
Synthesis of Elementary Net Systems
with Final Configurations

Benjamin Meis, Robin Bergenthum, Jörg Desel

Department of Software Engineering,

FernUniversität in Hagen

{firstname.lastname}@fernuni-hagen.de

Abstract. In this paper, we extend the definition of transition systems, as well as

the definition of elementary net systems, by a notion of final states and provide

a solution to the synthesis problem of elementary net systems with final config-

urations. Furthermore, we present how to simplify complex sets of final config-

urations of an elementary net system by introducing the notion of neat places. A

place is neat if it is marked only if the elementary net system is in a final con-

figuration. If it is not possible to generate a neat place, we present a heuristic to

identify so-called neat terms indicating final configurations.

1 Introduction

Petri nets are a well established model for concurrent and distributed systems. They

have a formal semantics as well as an intuitive graphical representation. The most basic

class of Petri nets is given by elementary net systems. Fundamental concepts such as

causality and choice are well defined for elementary net systems. Therefore, this class

is the formal basis for many modern business process modeling languages, like Event

Driven Process Chains (EPC) [11], Business Process Modeling Notation (BPMN) [10]

or activity diagrams in the UML standard [12].

The sequential behavior of an elementary net system is modeled by means of its

reachability graph, which is a transition system, modeling the set of reachable states

as well as the state transitions of the elementary net system. Although the reachability

graph of an elementary net system can be exponential in the size of the elementary

net system, it can easily be defined and constructed. Conversely, assuming a transition

system modeling the behavior of a system in terms of transitions, the synthesis problem

is to generate an elementary net system so that its reachability graph is isomorphic to

the transition system, i.e., both graphs with labeled arcs are identical up to the names

of states. Ehrenfeucht and Rozenberg presented a solution of the synthesis problem in

the early 90s, introducing the so-called theory of regions [5, 6]. The recently published

textbook [4] provides a good survey to this topic.

In this paper, we tackle the synthesis problem extending the behavioral model, i.e.

the transition system, as well as the elementary net system by notions of final states. In

many application areas, like business processes and protocols, behavior is constituted

by a set of runs which lead to a final state each. Modeling final states on top of the

behavior of a system increases the accuracy of the model. Therefore, the set of states

47



of a real world system consists of two disjunct parts: a set of final states and a set of

intermediate states. If a system is in a final state, the current execution of this system is

considered to be complete. If the current execution of a system ends at an intermediate

state, the occurred behavior is invalid.

We model the behavior of a system with final states extending the transition system

by a set of final states. Transition systems with final states are closely related to finite

state automata (see e.g. [7]). A finite state automaton recognizes words; the set of all

words recognized is called the language of the automaton. Equivalently, the automaton

can be considered to generate the words of its language. A word, i.e. a sequence of

symbols, is recognized (or generated), if the automaton, by reading the symbols sub-

sequently, moves from state to state and ends in a final state. Identifying symbols of

automata with activities modeled in transition systems, the language of a transition sys-

tem with end states is the language of the related automaton.

Since finite state automata have final states, their behavior is not considered to be

prefix-closed. In other words, even if a word is not accepted, it can be the prefix of

another word, which belongs to the language of the automaton. Translated to transition

systems, we can consider a system’s behavior illegal even if it can be extended to a legal

one; so a legal run is considered to be a complete run.

Regarding Petri nets, it is usually assumed that every prefix of a valid execution is

also valid. This comes with the formal definition of firing sequences and both behav-

ioral notions. However, Petri net classes tailored for particular application areas such as

workflow nets [1] and C-nets [3], do consider a single, distinguished final state. In this

sense, these classes are a special case of the class of Petri nets we consider in this paper.

In our more general setting, every reachable state of a Petri net is a possible final state.

In an elementary net system, a state is a configuration of the net. Thus, we consider

elementary net systems with final configurations.

In this paper, we provide a solution to the synthesis problem of elementary net

systems with final configurations. This problem is formally stated as follows: let there

be a transition system with final states, generate an elementary net system with a set

of final configurations so that the reachability graph of this net is isomorphic to the

transition system, and the respective sets of final states match. It will turn out that this

solution is a straightforward generalization of the solution of elementary net systems

without final states; every solution to that problem can be straightforwardly extended

by final states. As an example, we consider the transition system depicted in Figure 1a.

Figure 1b depicts a possible solution of the related synthesis problem. Figure 3 depicts

the same transition system extended by a set of final states. Figure 2 depicts a possible

solution of the related synthesis problem with final states.

Although the set of final states of a transition system can be quite arbitrary, the set

of final states of the synthesized net should have some particular structure. For example,

for workflow nets a configuration is final if and only if it contains only a distinguished

final place. We explore a similar concept and consider sets of final configurations of

elementary net systems which can be identified checking a single place; a configuration

is final if and only if it contains this place. We call places with this property neat places.

Considering a transition system with final states, we consider the problem to synthe-

size a corresponding net with a neat place, if this is possible. We characterize potential

48



(a) (b)

Fig. 1. Synthesizing an elementary net system from a transition system

neat places in terms of regions of transition systems. We show that, if a neat place ex-

ists, it either belongs already to a synthesized net, or the net can be extended by a neat

place.

Neat places have the particular advantage of representing a set of final states in a

very efficient and easily identifiable way. Actually, a neat place can represent an expo-

nential number of reachable configurations. Unfortunately, neat places do not always

exist. We will finally show in this paper that also for cases where there are no neat

places we can often represent a big set of final configurations in an efficient way. To

this end, we define terms of places, constructed by means of place names and logical

connectors, so that a term is evaluated to true in a given configuration if and only if this

configuration is final. We show how to obtain these terms in a systematic way.

The remainder of the paper is organized as follows. In Section 2 we present the

definitions on elementary net systems and transition systems, extend both definitions by

final configurations and final states respectively. We decide the synthesis problem for

elementary net systems with final configurations. In Section 3 we introduce the notion

of a neat place and in Section 4 we introduce the notion of a neat term to indicate final

configurations. Section 5 concludes the paper and presents an outlook of further work.

2 Synthesis of Elementary Net Systems with Final States

In this section we will recapitulate the notions of elementary net systems and transition

systems [9] and extend elementary net systems by final configurations and transition

systems by final states. At the end of this section we show how to solve the correspond-

ing synthesis problem.

We consider elementary net systems with final configurations in this paper. As stated

in the introduction, we use the notion of final configurations to define a set of states of

an elementary net in which we consider its behavior to be complete.

49



Definition 1 (Elementary Net System). An elementary net system is a tuple N =
(P,T,A,m0) where P is a finite set of places, T is a finite set of transitions, satis-
fying P ∩ T = ∅, A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, and m0 ⊆ P is the
initial configuration.

The tuple (N,C) where C ⊆ {m∣m ⊆ P} is an elementary net system with a set of
final configurations C.

Elementary net systems have a simple firing rule. We call ●t = {p ∈ P ∣ (p, t) ∈ A}
the preset of a transition t and t● = {p ∈ P ∣ (t, p) ∈ A} the postset of t. A transition

t ∈ T is enabled in a configuration m, if ●t ⊆ m and t● ∩m = ∅. If t is enabled

in a configuration m, t can fire changing the configuration m to m′ defined by m′ =

(m ∖ ●t) ∪ t●. We write m
t

→m′, if m enables t and the occurrence of t changes m to

m′.

Let σ = t1 . . . tn be a sequence of transitions. We write m
σ

→ m′, if there are

configurations m1,m2, . . . ,mn−1 so that m
t1

→m1

t2

→m2 . . .mn−1

tn

→m′ holds.

Fig. 2. An elementary net system with two final configurations.

Figure 2 depicts our running example net with final configurations in its initial con-

figuration. The net has five transitions A,B,C,D,E and five places. The initial config-

uration is the set {p0}. Graphically, a configuration is depicted by tokens marking all

places of the configuration. In the initial configuration both transitions A and B are en-

abled. Firing A removes p0 and adds the places p1 and p4 to the configuration of the net.

The two final configurations of this example, {p2, p3} and {p1, p2, p3}, are depicted by

dashed frames. In general, every set of places may be defined as a final configuration.

We reach the first final configuration by firing the sequence B,C. Another possibility

is firing A,C,E,B,C. One possibility to reach the second final configuration is firing

A,C. The final configuration {p2, p3} is a so-called deadlock, i.e. a configuration where

no transition is enabled. The final configuration {p1, p2, p3} enables transition E.

50



The behavior of an elementary net system can be expressed by terms of a transition

system. Every configuration of the net constitutes a node, called state, and every enabled

transition of the net is a state transition of the transition system. A final configuration

of the elementary net system relates to a final state of the transition system.

Definition 2 (Transition System). A transition system is a tuple TS = (S,T,Θ, s0),
where S is a finite set of states, T is a finite set of events, Θ ⊆ (S × T × S) is the set of
labeled state transitions, and s0 is the initial state of TS.

The pair (TS,F ) where F ⊆ S is the set of final states is a transition system with
final states.

Definition 3 (Isomorphism of Transition Systems). Let TS = (S,T,Θ, s0) and TS′ =
(S′, T ′,Θ′, s′0) be two transition systems. TS and TS′ are isomorphic if and only if
T = T ′ and there is a bijective function φ ∶ S → S′ so that φ(s0) = s′0 and (s, t, s′) ∈ Θ
if and only if (φ(s), t, φ(s′)) ∈ Θ′. If TS and TS′ are isomorphic and φ is the related
isomorphism, we write TS ≅φ TS′.

Two transition systems with final states (TS,F ) and (TS′, F ′) are isomorphic if
and only if there is a function φ so that TS ≅φ TS′ and φ(F ) = F ′ holds.

Transition systems are able to showcase the behavior of elementary net systems.

Definition 4 (Reachability Graph). Let N = (P,T,A,m0) be an elementary net sys-
tem. We call RS(N) = {m ⊆ P ∣σ ∈ T ∗,m0

σ

→ m} the set of reachable states. The

reachability graph of N is the transition system RG(N) = (RS(N), T,Δ,m0) de-

fined by (m, t,m′) ∈Δ if and only if m ∈ RS(N) and m
t

→m′holds.

Let (N,C) be an elementary net system with final configurations, the reachability
graph of (N,C) is the transition system with final states RG(N,C) = (RG(N), C).

Fig. 3. A transition system with final states

51



Figure 3 depicts the reachability graph with final states of the net depicted in Figure

2. In figures a final state is enclosed by a circle. Starting from the initial state, both

sequences B,C and A,C lead to a final state. As mentioned above, one of them is a

deadlock, the other one enables the state transition E.

Definition 5 (Synthesis). Let TS be a transition system. The synthesis problem is to
construct an elementary net system N whose reachability graph is isomorphic to TS,
i.e. there is a function φ so that TS ≅φ RG(N) holds.

Let (TS,F ) be a transition system with final states. The synthesis problem is to
construct an elementary net system with final configurations (N,C) whose reacha-
bility graph is isomorphic to (TS,F ), i.e. there is a function φ so that (TS,F ) ≅φ
RG(N,C).

In the following theorem, we prove that the synthesis of elementary net systems

with final configurations consists of two parts: in a first step, we need to solve the

synthesis problem for the underlying elementary net system without considering the

final states. In a second step, we use the isomorphism between the transition system

and the reachbility graph of the generated net to define the set of final configurations.

Theorem 1. Let (TS,F ) be a transition system with final states. There is a solution
of the synthesis problem for (TS,F ) if and only if there is a solution of the synthesis
problem for TS.

Proof. Let (TS,F ) be a transition system with final states.

If there is a solution N of the synthesis problem for the transition system TS there

is a function φ so that RG(N) ≅φ TS holds. We define the set of final configurations

as φ(F ). Thus, RG(N,φ(F )) = (RG(N), φ(F )) ≅φ (TS,F ) holds. (N,φ(F )) is a

solution of the synthesis problem for (TS,F ).
If there is a solution (N,C) for the synthesis problem for (TS,F ) there is a func-

tion φ so that RG(N,C) ≅φ (TS,F ) holds. Of course, RG(N) ≅φ (TS) holds. N is

a solution for the synthesis problem for TS.

Altogether, there is a solution for (TS,F ) if and only if there is a solution for TS.

3 Neat Places and Final Configurations

As stated in the introduction, we use elementary net systems with final configurations to

model distributed systems. Of course, the more complex the system, the more complex

the net system. Thus, final configurations of a net may be complex as well. To check

if a net is in a final configuration, we need to compare the current (maybe distributed)

configuration to the set of all final configurations. When modeling systems that are crit-

ical to safety, it may be necessary to immediately recognize if a system is in a final

configuration. One particular simple possibility is to check a single place if a token on

this place indicates, that the configuration is final. In this case, we call the place neat.

Identifying neat places is of great value, especially if the final states of the underly-

ing system are distributed, their number is huge, or they share different local variables

confusingly. Furthermore, parts of a system may be not accessible at any time, i.e. the

current state cannot be determined. If at least one local variable, modelled by one neat

place, is accessible, other parts of the configuration are not relevant.

52



Definition 6 (Neat Place). Let (N,C) = (P,T,A,m0, C) be an elementary net system
with final configurations. A place p ∈ P is neat, iff

∀m ∈ RS(N) ∶ p ∈m⇔m ∈ C.

As an example, we consider the elementary net system depicted in Figure 2. In this

net neither place p1 nor place p3 is neat. The place p1 is not neat, because there is

the final configuration {p2, p3} without p1. The place p3 is not neat, because firing the

sequence of transitions A,D from the initial configuration leads to the configuration

{p1, p3}. This configuration contains p3, but this is not a final configuration. However,

place p2 is neat. Both sequences of transitions A,C and B,C mark place p2 and lead

to final configurations. The other two sequences A,D and B,D do not mark p2 and do

not lead to final configurations. After the occurrence of A,C, the same holds as soon as

transition E occurs. Altogether, p2 is only marked if the elementary net system is in a

final configuration.

Fix a single place of an elementary net system. To check if this place is neat, we

check the condition of Definition 6 for every state of the reachability graph. Fix an

elementary net system. To decide if there is a neat place in this system, we do not need

to check all of its places. In the remainder of this section, we introduce how to reveal a

neat place using the theory of regions. In a first step, we decide if it is even possible, that

there is a neat place for this specific elementary net system. In a second step, we check

if this potential neat place is already a place of this net. If there exists a neat place, but

it is not in the net, we show how to add this place.

We briefly recapitulate the theory of regions for the synthesis of elementary net

systems, but refer the reader to [4] for a nice and complete introduction to region theory.

Definition 7 (Region). Let (S,T,Δ, s0) be a transition system. A region r is a set of
states r ⊆ S so that for all t ∈ T one of the following situations hold:

t enters r, i.e. ∀(s, t, s′) ∈Δ⇒ (s ∉ r ∧ s′ ∈ r)

t exits r, i.e. ∀(s, t, s′) ∈Δ⇒ (s ∈ r ∧ s′ ∉ r)

t does not cross the border of r, i.e. ∀(s, t, s′) ∈Δ⇒ (s ∈ r⇔ s′ ∈ r)

The main theorem of region theory states that every place of an elementary net

system defines a region of its reachability graph. This region is the set of configurations

including this place. This set is called the extension of the place.

Theorem 2. [5, 4] Let N be a elementary net system N = (P,T,A,m0). For all p ∈ P
the extension of ⟦p⟧ = {s ∈ RS(N)∣p ∈ s} is a region.

For the proof we refer the reader to [5] or [4]. We consider the extension of place p1
of Figure 2 in the transition system depicted in Figure 3 as an example. The extension

of p1 is the set of states {s4, s5, s6}. This set is a region, because A enters, E exits, and

all other events do not cross the border of this set. Like p1, every other place of Figure

2 defines a region of the transition system depicted in Figure 3.

Our goal is to decide if there is a neat place for our specific elementary net system.

On the one hand, according to Theorem 2, the extension of this place is a region. On

53



the other hand, if we fix a region, this region directly relates to a place, arcs and the

initial marking which we could add to our elementary net system without changing

its reachability graph. To construct a place p from a region r of a reachability graph

RG(N) of some net N = (P,T,A,m0), we add p to P , for every t ∈ T we add (p, t)
to A if t exits r and we add (t, p) to A if t enters r. We add p to m0 only if m0 ∈ r
holds. In this situation we say that p is defined by r. Summing up, the neat place we are

looking for is defined by some region of the reachability graph of our elementary net

system. Furthermore, this place is only marked at final configurations. The following

theorem states that there is a neat place for an elementary net system if and only if the

set of final states is a region.

Theorem 3. Let (N,C) be an elementary net system with final configurations. There
is a net (N ′, C) with a neat place so that RG(N,C) ≅φ RG(N ′, C) holds if and only
if C is a region of RG(N,C).

Proof. Let (N,C) be an elementary net system. If C is a region of RG(N,C), con-

struct a place p defined by a region r and add p to N to get (N ′, C). By definition of a

region, RG(N,C) ≅φ RG(N ′, C) holds. Furthermore, ⟦p⟧ = C holds and p is neat.

Assume C is not a region of RG(N,C), but there is an elementary net system

(N ′, C), RG(N,C) ≅φ RG(N ′, C) with a neat place p. The place p is neat and by

definition, C = ⟦p⟧ holds. According to Theorem 2, ⟦p⟧ is a region. This is a contradic-

tion.

According to Theorem 3 it is easy to reveal a neat place. We consider the reacha-

bility graph of an elementary net system and check if the set of final states is a region.

For example, we consider the transition system of Figure 3. The set of final states is a

region, because transition C enters, E exits and all other transitions do not cross the

border of this set. The place defined by this region has two adjacent arcs, i.e. one arc

starting from transition C and one arc ending in transition E. This place is not marked,

since the initial state of the transition system is not a final state. Altogether, p2 of Figure

2 is neat. If the set of final states is a region, but defines a place which is not in the set

of places of the elementary net system, we can simply add this place to the net. Since

the new neat place is defined by a region, it will not change the reachability graph.

4 Neat Terms identifying Final Configurations

Whenever the set of final configurations is a region, it is easy, as discussed in Section 3,

to generate a neat place. In this section, we introduce a heuristic to identify final con-

figurations, although they do not form a region. We do this by considering terms over a

subset of places which determine if an elementary net system is in a final configuration.

We illustrate our idea by considering the transition system depicted in Figure 4, but this

time we assume a different set of final states.

In Figure 4, the set of final states {s5} is not a region, because one event D enters

while the other one does not. The related elementary net system is the net depicted

in Figure 2. The set, {p1, p3} is the final configuration for this example. This time,

there is no neat place, so we need to check all five places to decide if the net is in its

54



Fig. 4. A transition system with one final state.

final configuration. To avoid such a brute-force testing we will identify a term of places

representing this final configuration. According to the definition of a neat place, we call

such a term a neat term in the following.

To illustrate the idea of neat terms, we consider Figure 5a, the transition system

of Figure 4, and depict the extensions of places p1, p2, and p3 of Figure 2 by dashed

frames. The intersection of ⟦p1⟧ and ⟦p3⟧ is {s5, s6}. The set difference of {s5, s6} and

⟦p2⟧ is {s5}, i.e. the final state in this example. In other words, {p5} is not a region, but

{p5} = (⟦p1⟧ ∩ ⟦p3⟧) ∩ ⟦p2⟧
C holds. We conclude, the net is in a final configuration if

p1 and p3 are marked and additionally p2 is not. In this example, p1 ∧¬p2 ∧ p3 is a neat

term. Thus, to check if the net is in a final configuration, we no longer have to check all

five places, but only three.

(a) Extensions of p1, p2, and p3. (b) Extension of p1 and a region {s2, s5}.

Fig. 5. Extensions in the transition system.

We are able to construct an even smaller neat term if we consider the region {s2, s5}
depicted in Figure 5b. This set is a region, because only event D enters, while all others

do not cross the border of this set. Utilizing this region we get {s2, s5} ∩ ⟦p1⟧ = {s5},
the final marking of our example. We extend the net of Figure 2 by a place related to

55



the region {s2, s5}. The resulting elementary net system is depicted in Figure 6. In this

net, by adding one additional place, we get the neat term p1 ∧ p5 using only two places.

If and only if these two places are marked, the net is in its original final configuration,

i.e. p1 and p3 are marked, as p0, p2, p4 are not. Altogether, the places p0, p2, p3 and p4
are negligible to decide if the net is in its final configuration.

Fig. 6. An elementary net system with an additional place for the region {s2, s5} of Figure 5b,

the final configuration {p1, p3, p5}, and the neat term p1 ∧ p5.

Every place may be some boolean variable of a neat term. Furthermore, neat terms

consist of ∧, ∨, and ¬ operators. Any term is neat, if and only if the related extensions,

translating the operators to set operators ∩, ∪, and C , form the set of final configurations.

As stated above, if we have a distributed system and we are not able to determine (at

run-time) the configuration of this system, neat terms may aid the problem to decide if

the system is in a final configuration or not. We consider the extensions of places that

may be accessed and try to add additional places defined by regions to represent the set

of final states by unions, intersections, and complements.

5 Conclusion and Future Work

We presented the definition of transition systems with final states and the definition of

elementary net systems with final configurations. We proved, that the related synthesis

problem is solvable if and only if the same problem ignoring the final states is solvable.

In Section 3, we presented a definition of so called neat places. A place is neat if it is

marked exactly at final configurations. With the help of neat places a complex set of

final states can be represented efficiently. If, for a chosen elementary net system, there

56



is no neat place, we presented a heuristic to identify terms of places to indicate final

configurations. For neat places as well as for neat terms we explained how to extend the

set of places of an elementary net system if this leads to a net with a more simple set of

final configurations, in a sense that a neat place or a smaller neat term can be found.

In future work we will implement a deduced synthesis algorithm constructing neat

terms from the set of minimal regions of a transition system with final states. In a second

step, a user will be allowed to mark a set of places as not accessible. Thus, this set is

excluded from the construction of a possible neat term.

Of course, it is possible to extend the class of considered Petri nets. We can apply

the same approach to Petri nets with weighted arcs, as long as their reachability graph

is finite. An open research question is to state if the same idea carries over to general

place/transition nets using abstract representations of the related infinite reachability

graphs.

References

[1] van der Aalst, W. M. P.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), World Scientific, 1998, 21-66

[2] van der Aalst, W. M. P.: Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer, 2011

[3] van der Aalst, W. M. P.; Adriansyah A.; Dongen, B.; Katoen, J. P.; König, B.: Causal Nets:

A modeling Language Tailored towards Process Discovery. Proceedings of CONCUR 2011,

Springer, 2011, 28-42

[4] Badouel, E.; Bernardinello, L.; Darondeau, P.: Petri Net Synthesis. Texts in Theoretical
Computer Science Springer, 2015

[5] Ehrenfeucht, A.; Rozenberg, G.: Partial (set) 2-structures; Part 1 Acta Informatica 27(4),

1990, 315-342

[6] Ehrenfeucht, A.; Rozenberg, G.: Partial (set) 2-structures; Part 2 Acta Informatica 27(4),

1990, 343-368

[7] Hopcroft, J. E.; Motwani, R.; Ullman, J. D.: Introduction to Automata Theory, Languages,

and Computation. Texts in Theoretical Computer Sience Addison-Wesley, 2006

[8] ter Hofstede, A.H.M; van der Aalst, W. M. P.; Adams M; Russel N.: Modern Business

Process Automation: YAWL and Its Support Environment. Springer, 2010

[9] Nielsen, M.; Rozenberg, G.; Thiagarajan, P.S.: Elementary transition systems. Theoretical
Computer Science 96(1), Elsevier, 1992, 3-33

[10] OMG. Business Process Model and Notation (BPMN). Object Management Group, 2016

[11] Scheer, A.W.: Business Process Engineering, Reference Models for Industrial Enterprises.

Springer, 1994

[12] UML. Unified Modeling Language (UML). Object Management Group, 2016

57




