000

T: 0830-0830

T: 0930-0930

T: 0900-0900

T: 1000-1000

T: 0900-0900

T: 0930-0930

Fig. 10. Two csons with different runs of f0 and e0.

Time consistency in BSONs. The verification of time consistency in bsons
involves verifying time consistency between occurrence nets at different levels
of abstraction using the behavioural (β) and causal relations. For simplicity, we
assume the different abstraction levels have the same time origin and granularity.

Given a bson, let causalU be the binary relation consisting of the causally-
related pairs of events of the bson that is defined as follows:

causalU ,
⋃

e∈E
causal(e)

where E is the set of events in the ons of the bson. The time information of
causalU is defined to be time consistent if and only if the following condition is
satisfied:

∀(g, h)∈causalU (T g
s,l ≤ Th

s,l ∧ T g
s,u ≤ Th

s,u) (15)

For all conditions ci, c′i ∈ C (C is the set of conditions in the ons of the
bson) such that (ci, c′i)∈β and ci belongs to the initial state of a lower level on

44 PNSE’16 – Petri Nets and Software Engineering

of the bson, the following condition must be satisfied:

Icis = I
c′i
s (16)

Moreover, for all conditions ct, c′t such that (ct, c′t)∈β and ct belongs to the final
state of a lower level on of the bson, the following condition must be satisfied:

Ictf = I
c′t
f (17)

For example, Figure 11 portrays a system undergoing an ‘offline modifica-
tion’. The behaviour of the system is represented by two disjoint occurrence nets,
since the situation portrayed is that of a modified system restarting its activities
from some given initial state, rather than continuing from the state reached be-
fore the system modification started. The behaviour of such offline modification
is reflected in the correspondence between time intervals in the two levels, as
shown in the figure. The finish time interval of the pre-modified system (c3) and
the start time interval of the post-modified system (c4) are identical to those of
their corresponding upper level conditions.

T: 0900-0930

T: 0900-0930 T: 0930-0930

T: 0930-0930

Fig. 11. Example of a bson portraying system (off-line) update.

5 Computation of Time Intervals

Investigations of crimes and accidents typically encounter situations where in-
formation is missing, or is unavailable, or is unknown. In such cases, it is often
required to estimate the information that would have filled the gaps. Further-
more, in cases where complete time information is available (i.e. the start time,
finish time, and duration intervals of all nodes are specified) the precision of the
information can perhaps be increased. In the following, the estimated value of
a quantity X is denoted by X̃, and all specified information is assumed to be
consistent using the conditions defined in Section 4.

For a given node, the estimations of Is, If , and Id are defined as follows:

Let Ĩs , [T̃s,l, T̃s,u] and Ĩf , [T̃f,l, T̃f,u] and Ĩd , [D̃l, D̃u] (18)

In situations where complete time information is available for a node, the
precision of the information can be increased using the following equations:

[T̃s,l, T̃s,u] = [Tf,l −Du, Tf,u −Dl] ∩ [Ts,l, Ts,u] (19)

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 45

[T̃f,l, T̃f,u] = [Ts,l +Dl, Ts,u +Du] ∩ [Tf,l, Tf,u] (20)

[D̃l, D̃u] = [max({0, Tf,l − Ts,u}), Tf,u − Ts,l] ∩ [Dl, Du] (21)

The start time, finish time, and duration intervals of a node collectively
contain redundant information. Therefore, a missing interval of the node can be
estimated if the other two intervals are specified, as shown below:

[T̃s,l, T̃s,u] = [Tf,l −Du, Tf,u −Dl] (22)

[T̃f,l, T̃f,u] = [Ts,l +Dl, Ts,u +Du] (23)

[D̃l, D̃u] = [max({0, Tf,l − Ts,u}), Tf,u − Ts,l] (24)

In situations where a time interval and the duration interval of a node are
missing, we assume it will be possible to use a default duration interval as an
estimate based on statistics of durations of similar events or conditions that
have occurred in the past, for example, the minimum and maximum duration of
a telephone call, or the minimum and maximum duration of a train journey from
London to York. Hence, the missing time interval of any node can be estimated
using the default duration interval, the specified time interval, and Equation
(22) or (23). If a node has a type, then the default duration interval of the node
can be regarded as part of the node’s type information.

In situations where both time intervals of a node are missing, it is necessary
to use a specified time interval of another node. We now describe algorithms
for estimating missing time intervals of nodes in a son using two approaches:
the first approach is to estimate the intervals of an individual node, the second
approach is to estimate the intervals of all the nodes of the son.

5.1 Computation of time intervals of a node

The estimation of unspecified time intervals of a node involves traversing a son
structure using its causality relations, including the flow relations of its ons,
asynchronous and synchronous communications in csons, and causal(e) rela-
tions in bsons. Algorithm 1 gives the structure of function causalPostset , which
obtains the causal output neighbours of a given node n. Line 3 deals with flow
relations: all nodes that are the outputs of n in the on containing n are added
to the result Postset . Lines 4 – 5 deal with cson relations: the channel places
contained in the outputs of n together with the output events of the channels
(located in a different on from that of n) are added to Postset . Lines 6 – 8 con-
cern causal(e) relations in bsons: for any causal(e) relation with domain {n},
the range is added to Postset .

To determine the computational complexity of Algorithm 1, let k be the total
number of nodes in the son containing the node n. The total number of node
additions to Postset is less than k, and the total number of tests of node equality
to n is less than k. Therefore, the computational complexity of causalPostset is
O(k).

46 PNSE’16 – Petri Nets and Software Engineering

Algorithm 1 (Causal postset)
1: function causalPostset(Node n)
2: Postset := ∅
3: add n• to Postset // output of n in on containing n
4: for all channel place q such that n is the input of q do
5: add q and its output event to Postset // a/sync output of n
6: for all (e, f) ∈ causalU do
7: if e = n then
8: add f to Postset
9: return Postset

A son is essentially a directed acyclic graph, and (therefore) traversal of
a son can be performed in two directions. Function causalPreset obtains the
causal input neighbours of a given node n; the structure of the function is given
in [4]. The computational complexity of causalPreset is O(k).

causalPostset and causalPreset are both used in estimating the unspecified
time intervals of an individual node. Algorithm 2 describes the structure of
procedure estimateFinish, which computes the finish time interval of a node n
using the causal functions and is outlined below. The algorithm assumes the son
containing node n is represented by an acyclic structure.

1. Given a node n with unspecified finish time interval, perform forward breadth-
first-search (BFS) using the findRightBoundary procedure to identify the
nodes with a specified finish time interval that are nearest to n along paths
beginning at n; if no such node exists on such a path, the final node of the
son on the path is used.

2. Using the identified nodes, perform backward BFS using the procedure
backwardBFSTimes to calculate unspecified duration and time intervals of
the nodes causally-related to n (Lines 27 – 28, 32 – 33) or to recalculate the
intervals to increase their precision (Lines 34 – 35), until node n is reached.

3. A count is kept (in visits) of the number of times a node is visited during
the backward BFS traversal (Line 31) in order to handle multiple paths of
unequal length between two nodes and to ensure that the time and duration
intervals of a node are fully calculated exactly once (Lines 37 – 44).

Notice that the estimateFinish procedure can fail to compute the finish time
interval of n if the computation involves an empty intersection between intervals
(i.e. the son contains inconsistent time information) or if the BFS is unable
to find a node with a specified finish time interval on a path from n (i.e. the
son contains insufficient time information). The computational complexity of
estimateFinish is O(k), since the number of operations on a node is bounded by
a constant and each node of the son is fully processed at most once.

Figure 12 shows the use of estimateFinish to compute the finish time interval
of the initial node of an on. The on contains two specified time intervals:
Ie1f = Ic3s = [2001, 2005] and Ic2f = [2004, 2008], and we assume the duration
interval for each node is [0001, 0001]. To estimate the finish time interval of c0,

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 47

Algorithm 2 (Estimates finish time interval of a node using causal relation)
1: procedure estimateFinish(Node n)
2: RBoundary := ∅ // nearest right nodes of n with specified finish time intervals
3: RNeighbourhood := {n} // nodes on paths from n to RBoundary nodes
4: findRightBoundary(n,RBoundary ,RNeighbourhood)
5: backwardBFSTimes(n,RBoundary ,RNeighbourhood)

6: procedure findRightBoundary(Node n, Set Boundary, Neighbourhood)
7: Working := {n} // nodes used for forward boundary searching
8: while Working 6= ∅ do
9: NextWorking := ∅ // nodes with unspecified finish time intervals
10: for all m ∈Working do
11: if causalPostset(m) = ∅ then
12: add m to Boundary
13: else
14: for all nd ∈ causalPostset(m) do
15: add nd to Neighbourhood
16: if nd .finish.specified then
17: add nd to Boundary
18: else
19: add nd to NextWorking
20: remove m from Working
21: Working := NextWorking

22: procedure backwardBFSTimes(Node n, Set Boundary, Neighbourhood)
23: Working := Boundary // nodes used for backward estimation of time intervals
24: while Working 6= {n} do
25: NextWorking := ∅ // nodes with unspecified time intervals
26: for all m ∈Working do
27: if ¬m.duration.specified then
28: m.duration := I

default(typeof (m))
d

29: for all nd ∈ causalPreset(m) ∩Neighbourhood do
30: add nd to NextWorking
31: nd .visits := nd .visits + 1
32: if ¬nd .finish.specified ∧m.finish.specified then
33: nd .finish := m.finish −m.duration // Equation (22)
34: else if m.finish.specified then
35: nd .finish := nd .finish ∩ (m.finish −m.duration) // Equation (19)
36: for all nd ∈ NextWorking do
37: if nd .visits = |causalPostset(nd)| then
38: for all ndout ∈ causalPostset(nd) do
39: if ¬ndout .start .specified ∧ ndout .finish.specified then
40: ndout .start := nd .finish
41: ndout .duration := ndout .duration ∩ (ndout .finish − ndout .start)

// Equation (21)
42: nd .visits := 0
43: else
44: remove nd from NextWorking
45: Working := NextWorking

48 PNSE’16 – Petri Nets and Software Engineering

the forward search is used to find the right boundary, that is, {c2, e1}. Then
the backward BFS is performed to calculate intervals iteratively until reaching
the initial node c0. Notice that during the iteration, e0 cannot be added to the
working set until both its output conditions c1 and c2 have been visited.

T: 2001-2005

T: 2004-2008

Est: 2002-2002

Est: 2000-2004

D: 1D: 1

D: 1

D: 1 Est:
 1999-2003

Est: 2003-2007

D: 1

D: 1

Fig. 12. Estimating the finish time interval of a node.

Estimation of the start time interval of a node n is done in the reverse way
to estimateFinish using the procedure estimateStart (not shown in this paper).
The structural similarity of the two procedures implies their computational com-
plexity is the same, that is, O(k).

5.2 Computation of time intervals of a SON

Procedure estimateSONTimesBFS estimates the unspecified time and duration
intervals of an entire son and increases the precision of the specified intervals
through intersection using the principle that each interval of a SON must be able
to affect the computation of every other interval. The structure of the procedure
is given in [4]. Basically, a temporary pre-initial input node is created for the
initial nodes of the son and a temporary post-final output node is created for the
final nodes of the son to enable concurrent nodes to affect each other indirectly.
This construction is often used in solving problems of directed acyclic graphs,
for example, the maximum flow problem [10]. The finish time interval of the pre-
initial node is calculated using the procedure estimateFinish described earlier,
the son is traversed going forward using BFS until the post-final node is reached,
after which the son is traversed going backward using BFS until the pre-initial
node is reached. The computational complexity of estimateSONTimesBFS is
O(k).

Figure 13 shows a cson with one specified time interval. The pre-initial and
post-final nodes of the son are respectively connected to both initial conditions
and both final conditions. The algorithm first estimates the finish time inter-
val [0958, 0958] of the pre-initial node, then uses the interval to estimate time
information for the entire son. Notice the time granularity in this example is
24-hour-clock/mins.

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 49

T: 1000-1000

pre-initial
post-final

D: 1

D: 1D: 1

D: 1D: 1

D: 1

Est: 0959-0959

Est: 0958-0958

Est: 0959-0959 Est: 1000-1000

Est: 1001-1001

Fig. 13. A cson with pre-initial and post-final nodes (all duration intervals are assumed
to be [0001, 0001]).

6 Implementation

We have implemented timed sons and their analysis algorithms in SONCraft –
an open source tool for the construction and analysis of structured occurrence
nets. In this section, we provide an overview of the major features of SONCraft,
then present the implementation of the time-based tools.

6.1 SONCraft

SONCraft supports the visual editing, simulation, analysis, and verification of
structured occurrence nets. The tool is implemented as a Java plug-in within the
Workcraft platform, which provides a flexible framework for the development
and analysis of interpreted graph models. Detailed descriptions of SONCraft
and Workcraft and their manuals can be found in [11, 9]. The present version
of SONCraft handles three types of son structure, namely, csons, bsons, and
temporal abstractions [7]. A single son can incorporate multiple instances of
each type of structure. The major features of SONCraft are as follows.

Graphical user interface: an intuitive and easy to use graphical interface for
editing, simulating, and analysing son-based models, see Figure 14.

Simulator: a built-in simulator that can handle multiple ons, csons, and
bsons in a son. Simulations can be conducted either manually or automatically
by firing a succession of enabled events, causing states to evolve, event colouring
to be updated, and the simulation record to be augmented.

Analysis tools: a set of analysis tools is integrated into SONCraft. The struc-
tural property tool provides several structural verification algorithms that can be
used to validate a model. It is important to verify the correctness of structure
before further analysis; otherwise, the results are likely to be incorrect. Error
tracing is a failure analysis facility integrated with the simulator. The facility is
used to analyse how a ‘faulty’ event passes through and affects the system states.
The reachability tool is used for verifying the reachability property of a son. The
analysis establishes whether or not given states are mutually concurrent.

6.2 Time visualisation

The time mode in SONCraft enables the display of time information of a son
model, as shown in the screenshot in Figure 15. Notice the editor window in the

50 PNSE’16 – Petri Nets and Software Engineering

Editor
window

Main menu Editor tabs Property editor

Editor
tools

Tool
controls

Workspace

Utility windows

Fig. 14. SONCraft interface.

figure has been maximized for presentation purposes here, thereby minimizing
all other windows (e.g. the editor tool window and the property editor window)
in order to show only a single work file (i.e. the current son model). In this mode,
an initial condition is represented by a circle with a thick small arrow, and a final
condition is represented by a double circle (inspired by the state representation
used in finite state machines). The time representations of different node types
are displayed differently because of the amount of visual space they occupy. Thus,
rather than display all three intervals (i.e. start, finish, and duration) for every
node, we simplify the representation by merging and displaying some intervals on
arcs. More precisely, the time interval displayed on each arc indicates the finish
time interval of its source node as well as the start time interval of its destination
node. Thus, each non-initial and non-final node shows only its duration value
(see condition ‘Ver 0.2’). However, there is no input arc for an initial condition
and no output arc for a final condition; so, some of their time information is
displayed directly against the node. For example, in Figure 15, the start time
interval [2000, 2000] of the initial condition ‘Ver 1.0’ is displayed directly next to
the node.

6.3 Time property setting tool

The time property setting tool shown in Figure 16 is an interface for specifying
time information of a given node in a son model. The time granularity panel at
the top of the interface currently offers two granularities: year/year and 24-hour-
clock/mins. Different granularities have their own time and duration bounds as
well as arithmetic. For example, the time and duration bounds of the 24-hour-
clock/mins granularity are 0001-2400 and 0000-0060 respectively.

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 51

Fig. 15. Timed son visualisation.

Users can either manually or automatically set time information for a selected
node in the time value panel. For each manually input interval, the tool verifies
whether or not the interval is well-defined. The verification criteria are based
on Conditions (1) – (4). Moreover, for each input interval, checking of its time
or duration bounds is performed according to its time granularity. The tool
also provides efficient time estimation for nodes with unspecified time intervals.
Depending on the user selection, different algorithms (e.g. Algorithm 2 or entire
son estimation) can be used for a calculation.

Fig. 16. Time property setter.

52 PNSE’16 – Petri Nets and Software Engineering

6.4 Time consistency checking tool

The time consistency checking tool provides consistency checking for the time
information that is specified. The tool encodes the conditions and equations
given in Sections 4 and 5, and provides a user interface for additional settings.
The interface is divided into the following three (sub-)panels.

Two granularities are present in the time granularity panel. Causal consis-
tency checking can be activated using the causal consistency panel. The facility
implements the sonConsistency function in [4] and aims to verify the nodes
with incomplete time information using causal relations. The panel also includes
means of specifying the default duration setting that is used in time estimation.
The user settings panel has an option to request the highlight of time inconsis-
tent nodes (if any) in the editor window after the verification.

Figure 17 shows a consistency verification result of the son displayed in
Figure 15. The result shows three time inconsistency errors. For example, the
first error message involves condition c4 and shows that its start time lower
bound (2001) is greater than its finish time lower bound (2000), that is, the
condition can cease to hold before it starts to hold.

Fig. 17. Time consistency checking result.

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 53

7 Related Work

Petri net-based research on uncertainty, consistency checking, and computation
of time information is limited. However, there is research on genealogies (e.g.
[5] and [16]) and on temporal logics (e.g [1]) that addresses these issues. In [5],
a mathematical relaxation method (of exponential complexity in the number of
dates) is used to adjust iteratively the endpoints of intervals containing unknown
dates of birth, marriage, and death until the endpoints finally stabilise. The
restrictions on the dates are encoded in the algorithm, and their parameters are
set manually. In [16], the restrictions on the dates determine intervals, which
are intersected in order to determine the final endpoints. The parameters of
the restrictions are determined by statistical analysis of the input data. In [1],
an algebra of relations between temporal intervals is developed with a method
(of quadratic complexity in the number of intervals) for determining the relation
(one of thirteen) between any two intervals. However, none of the research models
abstraction of events or of states or models communication.

8 Concluding Remarks

This paper has presented the notion of a timed son in order to model and reason
about causally-related events and concurrent events with uncertain or missing
time information in evolving systems of systems. Discrete intervals have been
used to capture uncertainty about time values. Conditions have been defined
to verify the consistency of time information. Algorithms have been presented
that are based on the use of default duration intervals and redundant time
information and are of linear computational complexity in the number of nodes
in a son in order to estimate missing time intervals and to increase the precision
of user-specified intervals. Finally, the facilities provided by the SONCraft tool
have been described.

Future work will extend timed sons to handle multiple scenarios so that
different hypotheses about the cause of an accident or the chain of events of a
crime can be modelled and investigated. Probabilities will be added to support
multiple scenarios, and different time granularities will be represented to support
modelling at different levels of abstraction. Furthermore, we hope to use timed
sons to model and analyse cyber crime, problems involving ‘big data’, neuro-
logical processes, dynamic reconfiguration of real-time software, and hardware
design, in order to demonstrate the generality and exploit the full potential of
the formalism. SONCraft is being extended with a multipage facility that will
enable very long ons to be represented and abstracted, and allow different ons
of a son to be stored in different files.

Acknowledgements

This work is funded by the EPSRC project UNderstanding COmplex system
eVolution through structurEd behaviouRs (UNCOVER). The authors acknowl-

54 PNSE’16 – Petri Nets and Software Engineering

edge the help and advice given by Victor Khomenko and Maciej Koutny, and
thank the anonymous reviewers for their comments.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Best, E., Devillers, R.: Sequential and concurrent behaviour in petri net theory.
Theoretical Computer Science 55(1), 87–136 (1987)

3. Best, E., Fernández, C.: Nonsequential Processes: A Petri Net View, vol. 13 of
EATCS monographs on Theoretical Computer Science. Springer-Verlag (1988)

4. Bhattacharyya, A., Li, B., Randell, B.: Time in structured occurrence nets. Tech.
Rep. CS-TR-1495, School of Computing Science, Newcastle University (May 2016)

5. Brox, V.: Date Estimation in Lineage-Linked Databases. BSc dissertation, New-
castle University School of Computing Science (2000), http://homepages.cs.ncl.
ac.uk/brian.randell/Genealogy/Brox/dissertation/dissertation.html

6. Kleijn, J., Koutny, M.: Causality in structured occurrence nets. In: Dependable and
Historic Computing. vol. 6875, pp. 283–297. Springer Berlin Heidelberg (2011)

7. Koutny, M., Randell, B.: Structured occurrence nets: A formalism for aiding system
failure prevention and analysis techniques. Fundamenta Informaticae 97(1), 41–91
(Jan 2009)

8. Li, B., Koutny, M., Randell, B.: SONCraft: A tool for construction, simulation
and verification of structured occurrence nets. Tech. Rep. CS-TR-1493, School of
Computing Science, Newcastle University (Jan 2016)

9. Li, B., Randell, B.: SONCraft user manual. Tech. Rep. CS-TR-1448, School of
Computing Science, Newcastle University (Feb 2015)

10. Nazer, B., Gastpar, M.: Computation over multiple-access channels. Information
Theory, IEEE Transactions on 53(10), 3498–3516 (2007)

11. Poliakov, I.: Workcraft homepage, http://workcraft.org
12. Randell, B.: Occurrence nets then and now: the path to structured occurrence nets.

In: Applications and Theory of Petri Nets. pp. 1–16. Springer Berlin Heidelberg
(Jun 2011)

13. Randell, B.: Incremental construction of structured occurrence nets. Tech. Rep.
CS-TR-1384, School of Computing Science, Newcastle University (May 2013)

14. Randell, B., Koutny, M.: Failure: their definition, modelling and analysis. In: The-
oretical Aspects of Computing–ICTAC 2007. pp. 260–274. Springer (Sep 2007)

15. Randell, B., Koutny, M.: Structured occurrence nets: Incomplete, contradictory and
uncertain failure evidence. Tech. Rep. CS-TR-1170, School of Computing Science,
Newcastle University (Sep 2009)

16. Wilson, R.: Date range propagation in genealogical databases. In: Family History
Technology Workshop (2012)

A. Bhattacharyya, B. Li and B. Randell: Time in Structured Occurrence Nets 55

