
Properties of Plain, Pure, and Safe Petri Nets
– with some applications to Petri net synthesis –

Kamila Barylska1� and Eike Best2

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
87-100 Toruń, Poland
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1 Introduction

In the first part (section 2) of this paper, we examine a number of properties
which are typical for plain, pure and safe (pps) Petri nets. Such nets are inti-
mately related to elementary Petri net systems [7–10]. We shall also argue that
these properties can be employed usefully in the quick-fail, pre-synthesis stage
of a Petri net synthesis algorithm, if it is aimed at pps nets.

In the second part (section 3) of the paper, we apply our results in order to
obtain a characterisation of the state spaces of live and safe marked graphs [5].
This result will be built upon the characterisation of live and bounded marked
graphs previously described in [3].

Basic definitions about transition systems and Petri nets have been transferred to
the appendix (section A), in order to make the paper self-contained, without im-
peding its readability for readers familiar with the basic theory. In conformance
with the book [1] on net synthesis, we shall consider arc-labelled transition sys-
tems and transition-unlabelled Petri nets.

� Part of this work was done during a research visit by the first author in Oldenburg on
a research fellowship within the EU-sponsored project POKL.04.01.01-00-081/10
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2 Some necessary conditions for pps Petri nets

In the following, we shall use letters a, b, c, . . . ∈ T (also t ∈ T ) for letters of
a transition system (or, respectively, for the corresponding transitions of a Petri
net); u, v, w ∈ T ∗ for sequences of transitions; p, q for the places of a net; M,K,L
for the markings of a net; and r, s for the states of an lts. The • and � notation,
which is much used in the following, is explained in section A (definition 7).

2.1 Properties of plain, pure, and safe Petri nets

Proposition 1. Properties of pps nets

Let N = (P, T, F,M0) be a pps net, let a, b, c be (not necessarily different) tran-
sitions in T , let M,M ′,K, . . . be reachable markings, and let w, v, u, . . . be se-
quences of transitions. Then

(A) If M [wv〉 or M [vw〉, then �w ∩ �v = ∅ = w� ∩ v�.
(B) If M ′[a〉M and M ′′[b〉M , then [b〉M ′ ⇐⇒ [a〉M ′′.
(C) If M [a〉 and M [b〉, then a• ∩ •b = ∅ = •a ∩ b•.
(D) If M [a〉 and M [b〉, then for any K: (K[ab〉 ⇐⇒ K[ba〉).
(E) If M [awb〉 then (•a ∩ •b) ⊆ w� and (a• ∩ b•) ⊆ �w.
(F) If M [wv〉 and M [vw〉 and M [wc〉 and M [vc〉,

then M [wvc〉M ′ and M [vwc〉M ′ and M [c〉.
(G) – If (M1[x1w1y1〉) and (M2[x2w2y2〉) with x1, y1, x2, y2 ∈ {a, b},

and (•a ∩ •b �= ∅ or a• ∩ b• �= ∅), and there exist v1, v2, v3 such that
Ψ(w1) = Ψ(v1)+Ψ(v2), Ψ(w2) = Ψ(v2)+Ψ(v3), Ψ(w3) = Ψ(v3)+Ψ(v1),

– then ¬K[x3w3y3〉 for x3, y3 ∈ {a, b}.

Proof:

(A): Suppose M [w〉M1[v〉M2. If Ψ(w) = Ψ(v) then if p ∈ �w and p ∈ �v then
M(p) = M2(p)+2 as well as if p ∈ w� and p ∈ v� then M2(p) = M(p)+2. Both
situations contradicts safeness. This implies that �w = ∅ = w� and �v = ∅ = v�

and the claim is true. Assume now that Ψ(w) �= Ψ(v). If p ∈ �w ∩ �v then
M(p) = 1, M1(p) = 0 and M2(p) = −1. Contradiction. Similarly, if p ∈ w� ∩ v�

then M(p) = 0, M1(p) = 1 and M2(p) = 2. Contradiction. Hence �w ∩ �v = ∅ =
w� ∩ v�, as was claimed.

(B): Suppose thatM ′[a〉M andM ′′[b〉M andK[b〉M ′, for some reachableK, and
¬([a〉M ′′). By ¬([a〉M ′′), there is some place p ∈ a• \ •a with M ′′(p) = 0. By
M ′[a〉M , both M ′(p) = 0 and M(p) = 1. By M ′′[b〉M , p ∈ b• \ •b. By K[b〉M ′,
M ′(p) = 1, contradicting M ′(p) = 0. Hence K ′[a〉M ′′ for some reachable K ′,
and K ′ = K because K and K ′ can be backward-reached from M by the same
Parikh vector.

(C,D): If a = b, the claim follows by the absence of side-places.

Suppose that a �= b and M [a〉 and M [b〉. If p ∈ a• ∩ •b, then M(p) = 0 since
M enables a, but also M(p) = 1 since M enables b, which is a contradiction. If
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p ∈ •a ∩ b•, we get a symmetrical contradiction. To show the remaining part of
the claim, suppose that K[ab〉. Using (A) applied to K with w = a and v = b and
knowing that •a = �a and a• = a� we get (•a∪a•)∩(•b∪b•) = ∅ (i.e., intuitively,
a and b are completely independent), and thus also K[ba〉. The reverse direction
is symmetrical.

(E): Suppose that M [a〉M1[w〉M2[b〉M ′ and that p ∈ (•a ∩ •b). Then M(p) = 1,
M1(p) = 0, M2(p) = 1, and M ′(p) = 0, so that w acts positively on p, that
is, p ∈ w�. Similarly for p ∈ (a• ∩ b•): M(p) = 0, M1(p) = 1, M2(p) = 0 and
M ′(p) = 1 w acts negatively on p, that is, p ∈ �w.

(F): Suppose that M [w〉M1[v〉M2 and M [v〉M3[w〉M4. Of course from the firing
rule we know that M3 = M4. By (A) and M [w〉M1[c〉 with M [v〉M3[c〉 we get:
•c ∩ �v = ∅ = •c ∩ �w and c• ∩ v� = ∅ = c• ∩ w�.

FromM1[c〉 we know that for all p ∈ •c we haveM1(p) = 1 and from the previous
considerations p /∈ �v. Assume now that p ∈ v�. Then M2(p) = 2. Contradiction.
Hence •c ∩ (�v ∪ v�) = ∅.
From M3[c〉 we know that for all p ∈ •c we have M3(p) = 1 and from the
previous considerations p /∈ �w. Assume now that p ∈ w�. Then M2(p) = 2.
Contradiction. Hence •c ∩ (�w ∪ w�) = ∅.
From the other hand, from M1[c〉 we know that for all p ∈ c• we have M1(p) = 0
and from the previous considerations p /∈ v�. Assume now that p ∈ �v. Then
M2(p) = −1. Contradiction. Hence c• ∩ (�v ∪ v�) = ∅.
From M1[c〉 we know that for all p ∈ c• we have M3(p) = 0 and from the
previous considerations p /∈ w�. Assume now that p ∈ �w. Then M2(p) = −1.
Contradiction. Hence c• ∩ (�w ∪ w�) = ∅.
Together we have (•c ∪ c•) ∩ (�v ∪ v�) = ∅ as well as (•c ∪ c•) ∩ (�w ∪ w�) = ∅
and it is straightforward that M [c〉 and M2[c〉.
(G): Assume M1[x1〉M1.1[w1〉M1.2[y1〉M ′

1, M2[x2〉M2.1[w2〉M2.2[y2〉M ′
2 and

M3[x3〉M3.1[w3〉M3.2[y3〉M ′
3 with x1, y1, x2, y2, x3, y3 ∈ {a, b} as well as there

exist v1, v2, v3 such that Ψ(w1) = Ψ(v1) + Ψ(v2), Ψ(w2) = Ψ(v2) + Ψ(v3), and
Ψ(w3) = Ψ(v3) + Ψ(v1).

Case 1: •a ∩• b �= ∅
Since M1[x1〉M1.1[w1〉M1.2[y1〉M ′

1, for every place p ∈ •a∩•b we have M1(p) = 1,
M1.1(p) = 0, M1.2(p) = 1, hence ef p(w1) = 1. In a similar way we can observe
that ef p(w2) = 1 and ef p(w3) = 1. Of course 1 = ef p(w2) = ef p(v1v2) =
ef p(v1)+ef p(v2) hence either (1) ef p(v1) = 1 and ef p(v2) = 0 or (2) ef p(v1) = 0
and ef p(v2) = 1. Assuming (1) we obtain 1 = ef p(w2) = ef p(v2v3) = ef p(v2) +
ef p(v3) = 0 + ef p(v3), hence ef p(v3) = 1. But then ef p(w3) = ef p(v3v1) =
ef p(v3) + ef p(v1) = 1 + 1 = 2, which contradicts ef p(w3) = 1. Assuming (2)
we obtain 1 = ef p(w2) = ef p(v2v3) = ef p(v2) + ef p(v3) = 1 + ef p(v3), hence
ef p(v3) = 0. But then = ef p(w3) = ef p(v3v1) = ef p(v3) + ef p(v1) = 0 + 0 = 0,
which contradicts ef p(w3) = 1.
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Case 2: a• ∩ b• �= ∅
Since M1[x1〉M1.1[w1〉M1.2[y1〉M ′

1, for every place p ∈ a•∩b• we have M1(p) = 0,
M1.1(p) = 1, M1.2(p) = 0, hence ef p(w1) = −1. Similarly, ef p(w2) = −1 and
ef p(w3) = −1. Of course −1 = ef p(w1) = ef p(v1v2) = ef p(v1) + ef p(v2) hence
either (1) ef p(v1) = −1 and ef p(v2) = 0 or (2) ef p(v1) = 0 and ef p(v2) = −1.
Assuming (1) we obtain −1 = ef p(w2) = ef p(v2v3) = ef p(v2) + ef p(v3) =
0 + ef p(v3), hence ef p(v3) = −1. But then ef p(w3) = ef p(v3v1) = ef p(v3) +
ef p(v1) = −1 + (−1) = −2, which contradicts ef p(w3) = −1. Assuming (2) we
obtain −1 = ef p(w2) = ef p(v2v3) = ef p(v2) + ef p(v3) = −1 + ef p(v3), hence
ef p(v3) = 0. But then ef p(w3) = ef p(v3v1) = ef p(v3) + ef p(v1) = 0 + 0 = 0,
which contradicts ef p(w3) = −1.

This finishes the proof. 1

2.2 Some discussion, and some examples

Proposition 1 implies that in any pps net reachability graph, any pair of two
distinct transitions (a, b) can be classified structurally into two types:

• •a ∩ •b = ∅. Suppose that some marking M enables both a and b. Then, as
a consequence of part (C) or (D) of proposition 1 and safeness, also a•∩b• =
∅. Therefore, M [a〉 ∧M [b〉 implies the existence of a full diamond M [ab〉 ∧
M [ba〉 in the reachability graph. Moreover, if one such full diamond exists
for a and b, any other branching points K[a〉 ∧K[b〉 can also be extended to
full diamonds K[ab〉 ∧K[ba〉.

• •a ∩ •b �= ∅. Then any marking M enabling both a and b only leads to
a proper triangle, i.e. ¬M [ab〉∧¬M [ba〉. In particular, there can be no “half-
persistence” [2] such as ¬M [ab〉 ∧M [ba〉 or M [ab〉 ∧ ¬M [ba〉.

The two relations are symmetric but not, in general, transitive. Moreover, there
is no backward version of Proposition 1(C) or (D). Therefore, the above clas-
sification cannot be applied fully for postsets instead of presets of transitions.
Indeed, Figure 1 shows a reachability graph which has a full diamond and, at the
same time, a state-disjoint proper backward triangle between transitions a and b.

Moreover, two transitions may have a common pre-place never being enabled at
the same time. See figure 2 for an example.

The properties (A)–(G) of proposition 1 come in two varieties:

• Non-structural properties. This name applies to properties (B), (D),
and (F), since they do not contain any reference to a generating Petri net.
Therefore, (B), (D) and (F) can be taken as properties of any arbitrary
transition system.

• Structural properties. This applies to properties (A), (C), (E), and (G),
since they make partial reference to a generating Petri net, by mentioning
the pre- and/or postsets of transitions and/or transition sequences.
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c
e
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a b
a b

Fig. 1. A pps Petri net whose reachability graph displays a diamond and a proper
backward triangle.

a b c

p

M0 a

c

b

c

Fig. 2. A pps Petri net in which transitions a and b share the pre-place p but are not
enabled simultaneously at any reachable marking (l.h.s.) and its reachability graph
(r.h.s.).

Mathematically speaking, (B), (D), and (F) are redundant, since for pps nets,

(A)∧(C) ⇒ (B)∧(D)∧(F)

(The proofs of these claims are easy and will be omitted in the present paper.)
Speaking in terms of applications, however, the non-structural conditions can
be more useful than the structural ones. If a transition system is given without
any generating Petri net, then (B), (D) and (F) can be tested straight away,
while it can be very difficult to test one of the other properties when we also
need to consider the possible shapes of any (hoped-for) Petri net solutions. For
this reason, the non-structural properties can be used as limiting conditions on
the class of transition systems eligible for Petri net (pre-)synthesis; this will be
discussed later, in section 2.3. We finally point out that, in general, (B), (D)
and (F) are independent of each other. This is proved by the labelled transition
systems depicted in figure 3. Of course, due to the previous proposition, none of
the three lts is actually pps solvable. (But all of them have a Petri net solution.
APT [11] is useful in confirming this.)

We now briefly discuss the relevance, and the independence, of property (G).

115



a c

b a

a b

b

a b

b a

c c

Fig. 3. Lts satisfying, respectively, ¬(B)∧(D)∧(F), (B)∧¬(D)∧(F), (B)∧(D)∧¬(F).

• Consider the labelled transition system TS1 (only solid edges) depicted in
figure 4. From the pattern around state K, more precisely, from K[a〉 and
K[b〉 and neither K[ab〉 nor K[ba〉, it follows that in any pps solution of
TS1, there must exist a place p ∈ (•a ∩ •b). But then, (G) is violated,
letting v1 = d1d1, v2 = e1e1, and v3 = c1c2. Nevertheless, TS1 satisfies the
properties (B), (D) and (F) (and, we believe, also (A), (C) and (E), for any
pps solution). In this sense, (G) “explains” the non-pps-solvability of TS1.

• Now consider the transition system TS2 (solid and dashed egdes) shown in
the same figure. The raison d’être for a place such as p above has disappeared,
and TS2 satisfies, in fact, (G), along with (B), (D) and (F). Thus, none of
these properties can be used in order to explain its non-pps-solvability.

So far, we know of no general property which explains the non-pps-solvability of
TS2 in a similar way as (G) explains the non-pps-solvability of TS1. It should
come as no surprise at all that such examples can be found: obtaining an exact
characterisation of the state spaces of pps Petri nets seems to be quite out of
reach, at the present time.

K

M ′
h1

h2

h3

b

a c1 c2 d1 d2 b

a e1 c1 e2 c2 b

a d1 e1 d2 e2 b

a
b

Fig. 4. Two lts’s, TS1 (containing only solid edges), and TS2 (containing solid as well
as dashed edges). Both TS1 and TS2 are non-pps-solvable. TS1 violates (G), and TS2

satisfies all of (A)–(G).
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2.3 Pre-synthesis, and other non-structural conditions

Proposition 1 yields an upper approximation of the class of pps solvable lts. The
transition system TS2 shown in figure 4 proves that this is a true approximation,
although its relative complexity suggests that it may be a reasonably good one,
for the time being.

Consequently, the non-structural properties (B), (D), (F) described in proposi-
tion 1 can be useful for synthesis. Suppose that a labelled transition system TS
is given and a pps solution is sought for it. Before actual synthesis begins, i.e.
in a pre-synthesis stage, it is possible to check (B), (D) and (F). If one of them
fails, then pps synthesis is infeasible; such an effect is usually called quick fail.
In a quick-fail case, we might reject TS immediately, with two benefits: first,
a costly synthesis does not need to be started, and secondly, a meaningful –
possibly very useful – error message can be issued.

Quick-fail pre-synthesis may be relatively cheap (as when checking (B) or (D)),
or relatively costly (as when checking (F), for instance). Other properties may or
may not be checked easily, depending on the circumstances. Therefore, we shall
next give a list (in no particular order and without full proof) of non-structural
properties which can be used for quick-fail purposes. All of them, except the last
one, are consequences of properties (B), (D) and (F) described in proposition 1.
Some of them may be easier to check than (F). The last property mentioned in
proposition 2 actually follows from proposition 1(G).

Proposition 2. More non-structural properties of pps nets

Let N = (P, T, F,M0) be a pps net, let a, b, c be (not necessarily different) tran-
sitions in T , let M,M ′,K, . . . be reachable markings, and let w, v, u, . . . be se-
quences of transitions. Then the following properties are true:

If M [w〉M ′[v〉M ′′ for w, v ∈ T ∗ such that Ψ(w) = Ψ(v), then M = M ′ = M ′′.
If M [ab〉 and M [ba〉 and M [ac〉 and M [bc〉, then M [c〉.
If M [a〉 and M [b〉 and K[ab〉, then M [ab〉 and M [ba〉 and K[ab〉 and K[ba〉.
If M [a〉M ′ and M [b〉M ′′, then M ′[b〉 ⇐⇒ M ′′[a〉.
If M [a〉M ′, M [b〉M ′′, ¬M [ab〉, and ¬M [ba〉, then neither K[ab〉 nor K[ba〉.
If M [bu1〉 and M [u2〉 and Ψ(u1) = Ψ(u2) then M [u2b〉.
If M [bwa〉 and M [av〉 and Ψ(w) = Ψ(v), then M [avb〉
If M [wvw〉 and K[wv′〉 and Ψ(v) = Ψ(v′), then K[wv′w〉.
If M [wvw′〉 and K[wv′〉 and Ψ(v) = Ψ(v′) and w′ is a prefix of w, then K[wv′w′〉.
If M [tvt〉, K[v′〉K ′ and Ψ(v) = Ψ(v′), then K ′[t〉.
If M [vwv〉, then for all reachable markings K such that K[vw〉K ′, we have K ′[v〉.
If M [awa〉, then for all reachable markings K such that K[w〉K ′, we have K ′[a〉.
If M [a〉 and M [b〉 and ¬M [ab〉, then neither K[ab〉 nor K[ba〉.
If M [aua〉 and M ′[ava〉 then ¬K[awa〉 for any w such that Ψ(w) = Ψ(u)+Ψ(v).

117



If M [a〉M ′[b〉, ¬M [b〉 and K[b〉 then ¬K[a〉.
If ¬K[y〉 and K[x〉K0[a1 . . . am〉Km with Ψ(a1 . . . am)(y) = 0, and if Kj [y〉 for
all 0 ≤ j ≤ m, then ¬Km[x〉.
If M [a〉, M [b〉, ¬M [ab〉 and M ′[x′ u y′〉, M ′′[x′′ v y′′〉 for x′, x′′, y′, y′′ ∈ {a, b}
then ¬K[xw y〉 for x, y ∈ {a, b} and Ψ(w) = Ψ(u) + Ψ(v). 2

3 The reachability graphs of safe marked graphs

In this section, we present a novel characterisation of the reachability graphs
of safe, connected and live marked graphs, using the pps property (D) derived
in the previous section. We first recall some of the results of [3]. Throughout
the following (up to theorem 1), assume TS = (S,→, T, s0) to be a transition
system which is finite, totally reachable, deterministic, persistent, and backward
persistent, reversible, and satisfies P1.

3.1 Distances, lattices, and marked graph synthesis

Definition 1. Short paths - definition 24 in [3]

Let r, s be two states of an lts. A path r[τ〉s will be called short if |τ | ≤ |τ ′| for
every path r[τ ′〉s, where |τ | denotes the length of τ . 1

Lemma 1. Lemmata 25, 26, 27, and 28 of [3]

• In TS, a path s[τ〉s′ is short iff, for some x ∈ T , Ψ(τ)(x) = 0.
• If s[τ〉s′ and s[τ ′〉s′ are both short, then Ψ(τ) = Ψ(τ ′).
• Suppose that s[τ〉s′. Then Ψ(τ) = Ψ(τ ′) + m · 1, for some number m ∈ N,
where s[τ ′〉s′ is any short path from s to s′.

• There is a short path between any pair of reachable markings. 1

By lemma 1, the following definition is sound.

Definition 2. Distance - definition 29 of [3]

Let s, s′ be two states of TS , the Parikh vector of some short path from s to s′

is called the distance between s and s′, and denoted by Δs,s′ . 2

For x ∈ T , define �x⊆ S × S by s �x s′ iff s[α〉s′ for some α ∈ (T \ {x})∗.
Proposition 3. Lattices - lemma 30 and 32, and proposition 31 of [3]

• TS-x has state set S and label set T \{x}; (�x \id) is acyclic, and the paths
of (TS-x,�x) are precisely the short paths of TS not containing x.

• For any label x ∈ T , (TS-x,�x) is a complete lattice for the order �x.
• For every x ∈ T , there is a single state sx enabling only x, and a single state

rx only produced by x, which are the top and bottom elements of (TS-x,�x).
3
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Lemma 2. Labels on short paths into sx - lemma 33 of [3]

On any short path into sx, there is no label x. 2

Corollary 1. Properties of TS -x - corollary 34 of [3]

(TS -x,�x) is acyclic, weakly connected, and a complete lattice with a unique
maximal state sx and a unique minimal state rx. 1

When a given lts TS is solved by an unlabelled Petri net [1], places should be
introduced in order to constrain the behaviour, and more precisely, in order to
prevent the occurrence of some transition x in those states of TS that do not
enable x. It is therefore reasonable to consider the set of states that do not enable
x but for which x is necessarily enabled after one further step, as follows.

Definition 3. Sequentialising states - definition 35 of [3]

For any x ∈ T , Seq(x) = {s ∈ S | ¬s[x〉 ∧ (∀a ∈ s• : s[ax〉)}. 3

Theorem 1. Marked graph synthesis - theorem 40 in [3]

A labelled transition system TS is isomorphic to the reachability graph of a
bounded, connected and live marked graph MG(TS) iff it is totally reachable,
deterministic, persistent, backward persistent, reversible, finite, and satisfies P1.

1

[3] also contains a characterisation of the bound, as follows.

Proposition 4. Exact bounds – lemma 42 in [3]

The bound of the marked graph MG(TS ) is max{Δsy,sx(y) | y ∈ T, sy ∈ Seq(x)}.
4

3.2 The state spaces of live and safe marked graphs

Our aim is to replace the indirect characterisation of the bound given by proposi-
tion 4 by a direct one, using one of the properties derived in the previous section.
The lts depicted in figure 5 illustrates this idea.

Let us first see why the condition of proposition 4 – for bound 1 – is violated.
Consider the short path

6 = sb [ b 〉 7 [ e 〉 2 [ d 〉 4 [ b 〉 9 [ e 〉 sa = 0

It contains b twice. Moreover, sb ∈ Seq(a). According to theorem 1 and propo-
sition 4, any marked graph Petri net solution must necessarily have a non-safe

119



0=sa 1 2

3

4 5

6=sb 7
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e
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Fig. 5. An lts which has a 2-bounded but not a safe marked graph solution.

place with bound 2 leading from transition b to transition a. Note that there is
also a short path

0 = sa [ a 〉 1 [ c 〉 2 [ d 〉 4 [ a 〉 5 [ c 〉 sb = 6

containing a two times. However, this path is not indicative of an unsafe place
from a to b, since sa /∈ Seq(b).

We now show that, in order to characterise safeness, proposition 4 can essentially
be replaced by condition (D), in the sense that the following two properties are
equivalent for an lts TS:

1. TS is isomorphic to the reachability graph of a safe, connected and live
marked graph;

2. TS is totally reachable, deterministic, persistent, backward persistent, re-
versible, finite, and satisfies properties P1 and (D).

Since (1)⇒(2) is clear from the properties of live and safe marked graphs [5],
and by part (D) of proposition 1, we only need to prove (2)⇒(1).

Lemma 3. (D) and the rest implies safe marked graph solvability

Suppose that a transition system TS is totally reachable, deterministic, persis-
tent, backward persistent, reversible, finite, and satisfies properties P1 and (D).
Then the maximum in proposition 4 does not exceed 1.

Proof:

Consider a short path sy[y〉s[α〉sx, with sy ∈ Seq(x), which contains another y
in α. Consider the second y on such a path and an y-free prefix α′ of α with
sy[y〉s[α′〉s′[y〉. By lemma 2, α (and thus α′) is x-free. Let M = s′ and K = sy.

Because K ∈ Seq(x), we get ¬K[x〉 as well as K[yx〉. Along α′, transition x
never gets disabled because it is not contained in α′, and because of persistence.
Hence M [x〉. Thus, we get M [x〉 and M [y〉 and K[yx〉 and ¬K[xy〉.
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In other words, by contraposition, if the maximum in proposition 4 exceeds 1,
then ¬(D) holds true. This proves the claim. 3

To illustrate this lemma, we show how (D) is violated in figure 5. Consider x = a,
y = b, K = 6, and M = 4. We have M [a〉 and M [b〉, as well as K[ba〉. According
to (D), we should also have K[ab〉, but contrariwise, ¬6[a〉 in figure 5.

Corollary 2. Characterisation of safe marked graphs

A labelled transition system is isomorphic to the reachability graph of a safe, con-
nected and live marked graph iff it is totally reachable, deterministic, persistent,
backward persistent, reversible, finite, and satisfies P1 as well as (D). 2

The difference to theorem 1 is that, in addition, safeness is characterised by (D).

4 Concluding Remarks

In the first part of this paper, we have derived a collection of properties of plain,
pure and safe Petri nets. The ambition is that these properties encompass (or
imply) many generally known properties of pps nets and – by proxy – elemen-
tary nets, causing the resulting upper approximation of pps state spaces to be
as tight as possible. In the second part of the paper, we have shown how these
properties can contribute to the characterisation of a class of pps solvable transi-
tion systems, more precisely, transition systems solvable by live and safe marked
graphs.

Our hopes for future work are twofold. It would be nice if the properties listed
here can be usefully integrated in synthesis or pre-synthesis tools, for instance in
order to allow sophisticated quick-fail mechanisms. Also, it would be nice if they
could help in obtaining direct characterisations of the state spaces of net classes
which are different from marked graphs, such as live and pps free-choice nets, or
reversible, pps, persistent nets (though the difficulty of such a task should not
be underestimated).
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A Labelled transition systems and Petri nets

Definition 4. lts, reverse lts, reachability, Parikh vectors, cycles

A labelled transition system with initial state, abbreviated lts, is a quadruple
(S,→, T, s0) where S is a set of states, T is a set of labels with S ∩ T = ∅,
→⊆ (S × T × S) is the transition relation, and s0 ∈ S is an initial state.3 For a
label x ∈ T , the restricted lts TS -x is the lts (S, {(s, t, s′) ∈→| t �= x}, T \{x}, s0)
obtained by dropping all x-labelled transitions.

A label t is enabled in a state s, denoted by s[t〉, if there is some state s′ ∈ S
such that (s, t, s′) ∈→, and backward enabled in s, denoted by [t〉s, if there is
some state s′′ ∈ S such that (s′′, t, s) ∈→. For s ∈ S, let s• = {t ∈ T | s[t〉}.
For t ∈ T , s[t〉s′ iff (s, t, s′) ∈→, meaning that s′ is reachable from s through the
execution of t. The definitions of enabledness and of the reachability relation are
extended to sequences σ ∈ T ∗:

s[ε〉 and s[ε〉s are always true;
s[σt〉 (s[σt〉s′) iff there is some s′′ with s[σ〉s′′ and s′′[t〉 (s′′[t〉s′, respectively).
For any s ∈ S, [s〉 = {s′ ∈ S | ∃σ ∈ T ∗ : s[σ〉s′} denotes the set of states reachable
from s. Two lts with the same label set, (S,→, T, s0) and (S′,→′, T, s′0), will be
called isomorphic if there is a bijection β : S → S′ such that s′0 = β(s0) and
(r, t, s) ∈→ iff (β(r), t, β(s)) ∈→′.
3 Formally, S can be considered as a set of vertices and → as a set of edges of a directed
graph whose edges are labelled by letters from T .
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For a finite sequence σ ∈ T ∗ of labels, the Parikh vector Ψ(σ) is a T -vector
(i.e., a vector of natural numbers with index set T ), where Ψ(σ)(t) denotes the
number of occurrences of t in σ. s[σ〉s′ is called a cycle, or more precisely a cycle
at (or around) state s, if s = s′. The cycle is nontrivial if σ �= ε. An lts is called
acyclic if it has no nontrivial cycles. A nontrivial cycle s[σ〉s around a reachable
state s ∈ [s0〉 is called small if there is no nontrivial cycle s′[σ′〉s′ with s′ ∈ [s0〉
and Ψ(σ′) � Ψ(σ), where, by definition, � equals (≤ ∩ �=). An lts has property
P1 [3] if the Parikh vector of any small cycle in TS contains each transition
exactly once. 4

If there is some sequence s[τ〉s′ leading from state s to state s′, we sometimes
wish to emphasise the intermediate states. In that case, we also express this,
more explicitly, by an alternating sequence

s = q0t1q1t2 . . . qn−1tnqn = s′

meaning that τ = t1 . . . tn leads from s to s′ while visiting the intervening states
q0, q1, . . . , qn, in that order.

Definition 5. Basic properties of an lts

A labelled transition system (S,→, T, s0) is called

• totally reachable if [s0〉 = S (i.e., every state is reachable from s0);
• finite if S and T (hence also →) are finite sets;
• deterministic, if for any states s, s′, s′′ ∈ [s0〉 and sequences σ, τ ∈ T ∗ with

Ψ(σ) = Ψ(τ): (s[σ〉s′ ∧ s[τ〉s′′) ⇒ s′ = s′′ and (s′[σ〉s ∧ s′′[τ〉s) ⇒ s′ = s′′

(i.e., from any one state, Parikh-equivalent sequences may not lead to two
different successor states, nor come from two different predecessor states);

• reversible if ∀s ∈ [s0〉 : s0 ∈ [s〉 (i.e., s0 always remains reachable);
• persistent [6] if for all reachable states s, s′, s′′, and labels t, u, if s[t〉s′ and

s[u〉s′′ with t �= u, then there is some (reachable) state r ∈ S such that both
s′[u〉r and s′′[t〉r
(i.e., once two different labels are both enabled, neither can disable the other,
and executing both, in any order, leads to the same state);

• backward persistent if for all reachable states s, s′, s′′, and labels t, u, if s′[t〉s
and s′′[u〉s and t �= u, then there is some reachable state r ∈ S such that
both r[u〉s′ and r[t〉s′′ (i.e., persistence in backward direction). 5

If the lts is totally reachable, reversibility is the same as strong connectedness
in the graph-theoretical sense.

Definition 6. Petri nets, markings, reachability graphs

A (finite, initially marked, place-transition, arc-weighted) Petri net is a tuple
N = (P, T, F,M0) such that P is a finite set of places, T is a finite set of
transitions, with P ∩T = ∅, F is a flow function F : ((P ×T )∪(T ×P )) → N, M0
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is the initial marking, where a marking is a mapping M : P → N. A transition
t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places p ∈ P ,
M(p) ≥ F (p, t). If t is enabled at M , then t can occur (or fire) in M , leading
to the marking M ′ defined by M ′(p) = M(p) − F (p, t) + F (t, p) (denoted by
M [t〉M ′). The set of markings reachable fromM is denoted [M〉. The reachability
graph of N , RG(N), is the labelled transition system with the set of vertices [M0〉
and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. A Petri net N solves
a transition system TS, if RG(N) and TS are isomorphic. 6

Definition 7. Basic structural properties of Petri nets

For a place p of a Petri net N = (P, T, F,M0), let
•p = {t ∈ T | F (t, p) > 0}

and p• = {t ∈ T | F (p, t) > 0}. N is called connected if it is weakly connected
as a graph; plain if cod(F ) ⊆ {0, 1}; pure or side-condition free if p• ∩ •p = ∅ for
all places p ∈ P ; and a marked graph if N is plain and |p•| ≤ 1 and |•p| ≤ 1 for
all places p ∈ P . For t ∈ T and w ∈ T ∗, let #t(w) = Ψ(w)(t) denote the number
of times transition t occurs in w. The effect of a sequence w on a place p is

ef p(w) =
∑
t∈•p

Ψ(w)(t) −
∑
t∈p•

Ψ(w)(t)

i.e., the token difference w would generate on p if it were executed. For w ∈ T ∗,
define �w = {p ∈ P | ef p(w) < 0} and w� = {p ∈ P | ef p(w) > 0}. 7

For the effect of w ∈ T ∗ on a given place p, there are exactly three, mutually
exclusive, possibilities:

• ∑
t∈T F (p, t) ·#t(w) < 0. In that case, the effect of w on p is negative.

• ∑
t∈T F (p, t) ·#t(w) > 0. In that case, the effect of w on p is positive.

• ∑
t∈T F (p, t) ·#t(w) = 0. In that case, the effect of w on p is neutral.

In a pps net, when executing a sequenceM [w〉M ′ from a markingM to a marking
M ′, this specialises as follows, again with respect to a given place p:

• #p•(w) = #•p(w)+1. In that case, M(p) = 1 and M ′(p) = 0, and the effect
of w on p is negative, more precisely, equal to −1.

• #p•(w) = #•p(w)− 1. In that case, M(p) = 0 and M ′(p) = 1, and the effect
of w on p is positive, more precisely, equal to +1.

• #p•(w) = #•p(w). In that case, M(p) = M ′(p), and the effect of w on p is
neutral, more precisely, equal to 0.

In general, let �w (respectively, w�) denote the sets of places on which w has
a negative (respectively, positive) effect. Note that �ε = ∅ = ε�, since ε acts
neutrally on any place. Also, if Ψ(w1) = Ψ(w2), then

�w1 = �w2 and w�
1 = w�

2 .
This follows directly from the definitions, since for any place p, the number of
transitions of •p is the same in w1 as in w2, and similarly for the transitions in
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p•. Moreover, if M [wv〉M ′, then for every place p ∈ P the effect of wv on p is
equal to the effect of w on p plus the effect of v on p (ef p(wv) = ef p(w)+ef p(v)).
Also, if w′ and v′ are such that Ψ(w) = Ψ(w′) and Ψ(v) = Ψ(v′) then ef p(wv) =
ef p(w

′) + ef p(v
′).

In the pps case, because of plainness and pureness, the � notation is consistent
with the pre- and postset notation, more precisely: �w = •a and w� = a•

provided w = a ∈ T .

Definition 8. Basic behavioural properties of Petri nets

A Petri net N = (P, T, F,M0) is weakly live if ∀t ∈ T∃M ∈ [M0〉 : M [t〉 (i.e.,
there are no unfireable - hence dead, hence irrelevant - transitions); k-bounded
for some fixed k ∈ N, if ∀M ∈ [M0〉∀p ∈ P : M(p) ≤ k (i.e., the number of
tokens on any place never exceeds k); safe if it is 1-bounded; bounded if ∃k ∈
N : N is k-bounded; persistent (reversible) if its reachability graph is persistent
(reversible, respectively); and live if ∀t ∈ T∀M ∈ [M0〉∃M ′ ∈ [M〉 : M [t〉 (i.e.,
no transition can be made unfireable). Finally, N is called pps if it is plain, pure,
and safe. 8

Proposition 5. Properties of Petri net reachability graphs

The reachability graph RG of a Petri net N is totally reachable and deterministic.
N is bounded iff RG is finite. 5

The class of pps (plain, pure, safe) Petri nets specified in definition 8 is very much
related to elementary nets [10], in the following way. Elementary Petri nets have
a strengthened firing rule: viz., t can occur if all its pre-places have exactly one
token and all its post-places have exactly zero tokens. Every elementary net
with this strengthed firing rule can be turned into an equivalent pps net with
the usual firing rule, by adding appropriate complement places. Conversely, for
pps nets, the two firing rules coincide.
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