
Determining the Number of Trace Clusters: a
Stability-based Approach

Pieter De Koninck and Jochen De Weerdt

KU Leuven
Research Centre for Management Informatics

Faculty of Economics and Business
Naamsestraat 69, B-3000 Leuven, Belgium

pieter.dekoninck@kuleuven.be

jochen.deweerdt@kuleuven.be

Abstract. Given the complexity of real-life event logs, several trace
clustering techniques have been proposed to partition an event log into
subsets with a lower degree of variation. In general, these techniques as-
sume that the number of clusters is known in advance. However, this
will rarely be the case in practice. Therefore, this paper is the first to
present an approach to determine the appropriate number of clusters in a
trace clustering context. In order to fulfil this objective, a stability-based
method for identifying the most appropriate number of trace clusters is
proposed. The method involves the design of tailored resampling strate-
gies and cluster similarity metrics. Regarding practical validation, our
approach is tested on multiple real-life datasets to investigate the work-
ings of the different components. Our results suggest that our method is
successful in identifying the right number of trace clusters.

Keywords: stability, trace clustering, validity, log perturbation

1 Introduction

Trace clustering is the partitioning of process instances into different groups,
called trace clusters, based on their similarity. A wide variety of trace clustering
techniques have been proposed, differentiated by their clustering methods and
biases. The driving force behind these proposed techniques is the observation
that real-life event logs are often quite complex and contain a large degree of
variation. Since these event logs are often the basis for further analysis like pro-
cess model discovery or compliance checking [25], partitioning dissimilar process
instances into separate trace clusters is deemed appropriate. Although a wide
array of techniques has been proposed, none of them makes any assertions on
the correct number of clusters. Therefore, this paper is the first to propose a
suitable approach for determining the most plausible number of clusters. Since
our approach can be applied to any trace clustering technique, it raises the ap-
plicability of trace clustering techniques in general, and the validity of their trace
clustering solutions.

1

Our approach is based on the stability of trace clustering solutions. Intu-
itively, it can be expected that trace clustering solutions are more stable at the
correct number of clusters. Therefore, we develop a general framework to assess
the stability of trace clustering solutions. When repeatedly applied to an event
log for a range of potential number of clusters, one can compare the stability
scores obtained for each number of clusters. The result with the highest stabil-
ity can be considered the most appropriate number. A number of elements are
conceived to construct our approach: specifically, two approaches are proposed
to resample event logs. Likewise, two methods are provided for calculating the
similarity of clustering solutions. Finally, the concept of normalization and a cal-
culation strategy are supplied. Each of these elements is thoroughly evaluated
on four real-life event logs, resulting in the conclusion that the stability-based
framework configured with model-based similarity metrics and a noise induction-
based resampling strategy can lead to the correct identification of the appropriate
number of clusters1.

2 Determining the number of clusters

In traditional clustering, numerous approaches have been suggested for assess-
ing the adequate number of clusters. A taxonomy of approaches for determin-
ing the number of clusters has been presented in [22]. The most straightfor-
ward approach is to incorporate domain knowledge, either by directly adjusting
your algorithm to suit the knowledge of a domain expert or by post-processing
the results to adhere to this knowledge. In general, however, it is unlikely that
such domain knowledge exists and is available for an event log. Creating an
approach based on the specific generation of trace clusters will not be applica-
ble for each existing trace clustering technique either. Therefore, we propose to
adapt approaches based on the post-processing of partitions. According to the
taxonomy of [22], possible post-processing approaches can be based on variance,
structure, consensus and resampling. The most commonly known variance-based
method is probably the gap statistic [24], which is based on the within-cluster
sum of squares using Euclidean distance. Likewise, structural approaches use
indices to compare within-cluster cohesion to between-cluster separation [22].
It is clear that one would prefer a number of clusters where the within-cluster
cohesion and the between-cluster separation are both large. As a third group
of approaches, consensus clustering refers to choosing the number of clusters
based on the agreement between different cluster solutions. These different so-
lutions can be obtained by applying different clustering techniques, by applying
the same clustering technique to perturbed versions of the same data set, or by
randomly resetting initial centroids (in a centroid-based technique). Intuitively,
the consensus between different clustering solutions should be higher at the true
number of clusters. The final group of post-processing approaches is based on
resampling, and is related to consensus clustering in its intuition: a number of

1 Our approach is implemented as an experimental ProM-plugin which can be found
on http://www.processmining.be/clusterstability/.

2

iterations are performed in which sub-sampled, bootstrapped or noisy versions
of the original data set are clustered. The resulting partitions are then expected
to be more similar at the appropriate number of clusters.

With regards to applicability for trace clustering, adapting variance- or structure-
based approaches to trace clustering might not be straightforward, since a dis-
tance measure is needed. To calculate distances between traces, features would
have to be derived from these traces. Considering that certain trace clustering
techniques deliberately avoid ‘featurizing’ traces [6], this not deemed an appro-
priate route for trace clustering. Consensus- and resampling-based approaches
generally do not enforce direct distances between traces, therefore our approach
will further draw on these methods in the upcoming sections.

3 Stability of Trace Clustering

The approach proposed in this paper is a resampling-based approach, inspired
by a methodology for stability-based validation of clustering solutions in [18],
which was adapted for biclustering solutions in [20]. In [18], it was shown to
be an effective method for discovering the appropriate number of clusters on
simulated and gene expression data.

In [18,20], resampling/perturbation strategies, learning algorithms, and so-
lution similarity metrics are proposed that are specifically designed for general
(bi)clustering problems. The general intuition is that clustering solutions should
remain more stable at the true number of clusters that at others. As such, this
paper contributes by proposing a stability-based approach for determining the
correct number of trace clusters. Our approach leverages the so-called “log per-
turbation stability”, which is the adaptation of general resampling to the process
mining domain. In Figure 1, our general stability approach is depicted. Tailor-
ing the framework to trace clustering entails the configuration of three main
components, i.e. the perturbation strategy (step 1), the solution similarity com-
putation (step 3), a stability index calculation (step 4). In addition, a trace
clustering technique should be chosen (step 2). This stability is then normalized
with respect to the stability of a random clustering on the same perturbed event
logs (step 5).

The steps of our approach thus become:

1. Step 1: Given an event log L, and a log perturbation function P (), create
n perturbed versions of the event log: P1(L) to Pn(L).

2. Step 2: Create a clustered log CL by applying a trace clustering technique
TC() to the original event log: CL = TC(L) and to the perturbed event
logs: CLi = TC(Pi(L)) with i ∈ {1..n}.

3. Step 3: Given a similarity index I(CLx, CLy), quantify the similarity be-
tween the clustering of the original dataset and the clustering of the per-
turbed dataset as I(CL,CLi).

3

Event Log
L

TC(L)

P1(L)

P2(L)

...

CL

Step 1: Resample/
perturb the log

TC(B1(L))

TC(B2(L))

TC(Bn(L))

CL1

Step 2: Apply trace
clustering technique

......

SIM(CL,CL1)

Step 3: Compute
similarity

STAB(CL)

...
AVERAGE

Step 4: Compute
stability index

Pn(L)

CL2

CLn

SIM(CL,CL2)

SIM(CL,CLn)

Fig. 1. A visualization of the proposed approach for calculating the stability of a
clustered event log, based on a similar diagram in [20]. A normalized version of this
stability is calculated at different numbers of clusters to determine the optimal number
of clusters.

4. Step 4: Average these similarity measures to create a stability metric for
event log L and trace clustering technique TC() as

STC =
1

n

n∑
i=1

I(TC, TCi) (1)

5. Step 5: Normalize with respect to the stability of a random clustering tech-
nique SR over the same set of perturbed event logs:

S̄TC =
STC − SR

1− SR
(2)

Observe that a higher value for S̄TC indicates a better stability of the solu-
tion. This metric should be evaluated at different numbers of clusters, at which
point the best scoring number of clusters should be chosen. In the remainder
of this section, we describe the three main components of our approach: pos-
sible perturbation strategies based on resampling and noise induction (Section
3.1), computation of solution similarity based on mutual information or process
model similarity metrics (Section 3.3), calculation of the stability index based
on a window-based approach (Section 3.4), and normalization of the stability
with respect to random stability (Section 3.5).

4

3.1 Step 1: Log perturbation strategy

Perturbing event logs essentially boils down to three options: either some be-
haviour is removed, or some behaviour is added, or a combination of both. There
are many different ways to do this, as argued in [22]: sub-sampling, data-splitting,
bootstrapping and noise induction. Regarding the removal of behaviour, event
log perturbation can be approached through case-level resampling in a random
fashion, which is closely related to classical bootstrapping [3]. Note that case-
level bootstrapping an event log becomes trace-level bootstrapping. When deal-
ing with event logs, an important consideration is whether to bootstrap process
instances or distinct process instances (i.e. the effect of imbalance on the boot-
strap sample). An alternative to random resampling is systematic leave-one-out
cross-validation, which can be considered a form of ‘data-splitting’.

Finally, regarding the addition of behaviour, slightly perturbing event logs
strongly relates to the concept of adding noise to the log. In [21], four types of
noise were initially defined: remove head, remove tail, remove body, and swap
tasks. In [4], the removal of a single task was added as a noise induction scheme,
together with the combination of all previous noise types. These noise induc-
tion types have already been used to evaluate robustness of process discovery
techniques, for instance in [8],[15].

Taking these aspects into consideration, the log perturbation strategy un-
derlying our stability assessment framework is as follows. First, behaviour can
be removed through a resampling procedure, which is essentially sub-sampling
at the level of distinct process instances. However, to make the resampling a
bit less naive, the probability that a distinct process instance is removed, is in-
versely proportional to the frequency with which this distinct process instance
is present in the event log. Secondly, behaviour can be added through noise in-
duction. Though several noise types were proposed in [21], we opt to include
three types of noise: removing a single event, swapping two events, and adding
a random single event (from the log activity alphabet) at a random place in
the process instance. Noise induction is performed at the process instance level.
For both removal of behaviour (sub-sampling at the distinct process instance
level) and addition of behaviour (noise induction at the process instance level),
a percentage of affected instances should be chosen.

3.2 Step 2: Trace clustering technique

In the next step, a certain trace clustering algorithm is applied. The choice of
a suitable algorithm is up to the analyst, and a thorough overview of the exist-
ing techniques is beyond the scope of this paper. Nonetheless, it is noteworthy
that two broad categories of trace clustering techniques exist: those that map
traces onto a vector space model or quantify the similarity between two traces
[1],[2],[7],[12],[13],[16],[23]; and those that take the quality of the underlying pro-
cess models into account [6],[11].

5

3.3 Step 3: Solution similarity computation

In this section, two distinct approaches for computing the similarity between
two clusterings will be described. One is inspired by information metrics from
the consensus clustering domain, and one is inspired by similarity metrics from
the process modelling domain.

On the one hand, we propose a consensus clustering-based metric. It is called
the Normalized Mutual Information (NMI), and was proposed by [14]. It is a
measure for the extent to which two clusterings contain the same information.
Here, this mutual information is conceptually defined as the extent in which
two process instances are clustered toghether in both clusterings. Let ka be the
number of clusters in clustering a, kb the number of clusters in clustering b, n
the total number of traces, na

i the number of elements in cluster i in clustering
a, nb

j , the number of elements in cluster j in clustering b, and nab
ij the number

of elements present in both cluster i in clustering a and cluster j in clustering b.
The NMI is then defined as:

INMI(a, b) = −2

∑ka

i∈a

∑kb

j∈b n
ab
ij log(

nab
ij n

na
i n

b
j

)

∑ka

i∈a n
a
i log(

na
i

n) +
∑kb

j∈b n
b
j log(

nb
j

n)
(3)

On the other hand, we propose a metric based on the similarity between
discovered process models. Rather than measure the similarity by counting the
number of elements that are included in the same cluster in both cluster solutions
(i.e. measuring the consensus between both clusterings), each different cluster
is used to discover a process model. Then, a process model similarity metric is
used to measure the similarity between these discovered process models. This is
represented conceptually in Figure 2.

A plethora of process discovery techniques and process similarity metrics
exist that could be leveraged for this purpose. With regards to process discovery
techniques, an efficient and robust technique is preferred. Therefore, we propose
the usage of Heuristics miner [27]. It mines a heuristic net, which is converted
to a Petri net. With regards to process model similarity, our preference goes
out to the structural graph-edit distance (GED) similarity metric [9], though
behavioural metrics such as causal footprints [10] or behavioural profiles [26]
could be used as well. Finally, our similarity metric for trace clustering solutions
is summarized in Equation 4, where ka is the number of clusters in clustering a,
ni is the number of elements in cluster i of clustering a, and simHG(i, j) is the
graph-edit distance similarity between the converted heuristic net mined from
cluster i of clustering a and the converted heuristic net mined from cluster j of
clustering b.

IHG(a, b) =

∑ka

i∈a ni maxj∈b(simHG(i, j))∑ka

i∈a ni

(4)

In [19], it is stated that a high-quality similarity index should have two char-
acteristics: (1) it should take differences in cluster sizes into account, and (2) it

6

Clustering A
Cluster 1

Clustering A
Cluster 2

Clustering A
Cluster 3

Clustering B
Cluster 1

Clustering B
Cluster 2

Clustering B
Cluster 3

Clustering B
Process Model 1

Clustering B
Process Model 2

Clustering B
Process Model 3

Discover Process Model Discover Process Model Discover Process Model

Clustering A
Process Model 1

Clustering A
Process Model 2

Clustering A
Process Model 3

Discover Process Model Discover Process Model Discover Process Model

Calculate Process
Model Similarity

Fig. 2. Conceptual representation of the process model-based similarity metric, when
two clusterings of three clusters each are under comparison.

should be symmetric. Note from Equation 3 that these properties are fulfilled
for INMI(). Likewise, from Equation 4, it is clear that IHG(a, b) is weighted
for the effects of different cluster sizes. However, it is not symmetric yet, i.e.
IHG(a, b) �= IHG(b, a) due to the combination of weights and the max-operator.
Therefore, we propose a final symmetric variant ĪHG:

ĪHG(a, b) =
IHG(a, b) + IHG(b, a)

2
(5)

3.4 Step 4: Stability index computation

Next, in step 4 of our framework, the stability index is computed as an average
over a number of iterations, as detailed in Algorithm 1 in the ‘Stability’-function.
Hereto, three extra input parameters are necessary: a minimal number of itera-
tions rmin, a review window Δr and a maximal stability error εS . Typical values
for these parameters are 20, 10, and 0.005 respectively. This iterative approach
serves a double purpose: on the one hand, it ensures that the final stability
is robust and sufficiently precise; on the other hand, it prevents unnecessary
computation.

7

Algorithm 1 Stability evaluation
Input: L := Event log, TC := Trace clustering algorithm, P := Perturbation strategy, Is := simi-

larity metric, kmax:= maximum number of clusters;
Input: rmin := 20, Δr := 10, εS := 0.005; % Configuration
Output: k := number of clusters for which the normalized stability is the highest
1: function NumberofClusters(kmax)
2: S̄() := {} % List of normalized stability results per number of clusters
3: for k := 2 ; k <= kmax do
4: Sk:= Stability(L, TC, P , Is,rmin, Δr, εS) % Calculate stability

5: SR
k := Stability(L, Random, P , Is,rmin, Δr, εS) % Calculate random stability

6: S̄k:=
Sk−SR

k
1−SR

k

% Normalize with regards to random stability

7: end for
8: return k := argmax

k
(S̄(k))

9: end function

10: function Stability(L, TC, P , Is,rmin, Δr, εS)
11: r := 1 % Iteration
12: CL := TC(L) % Baseline clustered event log
13: u() := {} % List of similarity results per iteration
14: w() := {} % List of stability results per iteration

15: while (r < rmin) ∨ [maxp,q|w(p) − w(q)| > εS ; ∀p, q : r − Δr < p < q ≤ r)] do
16: Lr := Pr(L) % Perturb the log
17: CLr := TC(Lr) % Clustered event log from perturbed log
18: u(r) := Is(CL,CLr) % Calculate similarity with baseline clustered event log

19: w(r) :=
(r−1)∗w(r−1)+u(r)

r % Calculate stability

20: r := r + 1
21: end while
22: return S := w(r − 1)

23: end function

3.5 Step 5: Normalization of the stability

The final step is the normalization of the stability. This normalization is in-
cluded to exclude unwanted information from entering the stability metric: if
the random stability increases for higher cluster numbers, for example, than this
is due to the inherent structure of the stability metric, rather than an actual
improvement in the quality of the clustering. As provided in Algorithm 1, this is
done as follows, where Sk is the stability of a certain clustering algorithm with k
clusters, and SR

k is the stability of randomly dividing the event log into clusters:

S̄k =
Sk − SR

k

1− SR
k

(6)

Finally, remark that a random clustering should cluster event logs based on their
distinct process instances, not process instances. The underlying assumption is
that any existing trace clustering technique should at least group those traces
together that contain exactly the same behaviour, even a random clustering
technique.

8

4 Experimental evaluation

This evaluation serves multiple purposes: first, it is meant to show the general
applicability of our technique. Therefore, our approach is tested on multiple real-
life datasets in combination with a wide variety of trace clustering techniques.
Furthermore, the purpose is to evaluate the different components of our stability
framework: the underlying resampling strategies, the similarity metrics, and the
normalization.

4.1 Setup

This section describes the different event logs and trace clustering techniques
that are used, and the components of our approach: how the perturbation will
be applied; which similarity indices will be used for measuring the similarity
between the baseline clustering and the clusterings on the perturbed event logs.

Four real-life event logs [5] are subjected to our approach. The number of
process instances, distinct process instances, number of distinct events and aver-
age number of events per process instance are listed in Table 1. Observe that no
exact number of clusters is known upfront for these event logs: the starting point
is that applying process mining methods such as process discovery techniques on
the entire event log leads to undesirable results [5]. Hence, this evaluation shows
how our stability measure can be used to determine an appropriate number of
clusters, or how it can be used to show that no appropriate number of clusters
can be found.

With regards to trace clustering techniques, we have calculated the results
using 7 different methods: 2 methods based on ‘process-model aware’ clustering
techniques (ActFreq and ActMRA, [6]), and 5 ‘trace featurization’ methods (MR
and MRA [17]; GED an LED [2]; and K-gram [23]).2

With regards to the calculation of the stability, we have chosen to apply two
strategies. On the one hand, a noise-induction perturbation strategy, where each
process instance has a 10% chance of either having an event removed, two events
swapped, or one event added from the existing activity alphabet. On the other
hand, a sub-sampling approach, where 25% of the distinct process instances
is removed. The probability of removal a distinct process instance is inversely
proportional with its frequency in the event log.

Furthermore, both the Normalized Mutual Information similarity-metric (INMI)
and the symmetrical discovered process model similarity metric based on Heuris-
tics miner and graph-edit distance (ĪHG) will be employed, as described in Sec-
tion 3.3. This allows for a comparison of the results of both similarity metrics.

Finally, the maximum number of clusters is set to 10. In addition, the evalu-
ation strategy proposed in Algorithm 1 will deliberately not be used, to prevent
randomization bias. Rather, a fixed number of 20 iterations will be used to cal-
culate the stability, with appropriate seeding to prevent bias.

2 The first two methods are implemented in the ProM-framework for process mining
in the ActiTrac-plugin. The latter five methods are implemented in the GuideTree-
Miner -plugin.

9

Table 1. Characteristics of the real-life event logs used for the evaluation: number
of process instances (#PI), distinct process instances (#DPI), number of different
events (#EV) and average number of events per process instance (#EV

PI
).

Log name #PI #DPI #EV #EV
PI

MOA 2004 71 49 6.20
ICP 6407 155 18 5.99
MCRM 956 212 22 11.73
KIM 1541 251 18 5.62

4.2 Results

The results are presented in Table 2, which contains the number of clusters with
maximal stability for each combination of similarity metric and perturbation
strategy; in Figure 3, which visualises the results on the KIM-dataset; and Fig-
ure 4, which visualises the results on the ICP-dataset. Since no clear cluster
structures were found for the MCRM- and MOA-datasets, these Figures are not
included here3. Note that this does not imply a shortcoming of our approach,
these event logs most likely simply do not contain relevant trace clusters.

Table 2. Number of clusters for which the normalized stability is maximal. Two differ-
ent similarity metrics, two different perturbation strategies and seven different cluster-
ing techniques were used, on four real-life datasets. The number of clusters for which
the stability would have been maximal if no normalization had been applied is included
between brackets.

Noise Induction Sub-Sampling
Similarity Technique KIM MCRM MOA ICP KIM MCRM MOA ICP
INMI ActFreq 4(5) 2(2) 2(10) 2(5) 4(4) 2(2) 4(10) 3(3)
INMI ActMRA 2(4) 3(3) 7(7) 4(9) 4(9) 6(6) 3(10) 4(4)
INMI GED 7(7) 3(3) 7(7) 3(3) 9(10) 2(4) 5(7) 3(3)
INMI LED 4(10) 4(4) 2(2) 2(10) 7(8) 4(4) 3(9) 9(10)
INMI MR 2(10) 2(2) 5(5) 10(10) 2(10) 2(2) 3(3) 10(10)
INMI MRA 2(10) 2(2) 2(2) 4(5) 2(10) 2(2) 2(5) 4(5)
INMI K-gram 2(10) 10(10) 2(9) 2(10) 2(10) 10(10) 2(10) 10(10)

ĪHG ActFreq 3(7) 2(2) 10(2) 2(2) 4(4) 4(3) 9(10) 5(3)
ĪHG ActMRA 3(3) 3(2) 7(2) 2(2) 4(4) 6(6) 10(10) 9(9)
ĪHG GED 3(2) 2(2) 10(2) 6(2) 2(2) 10(2) 5(10) 10(10)
ĪHG LED 3(2) 2(2) 3(2) 8(2) 4(2) 2(2) 9(10) 5(4)
ĪHG MR 2(2) 2(2) 10(10) 6(2) 2(2) 2(2) 2(2) 10(10)
ĪHG MRA 3(2) 2(2) 10(2) 5(5) 3(2) 4(2) 5(5) 2(2)
ĪHG K-gram 3(2) 6(2) 6(2) 2(2) 4(2) 2(2) 2(2) 2(2)

3 The visual representations of the MCRM- and MOA-event logs are available on
http://www.processmining.be/clusterstability/ATAEDResults.

10

Similarity metrics. In Figures 3 an 4, the INMI -metric is presented on top
row, while the ĪHG-metric is presented on the bottom row. For the KIM-dataset
(Figure 3), no clear peaks are apparent in the plots with the results of the
INMI -metric. In the results of the ĪHG-metric, a peak appears to be present at
a cluster number of 3 when applying a noise induction-perturbation. Similarly,
there appears to be a consensus about 3 or 4 clusters when applying a sub-
sampling perturbation strategy. The same observation holds for dataset ICP
(Figure 4): there appears to be a peak around 6 clusters when combining the
ĪHG-metric with noise-induction, while no peaks are apparent for the INMI -
metric. These findings are supported by Table 2.

Perturbation strategy. With regards to perturbation strategy, similar results
are found on the KIM-dataset (Figure 3) regardless of whether noise induction
or sub-sampling is applied. On the ICP-dataset (Figure 4), the results seem to
be in favour of a noise-induction approach.

Normalization. Table 2 contains the number of clusters for which the nor-
malized stability was maximal. The number of clusters for which the stability
would have been maximal if no normalization had been applied is included be-
tween brackets. With regards to the stability without normalization, 16 of the
28 combinations combining noise induction with the ĪHG-metric would have had
different best cluster numbers if no normalization had been applied. Likewise,
13 out of 28 results combining the INMI -metric with noise induction would have
been different if no normalization had been applied. For sub-sampling, there
would have been 11 and 15 differences with ĪHG and INMI , respectively. The
non-normalized application of ĪHG generally leads to smaller cluster numbers,
whereas the non-normalized application of INMI generally leads to higher clus-
ter numbers. This validates the usefulness of the normalization: it prevents the
results from favouring smaller (as with the ĪHG-metric) or larger numbers of
clusters (as with the INMI -metric).

Finally, observe from Figures 3 and 4 that a lot of the normalized stability
results are negative, especially when combining sub-sampling with INMI or noise
induction with ĪHG. This means that these results are less stable than a random
clustering. When combining noise induction with ĪHG on the ICP-dataset, for
example, the clusterings obtained using the GED or LED clustering techniques
are lower than zero for each clustering number, implying that they behave less
stable than a random clustering technique regardless of the number of clusters.

5 Discussion and future work

In this paper, an approach for determining an appropriate number of trace clus-
ters is presented. All components of the approach are discussed in detail, and it
is evaluated on four real-life datasets. This evaluation shows that utilizing a pro-
cess model-based metric as underlying similarity metric leads to more desirable

11

results than using a consensus-based similarity metric. This implies that model-
driven evaluation of trace clustering techniques is useful, supporting the claims
of [6]. Furthermore, it is shown that log-perturbation based on noise induction
slightly outperforms log-perturbation based on sub-sampling in this context. Fi-
nally, the importance of normalizing the stability with regards to the stability
of a random clustering is illustrated.

With regards to future work, a couple of options exist. First, it could be
useful to validate our approach in situations where expert knowledge about the
number of trace clusters is present. For the four datasets we utilized, no such
knowledge was available. In addition, expert knowledge could even be incorpo-
rated in a trace clustering approach. Secondly, certain clustering approaches,
like GED and K-Gram, were shown to behave in a rather unstable manner, with
lower stability than a random clustering. The cause of this instability should be
investigated more thoroughly, as the perturbation used for resampling is most
likely the cause of this instability: such techniques are likely quite sensitive to
noise or incompleteness, and thus inherently less suited to real-life applications.
To remedy this, techniques from the consensus clustering domain could be useful
to create clustering ensembles, which are expected to behave in a more stable
manner. Finally, the underlying similarity metric that was shown to behave the
most desirably was the process model-based ĪHG-metric. However, it is built
upon a process similarity metric, the graph-edit distance, that was not created
with the purpose of comparing discovered process models in mind. In future
work, a process similarity metric could be conceived that is tailored specifically
towards this objective.

References

1. Bose, R.P.J.C., Van Der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: Towards achieving better process models. In: Lect. Notes Bus. Inf. Process.
vol. 43 LNBIP, pp. 170–181 (2010)

2. Bose, R., Aalst, W.V.D.: Context Aware Trace Clustering: Towards Improving
Process Mining Results. Sdm pp. 401–412 (2009)

3. Davison, A.C., Hinkley, D.V.: Bootstrap methods and their application, vol. 1.
Cambridge university press (1997)

4. De Medeiros, A.K.A., Weijters, A.J.M.M., Van Der Aalst, W.M.P.: Genetic process
mining: An experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304
(2007)

5. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Inf. Syst. 37(7), 654–676 (2012)

6. De Weerdt, J., Vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clus-
tering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–
2720 (2013)

7. Delias, P., Doumpos, M., Grigoroudis, E., Manolitzas, P., Matsatsinis, N.: Sup-
porting healthcare management decisions via robust clustering of event logs.
Knowledge-Based Syst. 84, 203–213 (2015)

12

8. Di Ciccio, C., Mecella, M., Mendling, J.: The effect of noise on mined declarative
constraints. In: Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) Data-Driven
Process Discovery and Analysis: Third IFIP WG 2.6, 2.12 International Sympo-
sium, SIMPDA 2013, Riva del Garda, Italy, August 30, 2013, Revised Selected
Papers. pp. 1–24. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

9. Dijkman, R., Dumas, M., Van Dongen, B., Krik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

10. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity between
Business Process Models. Adv. Inf. Syst. Eng. 5074, 450–464 (2008)

11. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Slice, mine and
dice: Complexity-aware automated discovery of business process models. Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioin-
formatics) 8094 LNCS, 49–64 (2013)

12. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching Process Mining
with Sequence Clustering: Experiments and Findings. LNCS 4714, 360–374 (2007)

13. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Editorial: Mining Usage Scenarios
in Business Processes: Outlier-aware Discovery and Run-time Prediction. Data
Knowl. Eng. (2011)

14. Fred, A., Lourenço, A.: Cluster ensemble methods: From single clusterings to com-
bined solutions. Stud. Comput. Intell. 126, 3–30 (2008)

15. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery
with Artificial Negative Events. J. Mach. Learn. Res. 10, 1305—-1340 (2009)

16. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

17. Jagadeesh Chandra Bose, R.P., Van Der Aalst, W.M.P.: Abstractions in process
mining: A taxonomy of patterns. In: Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). vol. 5701 LNCS, pp. 159–175
(2009)

18. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of
clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

19. Lee, Y., Lee, J.H., Jun, C.H.: Validation measures of bicluster solutions. Ind. Eng.
Manag. Syst. 8(2), 101–108 (2009)

20. Lee, Y., Lee, J., Jun, C.H.: Stability-based validation of bicluster solutions. Pattern
Recognit. 44(2), 252–264 (2011)

21. Maruster, L.: A machine learning approach to understand business processes. Eind-
hoven University of Technology (2003)

22. Mirkin, B.: Choosing the number of clusters. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 1(June), 252–260 (2011)

23. Song, M., Günther, C., van der Aalst, W.M.: Trace Clustering in Business Process
Mining. In: Bus. Process Manag. Work. vol. 17, pp. 109–120. Springer (2009)

24. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data
set via the gap statistic. J. R. Stat. Soc. Ser. B (Statistical Methodol. 63, 411–423
(2001)

25. Van der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdiscip. Rev.
Data Min. Knowl. Discov. 2(2), 182–192 (2012)

26. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-
ance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)

27. a.J.M.M. Weijters, van der Aalst, W.: Rediscovering Workflow Models from Event-
Based Data using Little Thumb. Integr. Comput. Eng. 10, 151–162 (2003)

13

Fig. 3. Plot of the normalized stability results on the KIM-dataset in terms of the
number of clusters, calculated with similarity metric INMI on the top row and ĪHG on
the bottom row. The results on the left are calculated with noise induction, the results
on the right with sub-sampling.

14

Fig. 4. Plot of the normalized stability results on the ICP-dataset in terms of the
number of clusters, calculated with similarity metric INMI on the top row and ĪHG on
the bottom row. The results on the left are calculated with noise induction, the results
on the right with sub-sampling.

15

