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Abstract. Nested Petri nets (NP-nets) is an extension of the Petri nets
formalism within the �nets-within-nets� approach, allowing to model sys-
tems of interacting dynamic agents in a natural way. One of the main
problems in verifying of such systems is the State Explosion Problem. To
tackle this problem for highly concurrent systems the unfolding method
has proved to be very helpful. In this paper we continue our research
on applying unfoldings for NP-nets veri�cation and compare unfolding
of NP-net translated into classical Petri net with direct component-wise
unfolding.
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1 Introduction

Multi-agent systems have been studied explicitly for the last decades and can be
regarded as one of the most advanced research and development area in com-
puter science today. They are used in various practical �elds and areas, such
as arti�cial intelligence, cloud services, grid systems, augmented reality systems
with interactive environment objects, information gathering, mobile agent coop-
eration, sensor information and communication.

Petri nets have been proved to be one of the best formalisms for modeling and
analysis of distributed systems. However, due to the �at structure of classical
Petri nets, they are not so good for modeling complex multi-agent systems. For
such systems a special extension of Petri nets, called nested Petri nets [1], can
be used. Nested Petri nets follow 'nets-within-nets' approach [2] and naturally
represent multi-agent systems structure, because tokens in the main system net
are Petri nets themselves, and can have their own behavior.

To check nested Petri net model properties one of the most popular veri�ca-
tion method, model checking, could be used. The basic idea of model checking
is to build a reachability (transition) graph and check properties on this graph.
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However, there is a crucial problem for veri�cation of highly concurrent systems
using model checking approach � a large number of interleavings of concurrent
processes. This leads to the so-called state-space explosion problem.

To tackle this problem unfolding theory [3,4] was introduced. In [5] applica-
bility of unfoldings for nested Petri nets was studied and the method for con-
structing unfoldings for safe conservative nested Petri nets was proposed. It was
proven there, that unfoldings for nested Petri nets satisfy the unfoldings fun-
damental property, and thus can be used for veri�cation of conservative nested
Petri nets similar to the classical unfoldings methods. Classical unfoldings are
de�ned for P/T nets, but in this paper we deal with a restricted subclass of
nested Petri nets � conservative safe nested Petri nets. This means that net
tokens, representing agents, cannot be destroyed or created, but can change
their location in the system net and can change their inner states. Thus, the
number of agents is constant and each agent can be identi�ed. It was shown
in [5] that for conservative safe nested Petri nets unfoldings can be constructed
in a component-wise manner, what makes practical veri�cation of such models
feasible.

However, safe conservative nested Petri nets are bounded. So, for such net
it is possible to construct a P/T net with equivalent behavior, for which the
standard unfolding techniques can be applied. Then the question is whether
direct unfolding proposed in [5] is really better than constructing unfoldings via
translation of nested Petri nets into safe P/N nets in terms of time complexity.

In this paper we study this question. For that we develop an algorithm for
translating a safe conservative NP-net into a behaviorally equivalent P/T net.
We prove that the reachability graphs of a source NP-net and the obtained P/T
net are isomorphic, and hence both unfolding methods give the same (up to
isomorphism) result. From general considerations translating an NP-net into a
P/T net and then constructing unfoldings will be more time consuming, than
constructing unfoldings directly. To check whether this time gap reveals itself
in practice we implement all the algorithms and compare both methods experi-
mentally.

Related Work Nested Petri nets (NP-nets) are widely used in modeling of dis-
tributed systems [6,7,8], serial or recon�gurable systems [9,10,11], protocol veri-
�cation [12], coordination of sensor networks with mobile agents [13], innovative
space system architectures [14], grid computing [15].

Several methods for NP-nets behavioral analysis were proposed in the litera-
ture, among them compositional methods for checking boundedness and liveness
for nested Petri nets [16], translation of NP-nets into Colored Petri nets in order
to verify them with CPNtools [17], veri�cation of a subclass of recursive NP-nets
with SPIN [18].

Unfolding approach and state-space explosion problem are explicitly studied
in the literature. The original development in unfoldings (of P/T-nets) is due
to [19]. McMillan [3] was the �rst to use unfoldings for veri�cation. He intro-
duced the concept of complete �nite pre�xes of unfoldings, and demonstrated
the applicability of this approach to the veri�cation of asynchronous circuits.
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The original McMillan's algorithm was used to solve the executability problem
� to check whether a given transition can �re in the net. This algorithm can be
used also for checking deadlock-freedom and for solving some other problems.
Later, numerous improvements to the algorithm have been proposed ([20,21,22]
to name a few); and the approach has been applied to high-level Petri nets [23],
process algebras [24] and M-nets [23].

The general method for truncating unfoldings, which abstracts from the in-
formation one wants to preserve in the �nite pre�x of the unfolding, was proposed
in [25,26]. This method is based on the notion of a cutting context. We use this
approach for de�ning branching processes and unfoldings of conservative nested
Petri nets.

The paper is organized as follows. In Section 2 we present the basic notions of
Petri nets, nested Petri nets, and classical unfoldings. In Section 3 an algorithm
for nested Petri nets into P/T nets translation is described. In Section 4 direct
unfoldings for safe conservative NP-nets are de�ned and compared with con-
structing unfoldings via into P/T nets translation. The last section gives some
conclusions.

2 Preliminaries

Multisets. Let S be a �nite set. A multiset m over a set S is a function m : S Ñ
Nat, where Nat is the set of natural numbers (including zero), in other words, a
multiset may contain several copies of the same element.

For two multisets m,m1 we write m � m1 i� @s P S : mpsq ¤ m1psq (the
inclusion relation). The sum and the union of two multisetsm andm1 are de�ned
as usual: @s P S : pm�m1qpsq � mpsq�m1psq, pmYm1qpsq � maxpmpsq,m1psqq.

2.1 P/T-nets

Let P and T be two �nite disjoint sets of places and transitions and let F �
pP � T q Y pT � P q be a �ow relation. Then N � pP, T, F q is called a P/T-net.

A marking in a P/T-net N � pP, T, F q is a multiset over the set of places P .
ByMpNq we denote a set of all markings in N . A marked P/T-net pN,M0q is
a P/T-net together with its initial marking M0.

Pictorially, P -elements are represented by circles, T -elements by boxes, and
the �ow relation F by directed arcs. Places may carry tokens represented by
�lled circles. A current marking m is designated by putting mppq tokens into
each place p P P .

For a transition t P T , an arc px, tq is called an input arc, and an arc pt, xq
� an output arc. For each node x P P Y T , we de�ne the pre-set as 
x � ty |
py, xq P F u and the post-set as x
 � ty | px, yq P F u.

We say that a transition t in a P/T-net N � pP, T, F q is enabled at a marking
M i� 
t � M . An enabled transition may �re, yielding a new marking M 1 �

M � 
t� t
 (denoted M
t
ÝÑM 1). A marking M is called reachable if there exists
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a (possibly empty) sequence of �rings M0
t1ÝÑ M1

t2ÝÑ M2 ÝÑ � � � ÝÑ M from
the initial marking to M . By RMpN,M0q we denote the set of all reachable
markings in pN,M0q.

A marking M is called safe i� for all places p P P we have Mppq ¤ 1. A
marked P/T-net N is called safe i� every reachable marking M P RMpN,M0q
is safe. A reachability graph of a P/T-net pN,M0q presents detailed informa-
tion about the net behavior. It is a labeled directed graph, where vertices are
reachable markings in pN,M0q, and an arc labeled by a transition t leads from
a vertex v, corresponding to a marking M , to a vertex v1, corresponding to a

marking M 1 i� M
t
ÝÑM 1 in N .

2.2 Classical Petri Nets Unfoldings

Branching processes and unfoldings of P/T-nets. Unfoldings are used to de�ne
non-sequential (true concurrent) semantics of P/T-nets, and complete pre�xes
of unfoldings are used for veri�cation. Here we give necessary basic notions and
de�nitions, connected with unfoldings. Further details can be found in [27,28].

Let N � pP, T, F q be a P/T-net. The following relations are de�ned on the
set P Y T of nodes in N :

1. the causality relation, denoted as  , is the transitive closure of F , and ¤ is
the re�exive closure of  ; if x   y, we say that y causally depends on x.

2. the con�ict relation, denoted as #: nodes x, y P P Y T are in con�ict i�
Dt, t1 P T, t � t1 ^ 
tX



t1 � H^ t ¤ x^ t1 ¤ y;

3. the concurrency relation, denoted as co : two nodes are concurrent if they
are not in con�ict and neither of them causally depends on the other.

For a set B of nodes we write co pBq i� all nodes in B are pairwise concurrent.
An occurrence net is a safe P/T-net ON � pB,E,Gq s.t.

1. ON is acyclic;
2. @p P B : |
p| ¤ 1;
3. @x P BYE the set ty | y   xu is �nite, i.e., each node in ON has a �nite set

of predecessors;
4. @x P B Y E :  px#xq, i.e., no node is in self-con�ict.

In occurrence nets, elements from B are usually called conditions and elements
from E are called events.

A con�guration C in an occurrence net ON � pB,E,Gq is a non-con�icting
subset of nodes, which is downwards-closed under  , i.e., @x, y P C :  px#yq,
and px   yq ^ y P C implies x P C. For each x P B Y E we de�ne a local
con�guration of x to be rxs � ty | y P B Y E, y   xu. The de�nition of a local
con�guration can be straightforwardly generalized to any non-con�icting set of
nodes X � B Y E, namely rXs � ty | y P B Y E, x P X, y   xu.

We de�ne the set of branching processes of a given marked P/T-net N �
pP, T, F,M0q using the so-called canonical representation.

The set C of canonical names for N is de�ned recursively to be the smallest
set s.t. if x P P Y T and A is a �nite subset of C, then pA, xq P C.

A C-Petri net is an occurrence net pB,E,Gq such that:
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� B Y E � C;
� @pA, xq P B Y E,



pA, xq � A.

The initial marking of a C-Petri net is a subset of nodes tpH, xq | pH, xq P Bu.
For each C-Petri net CN , the morphism h maps the nodes of CN to the nodes
of N : hppA, xqq � x. If hpyq � z, we say that y is labeled by z.

Let S be a (�nite or in�nite) set of C-Petri nets. The union of S is de�ned
component-wise, i.e.,�

S � p
�

pP,T,F,MqPS P,
�

pP,T,F,MqPS T,
�

pP,T,F,MqPS F,
�

pP,T,F,MqPSMq.

The set of branching processes of a marked P/T-net N � pP, T, F,M0q is
de�ned as the smallest set of C-Petri nets satisfying the following conditions:

1. The C-Petri net pI,H,Hq, where I � tpH, pq | p P M0u (consisting of
conditions I and having no events), is a branching process.

2. Let B1 be a branching process and M be a reachable marking of B1, and
M 1 �M , such that hpM 1q � 
t for some t in T . Let B2 be a net obtained by
adding an event pM 1, tq and conditions tptpM 1, tqu, pq | p P t
u to B1. Then
B2 is a branching process.

3. Let BB be a (�nite, or in�nite) set of branching processes. The union
�BB

is a branching process.

An example of a P/T-net and its branching process is shown in Figs. 1 and 2.
The P/T-net PN1 has the initial marking tp1u and is shown in Fig. 1. One of
its possible branching processes is shown in Fig. 2, where the labeling function
h is indicated by labels on nodes.

p1

p2

p3

p4

p5

p6t1

t2

t3

t4

t5

t6

Fig. 1. Petri net PN1
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p2

p3

p4

p5

p6

p6

p1

p1t1

t2

t3

t4

t5

t6

t6

Fig. 2. Branching process of PN1

A branching process B1 � ppP1, E1, F1q, h1q is called a pre�x of a branching
process B2 � ppP2, E2, F2q, h2q (denoted B1 � B2) i� P1 � P2 and E1 � E2.

The union of branching processes is called the unfolding of N . It is easy to
see, that the unfolding is the maximal branching process w.r.t the pre�x relation
�.

The fundamental property of P/T-nets unfoldings [28] states that the behav-
ior of the unfolding is equivalent to the behavior of the original net. Formally it
can be formulated as follows.
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Fundamental property of P/T-nets unfoldings. Let M be a reachable marking
in a P/T- net N , and let MU be a reachable marking in UpNq s.t. hpMU q �M .
Then

1. if there is a step MU
tUÝÑ M 1

U of UpNq, then there is a step M
t
ÝÑ M 1 of N ,

such that hptU q � t^ hpM 1
U q �M 1;

2. if there is a step M
t
ÝÑ M 1 of N , then there is a step MU

tUÝÑ M 1
U in UpNq,

such that hptU q � t^ hpM 1
U q �M 1.

In other words, the fundamental property of unfoldings states that the reach-
ability graph of the unfolding is isomorphic to the reachability graph of the
P/T-net. This property is crucial for the use of unfoldings in semantic study
and veri�cation.

Unfoldings were de�ned and studied for di�erent classes of Petri nets, namely
for high-level Petri nets [23], contextual nets [29], time Petri nets [30], Hypernets
[31] (to name a few). All these constructions has similar properties, which act
as a �sanity check�. Further in the paper we de�ne an unfolding operation for
nested Petri nets, which posses a similar fundamental property.

2.3 Nested Petri Nets

In this paper we deal with nested Petri nets (NP-nets) � in particular, a proper
subclass of NP-nets called strictly conservative NP-nets. The basic de�nition
of nested Petri nets can be found in [1,8]. Here we give a reduced de�nition,
su�cient for de�ning conservative NP-nets.

In nested Petri nets (NP-nets), tokens may be Petri nets themselves. An
NP-net consists of a system net and element nets. We call these nets the NP-
net components. Marked element nets are net tokens. Net tokens, as well as
usual black dot tokens, may reside in places of the system net. Some transitions
in NP-net components may be labeled with synchronization labels. Unlabeled
transitions in NP-net components may �re autonomously, according to the usual
rules for Petri nets. Labeled transitions in the system net should synchronize with
transitions (labeled by the same label) in net tokens involved in this transition
�ring.

In strictly conservative NP-nets, net tokens cannot evolve or disappear. They
can �move� from one place in a system net to another and �change� their marking,
i.e., inner state. In the basic NP-net formalism new net tokens may be created,
copied and removed as usual Petri net tokens. It should be noted that although
this restriction is rather strong, many interesting multi-agent systems can be
modeled with conservative NP-nets.

Here we consider safe and typed NP-nets, i.e., each place in a system net can
contain no more than one token: either a black dot token, or a net token of a
speci�c type.

Figure 3 provides an example of a nested Petri net NP1. On the left one can
see a system net. The token residing in the place Res is a net token. Its structure
and initial marking is shown on the right side of the �gure. The net token
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p1 q1

p2 q2

p3 q3

p4 q4

t1 t2

Res

LLock1
x

x

L Lock2
x

x

RRelease1

x
x

R Release2

x
x

a1

a2

a3

L

Lock

SomeWork

RRelease

Fig. 3. NP-net NP1

represents some sort of resource (for example, a networking or a computational
one), capable of performing some internal work (actions). Two threads are trying
to access the same resource, but the locking mechanism is preventing them from
accessing it simultaneously. The system net synchronizes with the element nets
via transitions Lock1, Lock2 and Release1,Release2.

De�nition 1 (Nested Petri nets). Let Type be a set of types, Var � a set of
typed (over Type) variables, and Lab � a set of labels. A (typed) nested Petri
net (NP-net) NP is a tuple pSN, pE1, . . . , Ekq, υ, λ,W q, where

� SN � pPSN, TSN, FSNq is a P/T net called a system net;
� for i � 1, k, Ei � pPEi

, TEi
, FEi

q is a P/T net called an element net, where
all sets of places and transitions in the system and element nets are pairwise
disjoint; we suppose, each element net is assigned a type from Type; without
loss of generality we shall assume, that Type � tE1, . . . , Eku;

� υ : PSN Ñ TypeY t
u is a place-typing function;
� λ : TNP Ñ Lab is a partial transition labeling function, where TNP � TSN Y
TE1

Y � � � Y TEk
; we write that λptq � K when λ is unde�ned at t.

� W : FSN Ñ Var Y t
u is an arc labeling function s.t. for an arc r adjacent
to a place p the type of W prq coincides with the type of p.

A marked element net is called a net token.

In what follows for a given NP-net by Anet � tpEN,mq | Di � 1, . . . , k : EN �
Ei,m P MpENqu we denote the set of all (possible) net tokens, and by A �
Anet Y t
u the set of all net tokens extended with a black dot token.

Now we come to de�ning NP-net behavior.
A marking M in an NP-net NP is a function mapping each p P PSN to some

(possibly empty) multiset Mppq over A in accordance with the type of p. Thus
a marking in an NP-net is de�ned as a marking of its system net. By abuse of
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notation, a set of all markings of an NP-net NP will be denoted byMpNPq. We
say that a net token pEN,mq resides in p (under markingM), ifMppq P pEN,mq.

Let t be a transition in SN, 
t � tp1, . . . , piu, t

 � tq1, . . . , qju be sets of its

pre- and post-elements. ThenW ptq � tW pp1, tq, . . . ,W ppi, tq,W pt, q1q, . . . ,W pt, qjqu
will denote a set of all variables in arc labels adjacent to t. A binding of t is a
function b assigning a value bpvq (of the corresponding type) from A to each
variable v occurring in W ptq.

A transition t in SN is enabled in a marking M w.r.t. a binding b i� @p P

t : W pp, tqpbq �Mppq, i. e. each input place p adjacent to t contains a value of
input arc label W pp, tq.

The enabled transition �res yielding a new marking M 1, write M Ñ M 1,
such that for all places p, M 1ppq � pMppqzW pp, tqpbqq YW pt, pqpbq.

For net tokens from Anet, which serve as values for input arc variables from
W ptq, we say, that they are involved in the �ring of t. (They are removed from
input places and brought to output places of t).

There are three kinds of steps in an NP-net NP.
An element-autonomous step. Let t be a transition without synchronization

labels in a net token. Then an autonomous step is a �ring of t according to the
usual rules for P/T-nets. An autonomous step in a net token does not change
the residence of this net token.

A system-autonomous step is the �ring of an unlabeled transition t P TSN in
the system net according to the �ring rule for high-level Petri nets (e.g., colored
Petri nets [32]), as described above.

A synchronization step. Let t be a transition labeled λ in the system net SN,
let t be enabled in a marking M w.r.t. a binding b and let α1, . . . , αn P Anet

be net tokens involved in this �ring of t. Then t can �re provided that in each
αi (1 ¤ i ¤ n) a transition labeled by the same synchronization label λ is
also enabled. The synchronization step goes then in two stages: �rst, �ring of
transitions in all net tokens involved in the �ring of t and then, �ring of t in the
system net w.r.t. binding b.

An NP-net NP is called safe i� in every reachable marking in NP there are
not more than one token in each place in the system net, and not more that one
token in each net token place. Hereinafter we consider only safe NP-nets.

2.4 Conservative NP-nets

Now we give a de�nition of (strictly) conservative NP-nets, as well as some
related de�nitions. We then de�ne an unfolding operation for a simple class of
strictly conservative nets.

De�nition 2. A safe NP-net N � pSN, pE1, . . . , Ekq, υ, λ,W q is called strictly
conservative i�

1. For each t P TSN and for each p P 
t, D!p1 P t
 .W pp, tq � W pt, p1q or
W pp, tq � 


2. For each t P TSN and for each p P t
, D!p1 P 
t .W pp1, tq � W pt, pq or
W pp, tq � 
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The de�nition of strict conservativeness ensures that no net token emerges
or disappears after a transition �ring in the system net.

Note that in [33] NP-nets are called conservative, i� tokens cannot disappear
after a transition �ring, but can be copied; hence, the number of net tokens in
such conservative NP-nets can be unlimited. Here we consider a more restrictive
subclass of NP-nets with a stable set of net tokens (tokens cannot be copied).
Hereinafter we consider only strictly conservative NP-nets, and call them just
conservative nets for short.

In conservative nets, instead of considering net tokens (marked element nets
residing in places of the system net), we consider identi�ed net tokens: triples
xid,EN,my, where id is a unique identi�er of the token, EN is a structure of the
token (i.e., an element net from the set tE1, . . . Eku), and m is a marking in EN.
Then every net token in the system net has a unique identi�er attached to it;
thus, tokens with the same marking can be distinguished.

Further we use NTok to denote a set of identi�ed net tokens for a given net.
Sometimes, by abuse of notation, for a net token η � xid,EN,my in a place x
of a marking M , we write Mpxq � η meaning Mpxq � tpEN,mqu. By τpηq we
denote a type of a net token pEN,mq, and by Pη (Tη) we denote the set of places
(transitions) of the net token, i.e., PEN (TEN). In the rest of the paper we will
use the term net token to mean identi�ed net token.

Given a system net SN, a set of net tokens NTok, and a function M mapping
places of SN to identi�ers of NTok, it is easy to restore the set of element nets
(which is just a set of types from NTok), and a marking M (which can be easily
restored from M). Thus, we speak about net tokens in a marking as separate
entities, and, in order to de�ne an NP-net, we sometimes list identi�ed net
tokens.

For a marking M in an NP-net NP we de�ne marking projections onto the
components of NP:

1. The projection of M onto a system net SN, denoted as MæSN, is a marking
of the �at P/T-net SN obtained by replacing all the net tokens in M by
black dot tokens, i.e., MæSNppq � |Mppq|.

2. The projection of M onto a net token η � xid,EN,my, denoted as Mæη, is
just m.

3 Translation of Safe Conservative NP-nets into P/T-nets

As reachability graph of the unfolding is isomorphic to the reachability graph
of the P/T-net, unfoldings can be used in veri�cation. Since safe conservative
nested Petri nets have �nite number of states, it will be apparent to assume,
that they can be translated into classical Petri nets and then can be unfolded
according to the classical unfolding rules for further veri�cation.

To make a correct translation we have to set a number of requirements for
a translation. The main goal for building a model is the possibility to make
a simulation. Simulation implies behavioral equivalence: a possibility to repeat
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all possible moves of one model on another model. Behavioral equivalence is
guaranteed by establishing strong bisimulation equivalence between states of
two models. The second requirement is about constructing a reachability graph.
It means that we need exact correspondence between nodes (states) of our model.
If these two requirements are met, we can build a translation algorithm which
allows us to use target model having the same behavioral properties like original
for veri�cation and analysis.

Now we present an algorithm for translating a conservative safe nested Petri
net into a safe P/T net.

The algorithm will be illustrated by an example of a NP-net NP2, shown in
Fig. 4. Here the net on the left is a system net, and the nets on the right are
net tokens residing in the places p1 and p2 of the system net. This net will be
translated into a safe P/T net PN.

Element net in p1 :

Element net in p2 :

p1

p2

p3

αt1

x

x y y

t2

z z

q1

q2

α

k1

k2

k3

q1

q2

α

k1

k2

k3

Fig. 4. NP-net NP2

The translation algorithm: Let NP � pSN, pE1, . . . , Ekq, υ, λ,W q be an NP-
net with a set NTok of identi�ed net tokens in the initial marking. By I we
denote the set of all identi�ers used in NTok, and by IE � I the subset of all
identi�ers for net tokens of type E. The net NP will be translated into a P/T
net PN � pPPN, TPN,FPNq with an initial marking m0.

1. First, we de�ne the set PPN of places of the target net PN. For each type E
of some place in the system net SN we create a set SE of places for PPN.
The set SE will contain a copy of each place of type E in the system net for
each net token of type E (labeled by net token identi�ers) and a copy of each
place in PE for each net token of type E, i.e. SE � tpp, idq|p P PSN, υppq �
E, id P IEu Y tpq, idq|q P PE , id P IEu. For a place p in SN with black token
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type we create just one copy of p without any identi�er. Then the set PPN
of places for the target net PN is created as the union of all these sets.

2. To de�ne the initial marking for PN we de�ne an encoding of markings on
places from PNP in a NP-net by markings on constructed places from PPN.
If a net token η � pid, E,mq resides in a place p in a marking M of the
system net, then in the target net there are black tokens in the place pp, idq,
and all places pq, idq for all q s.t. mpqq � 1. If a place of black token type
in SN has a black token, then the only corresponding place in PN is also
marked by a black token. It is easy to see that this encoding de�nes a one-
to-one correspondence between markings in a safe conservative NP-net and
safe markings in PN.
In our example the �rst element net resides in a place p1, second - in p2.
Thus, correspondingly, we de�ne marking in a places pp1, 1q and pp2, 2q. The
same way marking for places pq1, 1q and pq1, 2q is de�ned.

3. For each autonomous transition t in a system net SN we build a set Tt of
transitions as follows. Each input arc variable of tmay be, generally speaking,
be binded to any of identi�ed net token of the corresponding type. So, for
each such binding we construct a separate transition for PN with appropriate
input and output arcs.
Thus for the transition t2 we construct two transitions: t21 and t22 . It is
shown in Fig. 5.

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

t22

t21

Fig. 5. System-autonomous step

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

k31

k21

k22

k32

Fig. 6. Element-autonomous step
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4. For each autonomous transition in a net token from NTok identi�es=d with
id we construct a similar transition on places labeled with id. Thus in our
example net we obtain four transitions: k21 , k22 , k31 and k32 . Element-
autonomous step is illustrated in Fig. 6.

5. A �ring of a synchronization transition supposes simultaneous �ring of a
transition, which belongs to a system net, and �ring of some transition,
which has the same label in each involved net token. So synchronization
step is a combination of Step 3 and Step 4. Thus as in our example there
are two element nets, we add transitions for each net, marked with α1 and
α2. Suchwise we can model a synchronization step for every possible initial
marking in a system net, which is shown in Fig. 7.

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

α1 α2

Fig. 7. Synchronization step

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

α1 α2

t22

t21

k31

k21

k32

k22

Fig. 8. The result of translating NP2

into a P/T net

Theorem 1. Let NP be a NP-net. Let also PN be a P/T net, obtained from NP
by the translation, described above. Then reachability graphs of NP and PN are
isomorphic.

Proof. Step 2 of the algorithm de�nes a one-to-one correspondence between
reachable markings of nets NP and PN. It is easy to see that according to
translation de�nition corresponding �ring steps in both nets do not violate this
correspondence.
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Thus we have proven that every safe conservative NP-net can be translated
to behaviorally equivalent safe P/T net. Then the standard algorithm for safe
P/T nets unfolding can be applied for NP-net veri�cation. The problem here is
that the size of the resulting P/T net can grows vastly. In the next section we de-
scribe the algorithm for direct unfolding of safe conservative NP-nets, presented
previously in [5], and then we compare these two approaches.

4 Unfoldings

4.1 Branching Processes of a Conservative NP-net

In this section, we de�ne unfoldings of conservative NP-nets into occurrence
nets. We give an inductive de�nition of a branching process of an NP-net, and
(similarly to [28]) de�ne the unfolding as the maximal branching process.

First we introduce a concept of an element-indexed C-Petri net, a construction
similar to the construction of the canonical net for a P/T-net; however, each
place of the element-indexed C-net is paired with a net token (identi�er). In
this section we suppose that NP � pSN, pE1, . . . , Ekq, υ, λ,M

0q is a conservative
NP-net, where SN � pPSN, TSN, FSNq, Ei � pPEi , TEi , FEiq, 0   i ¤ k.

De�nition 3 (Element-indexed C-Petri nets). An element-indexed C-net Θ
for some element-indexing set J is a C-net such that each place in Θ is marked
with an element of J . For our purposes, the set J will be the set of the identi�ed
net tokens.

Formally, for a �xed net NP, a set of canonical names C is de�ned as follows:

� If x P p
�
Ei
PEi YPSNq, ηi P NTokYt
u, and X is a �nite subset of C, then

pX,x, ηiq P C;
� If x � p

�
Ei
TEi

Y TSNq, and X is a �nite subset of C, then pX,xq P C.

Then an indexed C-net pP, T, F,M0q is a P/T-net, such that

1. P Y T � C;
2. If p � pX,x, ηq P P , then 
p � X;
3. If t � pX,xq P P , then 
t � X;
4. pX,x, ηq PM0 i� X � H and x P p

�
Ei
PEi

Y PSNq.

Just like for regular C-Petri nets, there exists a function h mapping the nodes
of an element-indexed C-Petri net to the nodes of NP:

hpxq �

#
t if x � pA, tq

p if x � pA, p, ηiq
(1)

The union of element-indexed C-Petri nets is de�ned component-wise, exactly
as it was done for regular C-Petri nets.

We also de�ne a notion of an adjacent place. According to De�nition 2, for
every pair pp, tq P PSN � TSN, where υppq � 
 ^ ppp, tq P FSN _ pt, pq P FSNq,
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there exists a unique place p1 in a system net such that W pp, tq � W pt, p1q or
W pp1, tq �W pt, pq. Such a place p1 is said to be adjacent to p via t (denoted by
x|p, ty). For example, in Fig. 4 the place adjacent to p2 via t1 is x~p2, t1y � p3.

Now we are ready to de�ne a set of element-indexed branching processes (or
branching processes for short, when there is no ambiguity) for a given conserva-
tive NP-net NP.

De�nition 4 (Element-indexed branching processes for conservative
nested Petri nets).

The set of element-indexed branching processes for NP is the smallest set of
element-indexed C-nets satisfying the following rules:

1. Let

C � tpH, p, ηiq | p P PSN, ηi PM
0ppqu Y tpH, p, ηiq | ηi P NTok, p PM

0
æηiu

be a set of places. The net Θ � pC,H,Hq consisting of conditions C and
having no transitions is a branching process. Such branching process is said
to be initial.

2. Let Θ be a branching process, and B be a subset of conditions of Θ. If B
satis�es the PosEN rule's premise (Fig. 9), then the net obtained by adding
an event e and conditions C to Θ is a branching process.

3. Let Θ be a branching process, and B be a subset of conditions of Θ. If B
satis�es the PosSN rule's premise (Fig. 9), then the net obtained by adding
an event e and conditions C to Θ is a branching process.

4. Let Θ be a branching process, and let B and BE be subsets of conditions of
Θ. If B and BE satisfy the PosSync rule's premise (Fig. 9), then the net
obtained by adding an event e and conditions C to Θ is a branching process.
The SyncCond predicate is de�ned below.

5. Let BS be a (�nite or in�nite) set of branching processes. The union
�BS

is a branching process.

In rules (2)-(4), event e is called a possible extension of Θ.

The SyncCond predicate in rule (4) makes sure that all the components
involved in the synchronization step, synchronize correctly. The parameter I
contains the id's of all the net tokens involved in the step. The set E consists of
transitions ti in each of the net tokens ηi (i P I), and every ti carries the same
label as the transition t from the system net. In order for the synchronization
step to go through, each of the ti needs to have its pre-set tcj | j P Jiu active.
The places of net tokens corresponding to those in the pre-sets are contained in
BE .
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PosEN :

B � tpxi, bi, ηkq | i P Iu copBq t P Tηk , λptq � K 
t � tbi | i P Iu

e � pB, ttuq and C �
�
pPt
pe, p, ηkq

PosSN :

B � tpxi, bi, ηiq | i P Iu

copBq t P TSN, λptq � K 
t � tbi | i P Iu

e � pB, ttuq and C � tpe, x}bi, ty, ηiq | i P I, ηi � 
uY

tpe, b, 
q | b P t
, υpbq � 
u

PosSync :

B � tpxi, bi, ηiq | i P Iu

copB YBEq

t P TSN, λptq � K

t � tbi | i P Iu SyncCondpBE , E, I, Θ, pB, tqq

e � pB YBE , ttu Y Eq and C � tpe, x}bi, ty, ηiq | i P I, ηi � 
uY

tpe, b, 
q | b P t
, υpbq � 
uY

tpt1, c1i, ηiq | i P I, ηi � 
,

c1i P Pηi , c
1

i P ti

u

Fig. 9. Rules for possible extensions of a branching process

We say that the SyncCondpBE , E, I, Θ, pB, tqq predicate is true i� the fol-
lowing conditions hold:

1. BE �
�
iPItpyj , cj , ηiq | j P Ji, ηi � pidi,ENi, µiq P NTok, cj P PENi

u ^
copBEq, i.e., BE is a set of reachable conditions that correspond to places in
net tokens;

2. E � tti P TENi
| i P I, ηi � pidi,ENi, µiq P NToku, i.e., E is a subset of

transitions in each of the net tokens;
3. @ti P E, λptiq � λptq
4. 
E �

�
iPItcj | j P Ji, ηi P NToku

The rules in Fig. 9 can be explained informally from the operational point
of view. Rules PosEN , PosSN , and PosSync are used for generating events
that correspond to element-autonomous, system-autonomous, and synchronized
�rings, respectively.

A possible branching process of NP2 is shown in Fig. 10. In Fig. 10, a transi-
tion is labeled with t, if it is of the form pA, tq, and a place is labeled with pp,Nq
if it is of the form pA, p,Nq.
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pq2, N2q

pq1, N2q

tk3u

pp2, N2q

pp1, N1q

pq1, N1q

pq2, N2q

pp3, N2q

pp2, N1q

pq2, N1q

pp3, N2q

tt2u

. . .

tt2u

α

pq2, N2qk2

pq2, N1q

k2

pq1, N2q

pq1, N2q

pq1, N1q

pq1, N1q

pq2, N2q

pq2, N2q

pq2, N1q

pq2, N1q

. . .

. . .

. . .

. . .

tk3u tk2u tk3u

tk3u tk2u tk3u

tk3u tk2u tk3u

tk2u tk3utk3u

Fig. 10. Branching process of NP2

It was proven in [5] that every element-indexed branching process is an occur-
rence net and that the fundamental property of unfoldings holds for the de�nition
of conservative NP-nets unfolding.

Note also that every low-level P/T-net is a special case of an NP-net with
the empty set of element nets and no vertical synchronization. It was shown
also in [5] that the branching process de�nition for NP-nets is in accord with
the branching process de�nition for low-level Petri nets., i.e. for a P/T-net N
the set of branching processes of N is isomorphic to the set of element-indexed
branching processes of N , when N is considered as an NP-net.

4.2 Comparing Two Ways of Nested Petri Net Unfolding

We have shown that each conservative safe NP-net can be converted into a be-
haviorally equivalent classical Petri net, namely their reachability graphs are
isomorphic. So, to construct unfoldings for a NP-net we can either translate it
into a P/T net and then apply the classical P/T net unfolding procedure, or
directly construct NP-nets unfoldings, as it is described in the previous subsec-
tion.

The fundamental property of unfoldings states that the reachability graph
of the unfolding is isomorphic to the rechability graph of the initial net. Since
the fundamental property holds both for P/T net unfoldings and for NP-net
unfoldings, we can immediately conclude that both approaches give the same
(up to isomorphism) branching process. For our example this is demonstrated
by Fig. 10 and Fig. 12.

The di�erence is in the complexity of these two solutions. It is easy to see,
that when there are several net tokens of the same type in the initial marking,
the translation leads to a signi�cant net growth. Thus e.g. for a system net
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pq2, N2q

pq1, N2q

tk3u

pp2, N2q

pp1, N1q

pq1, N1q

pq2, N2q

pp3, N2q

pp2, N1q

pq2, N1q

pp3, N2q

tt2u

α

pq2, N2qk2

pq2, N1q

k2

pq1, N2q

pq1, N2q

pq1, N1q

pq1, N1q

pq2, N2q

pq2, N2q

pq2, N1q

pq2, N1q

tk3u tk2u

tk3u tk2u

tk3u tk2u

tk2utk3u

Fig. 11. Complete branching process of NP2

pq2, 2q

pq1, 2q

tk32u

pp2, 2q

pp1, 1q

pq1, 1q

pq2, 2q

pp3, 2q

pp2, 1q

pq2, 1q

pp3, 2q

tt2u

. . .

tt2u

α

pq2, 2qk2

pq2, 1q

k22

pq1, 2q

pq1, 2q

pq1, 1q

pq1, 1q

pq2, 2q

pq2, 2q

pq2, 1q

pq2, 1q

. . .

. . .

. . .

. . .

tk32u tk22u tk32u

tk31u tk21u tk31u

tk31u tk21u tk31u

tk22u tk32utk32u

Fig. 12. Branching process of NP2 obtained via translation to a P/T net

transition t with n input places of the same type and k tokens of this type in the
initial marking we are to construct kn copies of this transition in the target P/T
net, corresponding to di�erent bindings for t-�rings. And it is rather clear, that
we cannot avoid this, since we are to distinguish markings of net tokens residing
in di�erent places, and hence to construct a separate P/T net transition for each
mode of a system net transition �ring.

To check the advantage of the direct unfolding method w.r.t. time complexity
for concrete examples we've developed a software application which allows
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1. translation of a conservative safe nested Petri net into a P/T net and then
building an unfolding for it;

2. building an unfolding directly for a nested Petri net.

We expected that a large number of net tokens will cause signi�cant net
growth during translation. The reason for this is that dealing with a system,
which consists of a large number of net tokens and incoming arcs, translation of
a nested Petri net into a P/T net leads to a signi�cant growth of the net graph.
Since we do not know in advance, which modes of transition �ring will be used in
the unfolding, we should build an intermediate P/T net with a lot of transitions
unnecessary for unfolding, while in direct unfoldings these transition nodes do
not appear.

So, we conducted experiments on nets having similar structure, but di�erent
number of element nets with di�erent types. We've done a series of experiments
with rather small models, which con�rm our assumptions. Thus for our example
net NP2 we've got 0.38 ms. for the direct unfolding, and 0.54 ms. for unfolding
via the translation into a P/T net. So, even in the case of two net tokens we get
a noticeable di�erence in time.

To get representative experiment results we are to do more experiments with
larger models of di�erent structure.

Application to veri�cation. Having the described above algorithm for NP-nets
unfoldings the basic algorithm (described in [26]) for constructing �nite pre�xes
of unfoldings of low-level P/T-nets can be modi�ed in a straightforward way to
obtain an algorithm for constructing �nite pre�xes of unfoldings of conservative
NP-nets. In fact, the only part of the algorithm that needs to be modi�ed is
the PotExt function, which has to be changed in accordance with the possible
extension rules in Fig. 9. This is attainable because all the necessary de�nitions
(in particular, the de�nition of a cutting context) and the theory of canonical
pre�xes [25],[26] can be directly extended to cover NP-nets.

For example, let's consider the result of the standard algorithm applied to the
NP-net NP2 from Fig. 4 using the McMillan's cutting context (in the notation
of [26], C 1 � C2 ðñ MarkpC 1q �MarkpC2q and C 1 � C2 ðñ |C 1|   |C2|).

We have shown a canonical pre�x for NP2 in Fig. 11. This canonical pre�x
BPC allows us to solve the executability problem: a transition t may �re in
the NP-net i� an event labeled with t is presented in the canonical branching
process. For example, one can observe, that because a transition e1 in BP 2 has
is labeled with tt1, k1u, the transition t1 is executable in the NP-net. Also, we
can easily see that for both tokens k1 may �re only once, but k2 and k3 are live
transitions.

5 Conclusion

In this paper we've proposed and compared two ways of unfolding for safe con-
servative nested Petri nets. The �rst method is based on equivalent translation
of NP-nets into safe P/T nets and then applying standard unfolding procedure
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described in the literature. The second method is a direct unfolding, proposed
and justi�ed earlier in [5].

For that we've developed and justi�ed an algorithm for translation of a safe
conservative NP-net into an equivalent P/T net. Direct analysis of the algorithm
complexity allows us to conclude that the direct unfolding has a distinct advan-
tage in time complexity. To check this advantage with practical examples we've
implemented the algorithms for translation and unfolding. Experiments on small
nets have demonstrated the anticipated bene�ts of direct unfolding.

For further work, we plan to enlarge the complexity of nets and number of
experiments.
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