
Calculating the Number of Unique Paths in a
Block-Structured Process Model

Gert Janssenswillen1,2, Benoît Depaire1, and Toon Jouck1

Hasselt University, Agoralaan Bldg D, 3590 Diepenbeek, Belgium
Research Foundation Flanders (FWO), Egmontstraat 5, 1060 Brussels, Belgium

gert.janssenswillen, benoit.depaire, toon.jouck@uhasselt.be

Abstract. Estimating the number of execution paths in a process model
is a non-trivial task as one runs quickly into an combinatorial explosion
of possible paths. This paper introduces a new algorithm to calculate the
number of different execution paths for finite-behavior block-structured
models in a computationally efficient way. Block functions are defined
for the workflow constructs sequence, parallel, exclusive choice and finite
loops, such that the amount of behavior in each block-construct can
be computed efficiently. Subsequently, the block-structuredness of the
model is exploited to efficiently calculate the number of unique paths
in the model. The algorithm has been implemented for process trees,
although the translation to other modeling notations is straightforward.
An empirical analysis showed that the run-time of the algorithm is very
low, and only slightly impacted by the complexity of the model.

Keywords: Process Modeling, Process Mining, Process Trees, Process
Model Complexity

1 Introduction

In the field of process mining and process modeling, there are certain situations
where it is desirable to quantify the amount of behavior of a process model.
For example, if one wants to quantify the variance of behavior present in a
process model. Related to this, the precision measure for discovered process
models, expresses to what extent the behavior in the model does not exceed
the behavior in the log [3]. Similarly, the implicit realism measure [4] uses the
number of unique paths in a model to calculate the probability that a certain
amount of behavior from the model did not show up in the log. The amount
of behavior in a model can moreover be used as a proxy for model complexity.
As it can be computationally hard to compute the amount of behavior, several
metrics to calculate model complexity use proxies instead. [6].

Determining the amount of behavior in a process model, which we quantify
in this paper as the number of unique (execution) paths, is a challenging task.
One could naively traverse the process model recursively and count the number
of unique paths, but this quickly becomes computationally infeasible due to a
combinatorial explosion of different (parallel) paths.

138

The main idea presented in this paper is to compute the number of unique
paths in a block-structured finite-behavior process model in a more intelligent
and computationally efficient way. As we will show, this is possible by exploiting
the block-structuredness of the model. In this paper, we make the following
contributions:

– We construct a block function, which calculates the number of unique paths,
for each of the following process constructs: sequence (→), exclusive choice
(×), parallelism (∧) and structured finite loops (�k).

– We develop a generic approach to determine the total amount of behavior
in a block-structured finite-behavior process model.

– We provide an implementation for process trees.

Section 2 describes the general approach used by the algorithm, while in
Section 3 the implementation is elaborated upon. The performance of the tech-
nique in terms of run-time is discussed in Section 4 while Section 5 concludes
the paper.

2 General approach

In this section, the formal approach of the calculation will be described. First,
some assumptions will be make regarding the types of models taken into account.
In the subsequent paragraphs, different block functions for each of the specific
operator type will be defined. Finally, some limitations to the formal approach
will be pointed out, together with work-arounds in order to solve them.

2.1 Assumptions and used notations

It is important to keep in mind that we impose two restrictions on the pro-
cess models. Firstly, we assume finite-behavior models, since it would otherwise
make no sense to determine the number of unique traces. Consequently, loops
in our models have a maximum number of repetitions. While this appears very
restrictive, this can be justified by accepting a so-called fairness assumption,
which states that a task of a process cannot be postponed indefinitely. This
assumption therefore rules out infinite behaviors that are considered unrealis-
tic [1]. Secondly, we assume that models are block-structured, i.e. they can be
decomposed in properly nested subprocesses.

For the development and discussion of our approach, we will use the process
tree notation, because process trees are block-structured by definition. However,
the ideas in this paper are applicable to other notation languages as long as
the models are block-structured and finite in behavior. We formally define a
finite-behavior Process Tree, which is largely based on the definition in [2], as
follows:

Definition 1. Let A be the activity alphabet and A ⊆ A be a finite set of activ-
ities,then PT = (N, r, m, c) is a process tree such that:

139

– N is a non-empty finite set of nodes consisting of operator (NO) and leaf
nodes (NL) such that: NO ∩ NL = ∅

– r ∈ NO is the root node of the tree
– O = {→, ×, ∧,�k, ∨}, the set of operator types.
– m : N → A ∪ O is a mapping function mapping each node to an operator or

activity:

m(n) =

{
a ∈ A ∪ {τ}, if n ∈ NL.

o ∈ O, if n ∈ NO.

– c : N → N∗ is the direct-child-relation function:
c(n) = 〈〉 if n ∈ NL

c(n) ∈ N+if n ∈ NO

such that

• each node except the root node has exactly one parent:
∀n ∈ N\{r} : ∃p ∈ NO : n ∈ c(p) ∧ �q ∈ NO : p �= q ∧ n ∈ c(q);

• the root node has no parent:
�n ∈ N : r ∈ c(n);

• each node appears only once in the list of children of its parent:
∀n ∈ N : ∀1≤i<j≤|c(n)| : c(n)i �= c(n)j ;

• a node with a loop operator type has exactly three children such that the
first child is always executed first, the second child is executed maximum
k times, each time followed by the first child, and finally the third child
is executed once:
∀n ∈ N : (m(n) =�k) ⇒ |c(n)| = 3.

A process tree can have five different types of operators: sequence (→), paral-
lelism (∧), exclusive-choice (×), non-exclusive choice (∨) and a loop (�k). Fig. 1
shows a process tree and illustrates how it can be decomposed into blocks. A
block always consists of a root node which determines the block type. We dis-
tinguish between an activity block, a sequence block, an exclusive choice block,
a parallelism block, a structured finite-behavior loop block and a non-exclusive
choice block. The example in Fig. 1 consists of 8 blocks: 5 activity blocks, 1
sequence block, 1 exclusive choice block and 1 parallelism block.

2.2 Generic approach

The generic approach to determine the number of unique paths in a block-
structured finite-behavior process model is a two-step approach. First, we define
for each block type a block function which calculates the number of unique paths
in a block. The input for these block functions are the number of unique traces
xi in each of its child-blocks. Next we can calculate the total number of unique
paths through composition of the appropriate block functions.

To illustrate, take the process tree in Fig. 1 and assume block functions
F→(x1, . . . , xu), F×(x1, . . . , xu) and F∧(x1, . . . , xu). The total number of unique

140

→

a ×

b c

∧

d e

Fig. 1: Process Tree

paths in this process tree can be determined by applying the sequence block
function on the outer block: F→(x1, x2, x3). The first block is an activity block,
which implies x1 = 1 as it contains only a single path. To determine the number
of traces in the second and third block, we must apply the appropriate block
functions again. This results in F→(x1, F×(x1, x2), F∧(x1, x2)), which can be
calculated once we have defined the block functions.

2.3 Block Functions

Activity There is always only one way to execute a single activity. Therefore
the activity block function is a constant value:

Fa = 1 (1)

Note that silent activities, which are typically used to model specific behavior,
also have Fa = 1 since there is in fact exactly one way to execute a silent activity.

Sequence A sequence block consists of u child-blocks such that each child-
block i contains xi unique paths. As the blocks are executed in sequence, they
are executed independent from each other. Consequently, the total number of
paths of a sequence block can be calculated by multiplying the number of traces
in each child-block. This results in the following sequence block function:

F→(x1, . . . , xu) =
u∏

i=1
xi (2)

Exclusive Choice In an exclusive choice block, only one of the different blocks
will be executed at a time, therefore:

F×(x1, . . . , xu) =
u∑

i=1
xi (3)

141

Parallelism To illustrate the development of this block function, consider the
process tree in Fig. 2. Determining the number of unique paths in this tree is
equivalent to determining the number of unique words that can be formed by
the set of activity letters {a, b, c, d}, given specific constraints which make some
words, such as "bacd", invalid.

∧

→
a b

∧
c d

Fig. 2: A Process Tree with parallelism

To solve this challenge it is important to realize the following. Originally
we have a problem of determining all 4-letter words with the letters {a, b, c,
d}, given specific constraints. But once we have determined the positions of the
letters of the first element, i.e. {a, b}, our problem reduces to creating a 2-letter
word with the remaining letters {c, d}. This holds because any insertion of a
and b in the four letter words, leaves 2 positions for the remaining letters and
since the elements are in parallel, they impose no further restrictions on each
other.

Therefore, we can tackle this problem by determining in how many ways
we can validly insert the letters of the first element into a four-letter word and
multiply this by the number of ways we can validly insert the letters of the second
element in a two-letter word. To determine the number of ways we can insert
the letters of the first and second element in respectively a four- and two-letter
word is solved in two steps. First we determine the number of ways we can select
the appropriate number of positions in our n-letter word and next we determine
the number of ways we can validly insert our activities.

For the first element, we start by determining the number of ways we can
select two positions from our four-letter word, which equals to

(4
2
)

= 6 combi-
nations and multiply this by the valid number of ways we can insert {a, b} into
these two positions. The latter equals the number of paths the first child-block
contains, which is 1 for a sequence of two activities. Therefore the number of
ways we can validly insert {a, b} in our four-letter word equals 1

(4
2
)

= 6. We
can repeat this for the second element, which results in 2

(2
2
)

= 2 ways to validly
insert {c, d} in a two-letter word, since there is only one way to select 2 positions
from a two letter word and there are two traces possible by a parallel construct
of two activities. To conclude, the process tree in Fig. 2 has 12 unique paths.

To formalize this approach, we need some additional notation. Assume zi to
be the number of non-silent activities in child-block i, in addition to the use of
xi and u to determine respectively the number of unique paths in child-block
element i and the number of child-blocks. We can then express the parallelism
block function as follows:

142

F∧(x1, . . . , xu, z1, . . . , zu) =
u∏

i=1
xi

(u∑
j=i

zj

zi

)
(4)

Structured Finite Loops A structured finite loop block is a special kind of
process construct in the sense that it always contains three child-blocks 1. The
first child-block is always executed, the second child-block is executed a limited
number of times (k), each time followed by the first child-block, and finally the
third child-block is executed to conclude. This structure allows us to transform
a finite loop into an equivalent structure using → and × nodes, as illustrated by
Fig. 3

�2

a b c

(a) Standard representation

→

a ×

τ →
b a

→

b a b a

c

(b) Equivalent representation

Fig. 3: Finite Loop Construct

Based on the block functions F→ and F×, we can now easily see that the
finite loop block function can be expressed as follows, where k represents the
maximum number of loop-iterations:

F�(x1, x2, x3, k) = x1 ·
k∑

i=0
(x1x2)k · x3 (5)

2.4 Limitations

Our suggested approach holds two limitations the reader should be aware of.
Firstly, there is no block function for a non-exclusive choice construct. Secondly,
the parallelism block function assumes that the number of activities zi within a
child-block i is fixed. However if a block contains an (exclusive) choice construct
or a finite loop construct, this assumption is violated.
1 This is so for the process tree notation. One could argue whether the third element is

in fact part of the loop when considering other notations, but the point remains that
it is always possible to transform a structured finite loop to a three-block construct.

143

Both limitations can be circumvented by preprocessing the process tree. As
for the first limitation, non-exclusive choice constructs can be transformed into
an exclusive choice between all possible combinations of the non-exclusive choice
construct put in parallel. This is illustrated in Fig 4.

∨
a b

(a) Non-exclusive Choice construct

×

a b ∧
a b

(b) Exclusive Choice construct

Fig. 4: Transformation of non-exclusive choice construct.

As for the second limitation, we can always transform finite loop constructs
(cf. Fig. 3) and non-exclusive choice constructs (cf. Fig. 4), such that we only
have sequence, exclusive choice and parallelism constructs left. Subsequently, we
can transform the tree by duplicating parts of the tree such that exclusive choice
constructs only appear as parent and never as child of parallelism constructs.
This transformation is illustrated in Fig. 5

∧
a ×

b →
c d

(a) × as child of ∧

×

∧
a b

∧
a →

c d

(b) × as parent of ∧

Fig. 5: Transformation of process tree to remove × as siblings of ∧.

Note that these are naive approaches to deal with the given limitations which
should always work. However, a more efficient work-around to deal with these
limitations which does not require explicit transformation of the process tree is
possible, as we will show in the implementation.

3 Implementation

In our implementation, we follow a slightly different approach than suggested
above such that we do not need to transform the process tree. Instead of comput-
ing the number of unique paths for each block, we compute a block dictionary for
each block such that the keys represent a specific path-length (i.e. the number

144

of visible activities) and the values represent the number of unique paths of that
specific length in the block. We define this block dictionary as

T = {(zi, xi)|∀(zi, xi), (zj , xj) : zi = zj ⇒ (zi, xi) = (zj , xj)} (6)

For example, a block with T = {(1, 3), (3, 2)} contains 3 paths of length 1
and 2 paths of length 3. To retrieve the number of unique paths in a pro-
cess tree, one has to sum over all values of the block dictionary for the root
block:

∑u
i=1 xi. The implementation has been put available as an R-package on

github.com/gertjanssenswillen/ptR.

3.1 Preliminaries

Firstly, we define a function fZ which returns the set of all paths lengths in a
specific block dictionary.

fZ(T) = {z|∃(zj , xj) ∈ T : zj = z} (7)

Next, we define the function fX : T × N → N, which determines how often a
path of length z occurs in the block corresponding to block function.

fX(T, z) =

{
0, if z /∈ fZ(T)
x, else such that (z, x) ∈ T

(8)

Finally, we define the operator
⊎

for two block dictionaries Ti and Tj as
follows:

Ti

⊎
Tj = {(z, x)|z ∈ fZ(Ti) ∪ fZ(Tj), x = fX(Ti, z) + fX(Tj , z)} (9)

3.2 Algorithm

Algorithm 1 shows the main code of the implementation, which implements
the general idea of our approach, i.e. we exploit the block-structuredness of the
model. We start with the block defined by the root-node and calculate the block
dictionary based on the block-type and the block dictionaries of its child-blocks.
If the root-block is a visible or silent activity, its block dictionary is respectively
{(1, 1)} and {(0, 1)} (cf. line 6-9).

In all other cases, we first determine the block dictionaries of the child-
blocks (line 10-14) by applying the algorithm recursively. Next, we apply the
appropriate block function based on the block type (line 15-25). These block
functions are an extension of the block functions described above, since they need
to compute block dictionaries instead of scalar values representing the number
of paths. In the next section, we will illustrate each extended block function
by means of the process tree shown in Fig. 6. Note that this process tree is
annotated, i.e. each node contains a superscript identifying the node number as
well as its block dictionary.

145

Algorithm 1 : NumberOfPaths
1: Input:
2: P T = (N, r, m, c): A Process Tree
3: k: A maximum number of iterations for loops
4: Output:
5: T: a dictionary characterizing the paths in PT
6: if r ∈ A then
7: T = (1, 1) �Tree contains one path of length one
8: else if r = τ then
9: T = (0, 1) �Tree contains one empty path

10: else
11: u = |c(r)|
12: for each child ci of P T do
13: Ti = NumberOfP aths(ci) �Call the function recursively on each of the

subtrees
14: end for
15: if r = sequence then �Use results and type to calculate end result
16: T = Sequence(T1, ..., Tu)
17: else if r = choice then
18: T = Choice(T1, ..., Tu)
19: else if r = parallel then
20: T = P arallel(T1, ..., Tu)
21: else if r = loop then
22: T = Loop(T1, ..., T3, k)
23: else
24: T = Or(T1, ..., Tu) �i.e. non-exclusive choice
25: end if
26: end if

3.3 Extended Block Functions

Sequence To illustrate the implementation of the extended sequence block
function (Alg. 2), consider →4 in Fig. 6. This sequence block has two children,
with the following dictionaries {(2, 4), (4, 24)} and {(1, 1)}. We have to combine
every key-value pair from the first dictionary with every key-value pair from the
second dictionary (line 8-9). For any combination we have to create a new key-
value pair and add it to the parent’s block dictionary (line 10-12). Thus, (2, 4)
with (1, 1) produces (3, 4) and (4, 24) with (1, 1) results in (5, 24). Note that line
10 corresponds to the general block function described before.

Parallelism To illustrate the implementation of the extended parallelism block
function (Alg. 3), consider ∧8 in Fig. 6. This parallelism block has two children,
with the following dictionaries {(1, 1} and {(1, 1)}. Since both dictionaries have
only one key-value pair, we only have to combine those two key-value pairs (line
8-9). To compute the key-value pair for the parent’s block dictionary we apply
the formulas in line 10 and 11. Thus, (1, 1) and (1, 1) result in (1+1, 1

(2
1
)
1
(1

1
)
) =

146

{(4, 4), (5, 20), (6, 28), (7, 196), (8, 28), (9, 252), (10, 24), (11, 264)}
∧1

{(0, 1), (1, 1)}
×2

{(1, 1)}
a

{(0, 1)}
τ

{(4, 4), (6, 28), (8, 28), (10, 24)}
�2

3

{(1, 1)}
b

{(1, 1)}
c

{(3, 4), (5, 24)}
→4

{(2, 4), (4, 24)}
∨5

{(2, 2)}
→6

{(1, 1)}
d

{(1, 2)}
×7

{(1, 1)}
f

{(1, 1)}
i

{(2, 2)}
∧8

{(1, 1)}
e

{(1, 1)}
g

{(1, 1)}
h

Fig. 6: Process Tree annotated with block dictionaries.

Algorithm 2 : Sequence
1: Input:
2: {Ti | i = 1, ..., u}: u dictionaries representing paths in child-blocks of a se-

quence node
3: Output:
4: T: a dictionary representing the paths in a sequence node
5: S = T1
6: for Ti ∈ T2, . . . , Tu do
7: R = {}
8: for (zr, xr) ∈ S do
9: for (zi, xi) ∈ Ti do

10: x0 = xr · xi

11: z0 = zr + zi

12: R = R
⊎{(z0, x0)}

13: end for
14: end for
15: S = R
16: end for

147

(2, 2). Note again that line 10 corresponds to the general block function described
before.

Algorithm 3 : Parallel
1: Input:
2: {Ti|i = 1, ..., u}: u dictionaries representing paths in children of a parallel node
3: Output:
4: T: a dictionary representing the paths in a parallel node
5: R = T1
6: for Ti ∈ T2, . . . , Tu do
7: S = {}
8: for (zr, xr) ∈ R do
9: for (zi, xi) ∈ Ti do

10: x0 = xr ·
(

zr+zi
zr

)
· xi ·

(
zi
zi

)
11: z0 = zr + zi

12: S = S
⊎{(z0, x0)}

13: end for
14: end for
15: R = S
16: end for

Exclusive Choice To illustrate the implementation of the extended exclusive
choice block function (Alg. 4), consider ×7 in Fig. 6. This exclusive choice block
has two children, with the following dictionaries {(1, 1} and {(1, 1)}. The exclu-
sive choice block is a bit simpler as it just adds all the key-value pairs of the
children’s dictionaries to the parent block dictionary. Thus after executing lines
6-10, we have the following set of key-value pairs: {(1, 2)}. Note that for this
extended block function, it is in fact the

⊎
operator which corresponds to the

general block function described above.

Algorithm 4 : Exclusive Choice
1: Input:
2: {Ti | i = 1, ..., u}: u dictionaries representing paths in children of a choice node
3: Output:
4: T: a dictionary representing the paths in a choice node
5: R = T1
6: for Ti ∈ T2, . . . , Tu do
7: for (zi, xi) ∈ Ti do
8: R = R

⊎{(zi, xi}
9: end for

10: end for

148

Finite Structured Loop For the finite structured loop it is not possible to
apply the general block function due to our approach which requires to calculate
the number of unique paths for each path size separately. Therefore we fall
back to the insight, illustrated in Fig. 3, that a finite structured loop can be
transformed into an equivalent structure of sequence constructs and a exclusive
choice construct. To illustrate consider �2

3 in Fig. 6.
At lines 9-14, the code in Alg. 5 first determines the block dictionary of the

exclusive choice in the transformation (cf. Fig. 3b). At first, XORset = {(0, 1)},
which represents the invisible task. Next, a single repeat-block is added, which
consists of a sequence of the redo and do parts. In our example, this results in
XORset = {(0, 1), (2, 1)}. Since, the maximum iterations of the repeat-block
is two, we add another block which repeats the repeat-block twice, resulting in
XORset = {(0, 1), (2, 1), (4, 1)}. Finally, we calculate the block dictionary of the
entire loop-block, by applying the sequence block function to the do-block, the
XOR-block and the exit-block. First it combines the do and XOR-block, which
results in {(1, 1), (3, 1), (5, 1)}. Next, it combines this with the exit block, which
results in {(4, 4), (6, 28), (8, 28), (10, 24)}.

Algorithm 5 : Loop
1: Input:
2: {T1, T2, T3}: 3 dictionaries representing paths in the children of a loop node
3: k: A maximum number of iterations for loops
4: Output:
5: T: a dictionary representing the paths in a loop node
6: do = T1
7: redo = T2
8: exit = T3
9: repeat = {(0, 1)}

10: XORset = repeat
11: for i in 1, . . . , k do
12: repeat = Sequence(repeat, redo, do)
13: XORset = ExclusiveChoice(XORset, repeat)
14: end for
15: T = Sequence(do, XORset, exit)

Non-exclusive choice For the extended non-exclusive choice block function,
we exploit the insight that a non-exclusive choice construct can be rewritten as
an exclusive choice of parallelism construct, as illustrated in Fig. 4. This can be
seen in the code in Alg. 6 on lines 6-7. Here, we iterate over all possible subsets
of children, i.e. P({Ti})2, except the empty set. To illustrate, consider ∨5, which
has two children with block dictionaries {(2, 2)} and {(2, 2)}. When executing
this choice block, one can either execute only the first child, only the second
2 P({Ti}) refers to the set of all subsets of {T1, ..., Tu}

149

child or both children. When executing only a single child, the resulting block
dictionary will be that of the child. When executing both children in parallel,
the block dictionary will be {(4, 2

(4
2
)
2
(2

2
)
)} = {(4, 24)}. Next, the union is taken

of the three block dictionaries, which results in the set {(2, 4), (4, 24)}.

Algorithm 6 : Or (non-exclusive choice)
1: Input:
2: {Ti|i = 1, ..., u}: u dictionaries representing paths in children of an or node
3: Output:
4: T: a dictionary representing the paths in a or node
5: R = ∅
6: for S ∈ P({Ti}) \ ∅ do �Iterate over all non-empty subsets of the branches
7: R = R

⊎
P arallel(S) �Calculate the paths using the Parallel function

8: end for

4 Performance of the algorithm

The performance of the algorithm was empirically investigated on a large collec-
tion of process trees. The trees were generated using the framework described
in [5]. Each of the five constructs was given an equal probability of occurrence,
i.e. 20%. The occurrence of silent transitions was set at 10%. The number of
visible activities in the trees follows a triangular distribution with minimum 10,
maximum 50 and a mode of 30. All experiments were executed on a workstation
with 2 processors (2.30Ghz; 4 virtual threads) and 8GB of memory.

Fig. 7 shows both the run-time (in seconds) and the number of paths in
relation to the number of visible activities in the tree. In Fig. 7a, it can be
seen that there appears to be a linear relation between the number of visible
activities and the run-time. However, the number of activities on itself is not a
very precise proxy for the complexity of a tree, since the real impact stems from
the operators and their relative positions in the tree. Therefore, the number of
paths itself appears to be a more reliable estimate for the complexity of the
tree. Fig. 7b shows the relation between the number of paths (with logarithmic
transformation), as a proxy for the complexity of the tree, and the run-time.
Note that due to the logarithmic transformation, the relation is actually linear.

In order to quantify the relationship between complexity, as measured by the
number of paths, and run-time of the algorithm, several linear regression models
were fitted on the data. As well a linear-linear model as a linear-log model, and a
log-log model was composed. These results showed that the log-log model fitted
the data best. The result of this regression are shown in Table 1.

The interpretation of the regression is that when the complexity increases
with one order of magnitude (i.e. an increase of 1000%), the run-time will increase
with 100.004, or 0.8%. Thus, although a positive relation exist, it can be stated
that it is almost negligible.

150

0

2

4

10 15 20 25 30 35 40 45 50
Number of visible activities

R
un

tim
e

(in
 s

ec
on

ds
)

(a) Run-time in relation to the number of activities

0

2

4

1 10 100
Number of paths (log)

R
un

tim
e

(in
 s

ec
on

ds
)

(b) Runtime in relation to number of paths

Fig. 7: Influence of the number of activities and number of paths on run-time

5 Conclusions and future work

Estimating the number of execution paths in a process models is a non-trivial
task. Approaches which enumerate all possible paths or traverse the state space
of the model become quickly unfeasible, due to the explosion of possible paths
in the presence of parallel constructs. This paper therefore introduced a new
technique to calculate the number of execution paths for finite block-structured
models. The technique has been implemented for process trees, but can easily
be transferred to other model notations.

Instead of enumerating all the paths, the technique constructs so-called block
dictionaries for each block in the process model, which contain the number of
paths per given length. The result of the algorithm is an annotated process tree,
where each of the operator nodes has been allocated a block dictionary describing

151

Table 1: Log-log regression between number of paths and runtime

Dependent variable:
log(runtime)

log(numberOfTraces) 0.004∗∗∗

(0.0001)

Constant −0.453∗∗∗

(0.008)

Observations 985
R2 0.490
Adjusted R2 0.489
Residual Std. Error 0.169 (df = 983)
F Statistic 943.526∗∗∗ (df = 1; 983)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the number of execution paths it contains. The number of paths in the tree can
then be obtained by summing over the block dictionary of the root node.

The evaluation of the performance of the algorithm showed that even for trees
with more than 10500 different paths, the run-time does not exceed 5 seconds.
Using linear regressions, only a negligible effect of the complexity of the model
on the run-time was found.

As future work, the theoretical complexity of the algorithm should be investi-
gated, as well as a formal proof of it’s completeness. Also extensions towards the
ability to cope with long-term dependencies could be investigated. Furthermore,
the obtained annotated process tree is expected to provide useful new insights
in process complexity, as it is able to point out at which locations in the process
the amount of behavior increases drastically.

References
1. Baier, C., Katoen, J.P., et al.: Principles of model checking, vol. 26202649. MIT

press Cambridge (2008)
2. Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for Mining Structured Process

Models. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven (2014)
3. Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, preci-

sion, generalization and simplicity in process discovery. In: On the Move to Mean-
ingful Internet Systems: OTM 2012, pp. 305–322. Springer (2012)

4. Depaire, B.: Process model realism: Measuring implicit realism. In: Business Process
Management Workshops. pp. 342–352. Springer (2014)

5. Jouck, T., Depaire, B.: Generating Artificial Data for Empirical Analysis of Pro-
cess Discovery Algorithms: a Process Tree and Log Generator. Technical Report,
Universiteit Hasselt, Universiteit Hasselt (Mar 2016)

6. Mendling, J.: Detection and prediction of errors in EPC business process models.
Ph.D. thesis, Wirtschaftsuniversität Wien Vienna (2007)

152

