
Structured Feedback

A Distributed Protocol for Feedback and Patches on the Web of Data

Natanael Arndt
∗

Kurt Junghanns Roy Meissner

Philipp Frischmuth Norman Radtke Marvin Frommhold

Michael Martin

Agile Knowledge Engineering and Semantic Web (AKSW)
Institute of Computer Science

Leipzig University
Augustusplatz 10

04109 Leipzig, Germany
{arndt|kjunghanns|meissner|frischmuth|radtke|frommhold|martin}@informatik.uni-leipzig.de

ABSTRACT
The World Wide Web is an infrastructure to publish and re-
trieve information through web resources. It evolved from a
static Web 1.0 to a multimodal and interactive communica-
tion and information space which is used to collaboratively
contribute and discuss web resources, which is better known
as Web 2.0. The evolution into a Semantic Web (Web 3.0)
proceeds. One of its remarkable advantages is the decentral-
ized and interlinked data composition. Hence, in contrast
to its data distribution, workflows and technologies for de-
centralized collaborative contribution are missing. In this
paper we propose the Structured Feedback protocol as an
interactive addition to the Web of Data. It offers support
for users to contribute to the evolution of web resources, by
providing structured data artifacts as patches for web re-
sources, as well as simple plain text comments. Based on
this approach it enables crowd-supported quality assessment
and web data cleansing processes in an ad-hoc fashion most
web users are familiar with.

CCS Concepts
•Information systems → Web applications; Collab-
orative and social computing systems and tools; Web
services; Resource Description Framework (RDF);

Keywords
linked data, dssn, semantic pingback, pubsubhubub, feed-
back, distributed semantic services, quality, crowd sourcing

1. INTRODUCTION
The Internet and the World Wide Web (WWW) in par-

ticular provide an infrastructure for retrieving information
∗corresponding author

© 2016 Copyright held by the author/owner(s).
WWW2016 Workshop: Linked Data on the Web (LDOW2016)
April 12, 2016, Montréal, QC, Canada

through web resources. With the advent of discussion fo-
rums, blogs, short message services like Twitter and on-
line social networks like Facebook, the web evolved towards
the Web 2.0. With the Semantic Web resp. Web of Data,
the web is now evolving towards a Web 3.0 consisting of
structured and linked data resources (Linked Data, cf. [3]).
Even though Web 2.0 services can be transformed to pro-
vide Linked Data [7], there is a need for services to collabo-
ratively interact with meaningful data and enable (Linked)
Data Services to be integrated into the existing social web
stack. Currently the Distributed Semantic Social Network
(DSSN, section 3.1 and [18]) is available as a framework
resp. platform to build social services based on the Web of
Data. In addition to providing static RDF datasets, which
can be queried as Linked Data or via a SPARQL service,
it enables active communication along edges of the Giant
Global Graph1 and a “follow”-function for resources.
Building on the existing stack, we propose an open proto-

col on the Web of Data, which is distributed across multiple
services, to integrate a collaborative feedback mechanism
on structured and unstructured web resources. The proto-
col integrates elements of the architecture for a Distributed
Semantic Social Network (cf. [18]), in particular the Seman-
tic Pingback protocol (cf. [17]) and can be extended by a
publish-subscribe system using PubSubHubbub (cf. [8]).
Current mechanisms to provide feedback on web resources

are, but are not limited to, leaving a comment through a
form provided by a publisher of a webpage, publishing a
comment along with a link to the web resource on an on-
line social network or doing so on a personal weblog. The
problems with this kind of commenting are: either it is hard
for the publisher of the web resource to get an overview of
the available feedback to his content, or the user who leaves
the comment is limited to the possibilities provided by the
publisher to express the feedback and is not able to select
the location of the comment and maybe specify the audience
on her own. In contrast to this situation, we are proposing
a crossover approach, which serves the upsides of the cur-

1http://dig.csail.mit.edu/breadcrumbs/node/215

http://dig.csail.mit.edu/breadcrumbs/node/215

rent situation to both parties, commenters and publishers.
It gives commenters the possibility to publish comment re-
sources at their leisure in an arbitrary location on the web.
It is integrated in the DSSN and has the possibility to be
integrated in further online social networks. Publishers are
actively informed about distributed comments on the web.
In addition, it provides better possibilities to express the
user’s feedback by creating structured patches to be sent to
the publisher, which in turn are easier to apply than a verbal
description about a mistake.
Nevertheless, the social network is just a part of the WWW

and the Linked Open Data Cloud [4, 15]. Nowadays the Web
of Data is a big worldwide database of structured data in
a varying quality, which is constantly growing by human as
well as machine generated data. This global graph covers a
huge amount of topics, disciplines and areas and is highly
interlinked [4, 15]. But this graph is mainly static and there
are no commonly established practices for the crowd to con-
tribute to the data quality or content of the data sets in an
ad-hoc way, as it is possible for the Wikipedia or in online
social networks. With the ability of our approach to provide
structured patches to web resources, crowd based quality as-
sessment and web data cleansing processes become feasible.

The paper is structured as follows: general requirements
to a distributed structured feedback protocol are formulated
in section 2, followed by relevant preliminaries, such as the
DSSN, Semantic Pingback, PubSubHubbub and our inter-
pretation of Linked Data, in section 3. The proposed proto-
col is specified in detail in section 4. Further we are docu-
menting our reference implementation in section 5, which is
the basis for our demonstration and evaluation in section 6.
We are discussing the state of the art and related work in
section 7. Finally a conclusion and an outlook on future
work is given in section 8.
Throughout the paper we are referring to several RDF

terms using simplified QNames2. The prefix definitions are
as follows:

@prefix fb-res: <http://resource.feedback.aksw.org/> .
@prefix fb-feed: <http://feed.feedback.aksw.org/> .
@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sioc: <http://rdfs.org/sioc/ns\#> .
@prefix sioct: <http://rdfs.org/sioc/types\#> .
@prefix pingback: <http://purl.org/net/pingback/> .
@prefix cs: <http://purl.org/vocab/changeset/schema\#> .
@prefix prov: <http://www.w3.org/ns/prov\#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema\#> .

2. REQUIREMENTS
In the following we present the requirements for an open

federated commenting system on the web. The require-
ments are targeted by our proposed architecture and pro-
tocol through different components.

Decentralized Storage of Comment Resources.
Comment Resources should be stored in any location on

the web. Preferably the location should be publicly available
2https://www.w3.org/TR/2009/REC-xml-names
-20091208/

and has to be identifiable and locatable by a URL. The
location of a Comment Resource should be selected by its
author.

Structured Feedback for Web Resources.
Besides the classic way of giving feedback for a Web Re-

source by adding a simple full text comment it should be
possible to give a more precise structured comment to a re-
source. This enables users to directly fix the mistake and
provide the resource publisher with a patch to apply to the
Web Resource, instead of verbally describing the position of
a mistake in a document. This behavior is comparable to
the concept of pull-requests in software engineering e. g. on
git-based collaboration platforms.

Comment Container for a Web Resource.
All comments related to a specific Web Resource have to

be aggregated in a single place, which is referenceable from
this Web Resource. This aggregated resource has to contain
references to the original comments. The Comment Con-
tainer can be an RDF resource or an RSS web feed (cf. [1]).

Active Updating of the Comment Container with new
Comment Resources.
The Comment Container has to be updated if new Com-

ment Resources for the respective Web Resource are created.
This is needed to have an up-to-date resource available to
the content publisher to get informed about new comments
and be able to integrate structured patches into his data set.

Active Notification for Subscribers of Comments on
Web Resources.
Web users which are interested in a specific Web Resource

should be able to subscribe to a Comment Container related
to the Web Resource of interest. This Comment Container
should be kept up to date regarding new comments. Sub-
scribers have to be actively informed of updates on Comment
Containers they are subscribed to.

3. PRELIMINARIES
The proposed architecture and protocol is based on several

existing technologies and protocols used on the Web of Data.
From a general perspective it is based on HTTP. Specifically
it is relying on and following the widely used Linked Data
principles (cf. [3]), which are slightly extended to support
our needs (cf. section 3.4). Since this proposal is partially
located in the area of social networks it comprises the two
main protocols from the Distributed Semantic Social Net-
wok (DSSN, cf. section 3.1), which are Semantic Pingback
(cf. section 3.2) and PubSubHubbub (cf. section 3.3).

3.1 Distributed Semantic Social Network
The Distributed Semantic Social Network (DSSN) is an

architecture for an open online social network which is dis-
tributed across the web. It is based on Web 2.0 and Se-
mantic Web technologies, such as WebID for authentication,
the FOAF vocabulary to describe personal profiles, Seman-
tic Pingback (cf. section 3.2) and PubSubHubbub (cf. sec-
tion 3.3) for active communication on the Semantic Web
[18]. Using the DSSN architecture it is possible to com-
municate with sioc:Posts and activity feeds across server
boundaries [2, 18]. This principle is used as a foundation

https://www.w3.org/TR/2009/REC-xml-names-20091208/
https://www.w3.org/TR/2009/REC-xml-names-20091208/
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#Post

for the proposed protocol to allow the distribution and in-
terlinking of comments on Web Resources.

3.2 Semantic Pingback
Semantic Pingback3 (cf. [17]) is an approach for bring-

ing a social dimension to the Linked Data Web by adding
semantic to the well-known Pingback mechanism (cf. [12]),
a technological cornerstone of the blogosphere. By letting
services notify each other about relations between RDF re-
sources it activates simple RDF relations and makes it pos-
sible to implement communication of services and actions
among edges on the Web of Data. Basically the protocol
works as follows: A resource (source) referring to another
resource (target) is published on the web. The Pingback
client which is observing the source starts an auto discovery
for the Pingback server announced by the target and sends
a Pingback ping to this server. The ping contains the URLs
of the source and target as payload. On receiving the ping,
the server verifies it by fetching the source and looking for
the link to the target. If the ping was valid, the server can
invoke further actions, as defined by its implementation.

3.3 PubSubHubbub
PubSubHubbub is a publish subscribe protocol for the

web (cf. [8]). The basic artifact is a topic, which can be any
kind of resource on the web identified by a URL. To allow
the distribution of events happening on the topics a hub is
the basic dispatcher. A publisher of a topic notifies the hub
about updates on its topics, while the hub is responsible of
informing the subscribers by calling their specified callback
URLs.

3.4 Linked Data
Since Linked Data is a basis of the Semantic Pingback pro-

tocol (cf. section 3.2) and the Structured Feedback protocol
makes use of this paradigm, too, we provide some words on
our interpretation. The four rules as formulated in [3] are:
(1) Use URIs as names for things (2) Use HTTP URIs so
that people can look up those names. (3) When someone
looks up a URI, provide useful information, using the stan-
dards (RDF*, SPARQL) (4) Include links to other URIs[,]
so that they can discover more things.
The Structured Feedback protocol relies on those rules,

by assuming that all resources are identified using an HTTP
URI and it is possible to query the URI of a Web Resource,
Comment Resource and Comment Container, and RDF data
is returned, either directly or by content-negotiation using
HTTP Accept-Headers. Further links are used to connect
the resources and services, and all resources are published
according to these rules.
One issue we were facing with Linked Data was that noth-

ing is mentioned about retrieving named graphs. According
to the RDF Recommendation [5]: “Nevertheless, it is some-
times desirable to work with multiple RDF graphs while
keeping their contents separate” and “An RDF dataset is a
collection of RDF graphs. All but one of these graphs have
an associated IRI or blank node. They are called named
graphs, and the IRI or blank node is called the graph name.
The remaining graph does not have an associated IRI, and is
called the default graph of the RDF dataset.” [5]. In our pro-
tocol we want to implement the Comment Container using

3http://aksw.org/Projects/SemanticPingback

named graphs to represent a feed resp. collection of Com-
ment Resources related to a Web Resource. In order to be
able to serve those sets as Linked Data, without the need
of a querying service, we’ve decided to extend the interpre-
tation of the Linked Data rules to support named graphs.
The retrieval of statements is further discussed in the section
“Browsable graphs” in [3]. Especially “describing a node” is
defined as:

1. Returning all statements where the node is a subject
or object; and

2. Describing all blank nodes attached to the node by one
arc.

When applying those rules to an RDF dataset, we have
interpreted these two rules to be executed on the default
graph4, while we have extended these two rules by the fol-
lowing two rules to target the other named graphs of an
RDF dataset:

3. If a named graph with the same URI, as the node,
as graph name is defined and accessible, returning all
quad-statements of the identified named graph; and

4. All quad-statements of a named graphs with a blank
node as graph name, where the blank node is contained
in the set of blank nodes following the second rule, are
returned.

The suggested additional rules, are interpreted in a fully
backward compatible way, which means, only if a serializa-
tion format with RDF dataset support is accepted by the
requesting client, the quad-statements are returned.

4. THE STRUCTURED FEEDBACK
ARCHITECTURE AND PROTOCOL

The proposed approach, Structured Feedback, is an open
protocol, distributed across multiple communicating compo-
nents. It is based on several Semantic Web and DSSN pro-
tocols. Especially it is following the Linked Data paradigm
(cf. section 3.4) and applies the Semantic Pingback (cf. sec-
tion 3.2) and PubSubHubbub (cf. section 3.3) protocols. All
components interacting through the protocol are depicted
in fig. 1.

Web Resource.
Any resource published on the WWW. It can be repre-

sented in any format, but has to be identifiable and re-
trievable by a URL. It is encouraged to use resources in
an RDF format, but baseline functionality is possible for
other types as well. The Web Resource has to announce a
Semantic Pingback Service and a Comment Container as
shown in listing 1, or using the according header link rela-
tions rel="pingback" and rel="alternate".
dbpedia:Leipzig
pingback:to <http://pingback.feedback.aksw.org/> ;
sioc:feed fb-feed:dbpedia-Leipzig .

Listing 1: A minimal example of the necessary
triples of a Web Resource to announce a Semantic
Pingback Service and a Comment Container

4This interpretation should be inline with the non-
normative section “Content Negotiation of RDF Datasets”
of the RDF Recommendation [5]

http://aksw.org/Projects/SemanticPingback

Legend

Resource
Hosting
Service

Semantic Pingback
Service

Comment ContainerAnnotation Client

Comment Resource

PubSubHubbub
Hub

Web Resource

Data Set

Data

Process

Database

cr
ea

te
s/

up
da

te
sp

in
g
b
a
ck

creates

retrieves

contained in

update

H
TT

P H
E
A

D
 Lin

k re
l=

"h
u
b
"

a
to

m
:lin

k

re
trie

ve
s

re
tri

eve
s

sioc:reply_of

p
in

g
b
a
ck

:s
e
rv

ic
e
/p

in
g
b
a
ck

:t
o

sioc:feed

contained in

interaction

reference

Figure 1: An architectural overview of the partici-
pating components, their interactions and references

Comment Resource.
An RDF Resource of the type sioc:Item representing any

kind of comment or feedback related to a Web Resource.
The Comment Resource is linked to the commented resource
using a sioc:reply_of relation. It is possible to create Com-
ment Resources for different kinds of feedback:

• a simple plain text contribution to a discussion using
the type sioct:Comment as shown in listing 2,

• a structured patch as proposal to improve the quality
of the Web Resource, e. g. by creating an instance of
cs:ChangeSet as shown in listing 3, or

• any other resource type, which can be interpreted by
the publisher of the Web Resource, e. g. using the RDF
Review Vocabulary5 from revyu.com.

fd-res:4ez-comment a sioct:Comment ;
sioc:reply_of dbpedia:Leipzig ;
foaf:maker <http://aksw.org/NatanaelArndt> ;
sioc:created_at "2016-01-19T09:55:25.470Z"^^xsd:dateTime ;
sioc:content "I'd like to ask ..." .

Listing 2: An example of a Comment Resource
containing a simple text contribution (sioc:content)
for a Web Resource

fb-res:2ug-patch a sioc:Item, cs:ChangeSet ;
sioc:reply_of dbpedia:Leipzig ;
cs:subjectOfChange dbpedia:Leipzig ;
foaf:maker <http://aksw.org/NatanaelArndt> ;
cs:creatorName "Natanael Arndt" ;
sioc:created_at "2016-01-22T09:55:25.470Z"^^xsd:dateTime ;
cs:createdDate "2016-01-22T09:55:25.470Z"^^xsd:dateTime ;
cs:changeReason "Revised Triple ..." ;
cs:addition [a rdf:Statement ;
rdf:subject dbpedia:Leipzig ;

5http://purl.org/stuff/rev#

rdf:predicate ex:propA ;
rdf:object "Hello" ;

] ;
cs:removal [a rdf:Statement ;
rdf:subject dbpedia:Leipzig ;
rdf:predicate ex:propA ;
rdf:object "Hey There" ;

] .

Listing 3: An example of a Comment Resource
containing a commit and a revision proposed as a
patch for a Web Resource

Annotation Client.
An application providing an interface for a user to cre-

ate a Comment Resource related to a given Web Resource
and store it in a Resource Hosting Service. The Annota-
tion Client can be shipped together with the Web Resource,
e. g. as a JavaScript Application, a third party Web Service,
or a stand alone client application. Depending on the im-
plementation, the Annotation Client is also responsible of
acting as a Pingback Client and triggering a Semantic Ping-
back ping to the Semantic Pingback Service, advertised by
the commented Web Resource.

Semantic Pingback Service.
The Semantic Pingback Service implements the Semantic

Pingback protocol (cf. section 3.2) and accepts ping requests.
On arrival of a valid ping it is responsible for arranging an
update of the Comment Container. This service further im-
plements the publisher role of the PubSubHubbub protocol
(cf. section 3.3). If updates are available on the container
it sends an update notification to the PubSubHubbub Hub.
The roles of the Semantic Pingback Service might as well
be split into separate controllers responsible of receiving the
Semantic Pingback ping, updating the Comment Container
and notifying the PubSubHubbub Hub. This would result in
a high flexibility for distribution and federation, but highly
depends on the implementation and is out of scope for spec-
ification of this protocol.

Comment Container.
To be able to keep all comments on one Web Resource in

a single container the Comment Container was added. It is
comparable to the roll of an RSS-Feed (cf. [1]), especially to
a comment feed, as it is published by some weblogs. The
Comment Container is the item which is published to the
PubSubHubbub hub. Users can subscribe to the container
if they want to follow the comments on a Web Resource.
Listing 4 shows an example of a Comment Container.

fb-feed:dbpedia-Leipzig a sioc:Container ;
atom:link <http://hub.feedback.aksw.org/> ;
sioc:container_of fb-res:4ez-comment , fb-res:2ug-patch .

fb-feed:dbpedia-Leipzig {
fb-res:4ez-comment a sioct:Comment;
sioc:reply_of dbpedia:Leipzig ;
foaf:maker <http://aksw.org/NatanaelArndt> ;
sioc:created_at
"2016-01-19T09:55:25.470Z"^^xsd:dateTime ;

sioc:content "I'd like to ask ..." .

http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#Item
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#reply_of
http://rdfs.org/sioc/types
http://rdfs.org/sioc/types#Comment
http://purl.org/vocab/changeset/schema
http://purl.org/vocab/changeset/schema#ChangeSet
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#content
http://purl.org/stuff/rev#

Annotation Client Data Set Hosting Service Pingback Service

HTTP GET
<Web Resource>

pingback:to

create <Comment Resource>

ping source: <Comment Resource>
target: <Web Resource>

ping source: <Comment Resource>
target: <Web Resource>

altalt

Figure 2: Sequence diagram of the initiation of the
protocol and the creation of a Comment Resource by
an Annotation Client

fb-res:2ug-patch a sioc:Item, cs:ChangeSet ;
sioc:reply_of dbpedia:Leipzig ;
cs:subjectOfChange dbpedia:Leipzig ;
foaf:maker <http://aksw.org/NatanaelArndt> ;
cs:creatorName "Natanael Arndt" ;
sioc:created_at
"2016-01-22T09:55:25.470Z"^^xsd:dateTime ;

cs:createdDate
"2016-01-22T09:55:25.470Z"^^xsd:dateTime ;

cs:changeReason "Revised Triple ..." ;
cs:addition [a rdf:Statement ;
rdf:subject dbpedia:Leipzig ;
rdf:predicate ex:propA ;
rdf:object "Hello" ;

] ;
cs:removal [a rdf:Statement ;
rdf:subject dbpedia:Leipzig ;
rdf:predicate ex:propA ;
rdf:object "Hey There" ;

] .
}

Listing 4: An example of a Comment Container
containging two Comment Resources, which are
partially mirrored in a named graph

PubSubHubbub Hub.
The PubSubHubbub Hub is an implementation of the hub

role of the PubSubHubbub protocol (cf. section 3.3). It man-
ages subscriptions from agents interested in notifications
upon updates of the Comment Container.

4.1 Procedure of the
Structured Feedback Protocol

A sequential overview of the protocol is given in figs. 2
and 3. The protocol is initiated by the Annotation Client in
fig. 2, which provides a means for a user to create a comment
for any Web Resource. The Annotation Client retrieves the
Web Resource from its Data Set and looks for a pingback:to6

6It is recommended to us the simple Semantic Pingback pro-
tocol instead of the XML/RPC based protocol.

Hosting Service Pingback Service Comment
Container

PuSH
Hub Subscriber

HTTP GET
<WebResource>

create/update

notify

retrieve

update

Figure 3: Sequence diagram of the federation of the
Comment Resource by the Pingback Service and Pub-
SubHubbub (PuSH) Controller

or pingback:service relation to the Semantic Pingback Ser-
vice in charge of the requested resource. The user creates
a Comment Resource using the Annotation Client, which
has to contain a sioc:reply_of relation to the commented
Web Resource. The Annotation Client then takes care of
storing the Comment Resource in a Resource Hosting Ser-
vice from where it is available as Linked Data. A Resource
Hosting Service can be any SPARQL service or even a pub-
licly available static webpage hoster, which is writable by
the Annotation Client, e. g. through access delegation. Af-
ter the Comment Resource was published the Annotation
Client notifies the Semantic Pingback Service by sending a
pingback request with the Comment Resource as source and
the commented Web Resource as target. Depending on the
implementation this task can also be completed by the Host-
ing Service, but to keep the selection of a Hosting Service as
flexible as possible it is a good idea to hand over this task to
the Annotation Client. When the pingback request was re-
ceived by the Pingback Service it retrieves the Comment Re-
source from the Hosting Service for verification of the ping,
as depicted in fig. 3. When the Comment Resource was ver-
ified by the Semantic Pingback Service it updates the corre-
sponding Comment Container of the Web Resource. After
the Comment Container was updated the Semantic Ping-
back Service (Publisher) notifies the PubSubHubbub Hub of
the update, which in turn retrieves the updated Comment
Container (Topic) and informs its subscribers about the up-
date.

5. IMPLEMENTATION
We have built a reference implementation in order to val-

idate the interoperability of the components and verify the
viability of the protocol. In the following section we discuss
some design decisions and problems, which occurred during
the implementation.

5.1 Annotation Client
The Annotation Client is a piece of software that enables

a user to create comments or structured patches on Web
Resources. The actual implementation of the Annotation
Client is a JavaScript website extension. It identifies the
resource URI of the current HTML representation by look-
ing for the relation links foaf:primaryTopic, alternate and
describedby in the header. Then it requests the respective

http://purl.org/net/pingback/
http://purl.org/net/pingback/to
http://purl.org/net/pingback/
http://purl.org/net/pingback/service
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#reply_of

RDF resource as RDF/JSON7 (cf. [6]) formatted structured
data. Additionally the URI of the Semantic Pingback Ser-
vice is retrieved, the URL of the Resource Hosting Service
is pre-configured in the Annotation Client, but should be
configured by the user in the future.
The Annotation Client presents two dialogs (cf. section 6).

At invocation it prompts a simple form for plain comments.
To identify the author of the feedback, a URI to the WebID
or any other personal web resource is requested. In this
implementation the URI needs to be entered by the user
himself using the respective input in the frontend. For future
implementations the user identity could be obtained using
OAuth or could be provided by the including platform, on
which the extension is running. A second dialog, invocable
by the user provides an editable list of all properties of the
currently selected resource to the user. It provides basic
property editing, deletion and insertion operations. In this
dialog, the user as well has to provide an identifying URI
and additionally a commit message.
The Annotation Client generates upon changes, deletions

and insertions done by the user, changesets according to
the changeset vocabulary [19], to generate a patch resource
(cf. section 4). The presented patch structure in [19] is ex-
pressed using reification, where added statements are ex-
pressed as instances of rdf:Statement and attached to the
changeset using the property cs:addition (deletions are han-
dled accordingly). Additionally a reference to the com-
mented Web Resource is provided using a sioc:reply_of
relation, together with some metadata such as date and
author. Due to a lag of reliable parser and serializer li-
braries capable of processing RDF datasets, the implemen-
tation sends string concatenated N-Quads as serialization
format.
After the resource was successfully written to the Resource

Hosting Service the Annotation Client directly sends the
pingback request to the Semantic Pingback Service. This
behavior is in contras to the specification in [17], where the
pingback request would be sent by the Resource Hosting
Service. We have decided to implement it in this way to keep
the requirements towards a Hosting Service as minimal as
possible and increase the selection for a service as flexible as
possible, to allow a more decentralized infrastructure in the
end. The source code for the Annotation Client is available
on GitHub8.

5.2 Resource Hosting Service
For the reference implementation of the architecture we

have created a simple read/write hosting platform for RDF
resources and RDF graphs in Python, inspired by the Linked
Data Platform [16]. To demonstrate the simplicity we have
implemented a REST interface which understands HTTP
GET, POST and PUT requests. It is designed around our ex-
tended interpretation of the Linked Data paradigm (cf. sec-
tion 3.4). To conform to the protocol, a GET request on a
resource URI results in an RDF description of the requested
resource coming from the default graph and if available the
named graph with this URI.
Before a resource is sent to the Resource Hosting Service,

the client executes a GET request to the services base URL
7RDF/JSON was preferred over JSON-LD because it has
one strait forward way of data representation, which has no
need for an extra parser to work with the data.
8https://github.com/AKSW/AnnotationClient

to request an available URI. This request was introduced to
avoid collisions of resources on the Resource Hosting Service
as well as to have some kind of guaranty from the service,
that the URI will be publicly routable on the Internet. A
free resource URI is generated using a random hash and a
subsequent SPARQL-ASK query to the internal store. The
actual write operations are implemented as POST and PUT
requests directly on the resource URI. This again makes
sure that the resource will be available as Linked Data. The
body of these requests has to contain the same data, which
should be returned on a GET request to the same URI. The
source code for the Resource Hosting Service is available on
GitHub9.

5.3 Semantic Pingback Service and
Publish Subscribe System

The Semantic Pingback Service was implemented in PHP
based on the existing generic Semantic Pingback reference
implementation10. This implementation stores received
pings in a MySQL database. The Semantic Pingback Ser-
vice also comes with a web-form to manually send pingbacks
to the service, this can help “self-publishers” of Comment
Resources to also integrate their resources in the protocol
flow. When a valid pingback was received, the controller for
the management of the Comment Container is invoked by
a callback function.
The retrieved Comment Resource is stored internally in a

Saft11 resp. EasyRdf12 Triple Store with a MySQL backend.
Due to the lack of widely available implementations of seri-
alizers for RDF formats with support for RDF datasets, the
generation of the Comment Container resources and graphs
was mainly done using basic string operations. To enable
a flexible usage of one instance of the service for multiple
data sets by providing feeds for any resource in the data
set, the generation of the URI for the Comment Contain-
ers was implemented dynamically. Following to the host
name and base path of the instance the feed URI is gen-
erated based on the according Web Resource. For exam-
ple the feed URI for the resource http://aksw.org/Groups/ES
is http://feed.feedback.aksw.org/aksw.org/Groups/ES. The
PubSubHubbub publication part is done using the
php-publisher implementation provided by the pubsubhub-
bub project13.
As PubSubHubbub hub we are using Google’s instance14.

To increase the independence from central infrastructure, we
also want to provide a PubSubHubbub hub implementation
in the future. The source code for the Semantic Pingback
Service is available on GitHub15.

6. DEMONSTRATION AND EVALUATION
Based on our reference implementation of the relevant

services in the protocol we have built a test setup16. It
comprises a Resource Hosting Service to store Comment

9https://github.com/AKSW/ResourceHosting
10https://github.com/AKSW/SemanticPingback-Server
11http://safting.github.io/
12http://www.easyrdf.org/
13https://github.com/pubsubhubbub/php-publisher
14http://pubsubhubbub.appspot.com/
15https://github.com/AKSW/FeedbackServer
16http://feedback.aksw.org/

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://purl.org/vocab/changeset/schema
http://purl.org/vocab/changeset/schema#addition
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#reply_of
https://github.com/AKSW/AnnotationClient
https://github.com/AKSW/ResourceHosting
https://github.com/AKSW/SemanticPingback-Server
http://safting.github.io/
http://www.easyrdf.org/
https://github.com/pubsubhubbub/php-publisher
http://pubsubhubbub.appspot.com/
https://github.com/AKSW/FeedbackServer
http://feedback.aksw.org/

Resources17 (cf. section 5.2) and a Semantic Pingback Ser-
vice18 (cf. section 5.3), which receives pingbacks, manages
the Comment Containers and updates the PubSubHubbub
hub. The Annotation Client (cf. section 5.1) is deployed on
our work group homepage19 and already increases the qual-
ity of the published data.
Using the user scripts browser extension Greasemonkey20

for Mozilla Firefox we could also load the Annotation Client
on other data sets, e. g. DBpedia21, and include them in tests
of the infrastructure as well. Figure 4 shows screenshots of
the Annotation Client loaded on the DBpedia Web Resource
dbpedia:Counterparts. Figure 4 (A) shows the dialog for
entering a simple text comment to a resource (A.1), the
URL entered in the top input is used to identify the author
(A.2). The generated Comment Resource is stored as sioct
:Comment on the Resource Hosting Service. In fig. 4 (B) the
resource editor is displayed. It provides basic functionality
to edit existing properties (B.1), to delete (B.2) and to add
new properties (B.3). Similar to the simple text comment
form, the user should provide a URL for identification (B.4)
and additionally a commit message to describe the change
(B.5).
In section 2 we have formulated some requirements which

we want to evaluate now.
The first requirement was “Decentralized Storage of Com-

ment Resources”. This requirement is fulfilled firstly with
the possibility of separating the Resource Hosting Service
from the place, where the original Web Resource is stored.
Secondly, by the openness of the protocol and the possibil-
ity to use any other Resource Hosting Service and manu-
ally send a pingback or use a standalone Annotation Client
(cf. sections 5.1 and 5.2).
The second requirement was “Structured Feedback for

Web Resources”. This requirement is met by the usage of cs
:ChangeSet resources (cf. [19]) to represent change proposals
for resources in RDF and with the resource editor provided
by the Annotation Client.
The third requirement was “Comment Container for Web

Resource”. It is fulfilled with the Comment Containers. A
container is identifiable by a URI and can be retrieved as
whole, including its items following the proposed adopted
Linked Data interpretation of section 3.4, or as a single re-
source with references to the contained items. The Com-
ment Container is referenced from the Web Resource with a
sioc:feed relation.
The fourth requirement was “Active Updating of the Com-

ment Container with new Comment Resources”. It is tar-
geted by using Semantic Pingback (cf. section 5.3). If a new
Comment Resource is created the Annotation Client sends a
ping with a reference to the Comment Resource, which then
is integrated in the Comment Container by the Semantic
Pingback Service.
The last formulated requirement was “Active Notification

for Subscribers of Comments on Web Resources”. This re-
quirement is fulfilled by the usage of the PubSubHubbub
system (cf. section 5.3). It enables interested third party

17http://resource.feedback.aksw.org/
18http://pingback.feedback.aksw.org/ and http://feed
.feedback.aksw.org/

19http://aksw.org/ resp. http://feedback.aksw.org/
20http://www.greasespot.net/
21http://dbpedia.org/

agents to subscribe to the Comment Container of a Web
Resource, to receive updates.
The decentralized approach of the protocol allows to dis-

tribute all of the services involved. Resource Hosting Ser-
vices can be independently selected or deployed by a com-
menter, the Pingback Service as well as the PubSubHubbub
Hub is selected or deployed by a resource publisher. Thus
there is no single point of failure for the web wide infras-
tructure, only individual services can go down, as currently
sometimes web sites do. Another thread to the protocol
could be vandalism or spamming. This and further threads
to the Semantic Web are elaborated in [20]. To protect
the Resource Hosting Services from these threads, the main-
tainer of the service can install an authentication and au-
thorization mechanism to restrict access to the service. The
current implementation of our Resource Hosting Services
already protected against adding spam messages to exist-
ing resources, be only providing a write-once mechanism.
The Semantic Pingback protocol already partially contains
considerations to prevent spam [17]. While still vandalism
and denial of service attacks could be possible, which re-
quires further improvements in the Semantic Pingback re-
spective Pingback Protocols. Additionally the publisher of
a Comment Container can implement further techniques,
like spam filters before adding a Comment Resource to the
container.

7. STATE OF THE ART AND
RELATED WORK

For content providers it is often important to gather feed-
back from their users or to allow a discussion among the
users about the presented topic. There are several possi-
bilities for content providers to support such discussions.
Generally, these possibilities resp. approaches can be cate-
gorized according to the level of distribution as follows:

1. Central to the content provider (simple commenting
forms),

2. Integrated in a third party centralized online social
network (Commenting Plug-Ins, Social Buttons), and

3. Web wide distributed commenting techniques.

A simple commenting form (1.) is usually already pro-
vided by webloging software or web content management
systems, such as Wordpress22, Serendipity23, or Typo324.
Another option to be included into the website infrastruc-
ture of a content provider is Discourse25. It provides a com-
menting form to be integrated on a website, but unlike other
third party approaches (cf. 2.) it allows website providers to
decide where to host the users comments, by also providing
the back-end software as Open Source. Those techniques al-
low users to leave a comment directly on the website of the
publisher, where the comment is also stored in the domain
of the content provider.
The second way of allowing user feedback on a website

is the integration of an external web service or online so-
cial network (2.). This can happen by integrating social

22https://codex.wordpress.org/Comments_in_WordPress
23http://www.s9y.org/3.html
24https://typo3.org/typo3-cms/key-features/complete
-feature-list/

25http://www.discourse.org/

http://dbpedia.org/resource/
http://dbpedia.org/resource/Counterparts
http://rdfs.org/sioc/types
http://rdfs.org/sioc/types
http://rdfs.org/sioc/types#Comment
http://purl.org/vocab/changeset/schema
http://purl.org/vocab/changeset/schema
http://purl.org/vocab/changeset/schema#ChangeSet
http://rdfs.org/sioc/ns
http://rdfs.org/sioc/ns#feed
http://resource.feedback.aksw.org/
http://pingback.feedback.aksw.org/
http://feed.feedback.aksw.org/
http://feed.feedback.aksw.org/
http://aksw.org/
http://feedback.aksw.org/
http://www.greasespot.net/
http://dbpedia.org/
https://codex.wordpress.org/Comments_in_WordPress
http://www.s9y.org/3.html
https://typo3.org/typo3-cms/key-features/complete-feature-list/
https://typo3.org/typo3-cms/key-features/complete-feature-list/
http://www.discourse.org/

A

B

A.2
A.1

B.1

B.2

B.3

B.4
B.5

Figure 4: A: The Annotation Client showing the generic form for simple text comments. B: The Annotation
Client showing the statement editor form for generating a structured commit resource to propose a patch for
a Web Resource

buttons (Google+, Facebook like, Twitter, Reddit) to en-
courage users to share the link to a web resource together
with a comment on an external online social network. In-
stead of referring the users to an external website it is also
possible to directly integrate a commenting form of the ex-
ternal web service through a JavaScript plug-in. A very
commonly used provider for this possibility is Disqus26, be-
sides the commenting form it provides a central server to
host all the user comments and has a Facebook and Twitter
integration. Facebook also provides its own Comments Plu-
gin27. With this plug-in integrated into a website, users are
able to leave comments on a website using their Facebook
account for authentication and can share the comment on
the Facebook online social network as well. All comments
are stored in a central location on Facebook’s servers.
Independent of the decision of the website publisher, for

users it is always possible to write comments in any place
on the web (3.), such as web forums, personal weblogs, re-
view platforms, or any online social network. This results
in a web wide distributed commenting system. While this
is generally out of control for the content provider and it
is hard to gather all feedback on a specific resource, it al-
lows the best flexibility for the user. Techniques to tar-
get this issue are Trackback and Pingback (cf. [12] and sec-
tion 3.2, implemented in Wordpress) which are used among

26https://www.disqus.com/
27https://developers.facebook.com/docs/plugins/comments

weblogs to create back-links to other posts referring to the
own post. Such protocols allow content publishers to get
informed about comments which can be distributed on the
web.
In respect of these three categories, the proposed Struc-

tured Feedback protocol is a crossover approach. It allows
the integration of an Annotation Client directly into the
website of the publisher to encourage users to leave com-
ments. Also the website publisher keeps track of the com-
ments in a Comment Container stored at a location of his
choice. Users still have the choice whether to use the inte-
grated client or any external commenting platform or even a
standalone client. By following the proposed protocol, Com-
ment Resources can be stored in any place of the web, while
its still possible to inform the content publisher via Seman-
tic Pingback. Interested third parties can subscribe to the
comments on a resource using PubSubHubbub.

Sidewiki was a project introduced by Google in 200928, it
is implemented in the Google Toolbar for Firefox and Inter-
net Explorer, a Plug-In for Chrome or a Bookmarklet for
other browsers, but is no longer available29. It allowed users
to share annotations for web resources with other users of

28https://googleblog.blogspot.com/2009/09/help-and-learn
-from-others-as-you.html

29https://google.com/sidewiki/, HTTP Status Code 404

https://www.disqus.com/
https://developers.facebook.com/docs/plugins/comments
https://googleblog.blogspot.com/2009/09/help-and-learn-from-others-as-you.html
https://googleblog.blogspot.com/2009/09/help-and-learn-from-others-as-you.html
https://google.com/sidewiki/

the service. As it seems it relied on a central infrastructure,
which was discontinued after just two years in 201130.

The Web Annotation Working Group at the World Wide
Web Consortium31 [13, 14] is aiming at providing a decen-
tralized system for annotating web content. The proposed
system aims at becoming comprehensive in targeting the
problem of annotations on the web. Currently it provides
drafts for a data model, a protocol specification and the
FindText API specification. Further the protocol and data
model also try to be flexible in the scope of supported re-
source types: “It will allow anyone to annotate anything
anywhere, be it a web page, an ebook, a video, an image,
an audio stream, or data in raw or visualized form”32. The
protocol highly relies on the Linked Data Platform [16] for
storage and retrieval of annotations (Comment Resources).
An annotation builds a relation between a body and tar-
get, where the target is the annotated Web Resource and
the body is the actual Comment Resource. The body can
be any kind of resource, e.g. a text, a tag, or a movie, but
also external resources, which could include change sets or
patches as used in our approach.
The protocol flow of Web Annotations is analogous to our

proposed protocol, while we mainly concentrate on propa-
gating feedback in the form of patches to Linked Data Re-
sources, the Web Annotations try to find a more general
solution for arbitrary resources on the web. Similar to our
approach the distribution of the protocol and the sovereignty
of the resource and annotations publishers is a main require-
ment. “Web annotations can be linked, shared between ser-
vices, tracked back to their origins, searched and discovered,
and stored wherever the author wishes; the vision is for a
decentralized and open annotation infrastructure”32. Based
on the big overlap in the targeted problems, both approaches
can be seen as a contribution to the same discussion about a
solution for the problem from different perspectives. Where
we contribute the glue part between social semantic web and
distributed annotation. While both approaches can com-
plement each other and maybe also interoperate in the in
tackling this issue in the sense of a heterogeneous WWW.

Besides the possibility of leaving a simple text comment
for a publisher, revyu.com (cf. [10, 11]) is a reviewing and
rating web site, which allows users to create comments as
machine-readable RDFmetadata for the Semantic Web. The
site is not only constrained to a specific set of resources,
which can be reviewed, but allows reviews for any kind
of resources. Using RDF as format with the RDF Review
Vocabulary5 enables a flexible expression of reviews, includ-
ing ratings, useful votes and links to external data sources.
Additionally, it enables versatile queries via SPARQL. [10,
11] further discusses the integration of external data sets,
the usage of a semantic tagging system and the general is-
sues of the implementation for the Semantic Web. Even
though one can argue, that revyu.com is just another third-
party reviewing system, it was able to improve the situation
of commenting and reviewing arbitrary Web Resources by
providing a structured user friendly and as well machine
readable reviewing system.

30https://en.wikipedia.org/wiki/Google_Sidewiki
31https://www.w3.org/annotation/
32from https://www.w3.org/annotation/

Our approach can be seen as a further advancement of
[10, 11] by combining a system of structured comments and
reviews using RDF on the one hand, with the techniques of
a Distributed Semantic Social Network (cf. [18], section 3.1)
to target the issues of web wide distributed comments on
the other hand.

8. CONCLUSION AND FUTURE WORK
In this paper, we have presented a protocol for giving

feedback to resources on the Web of Data. The proto-
col is distributed in a way, that resource publishers and
comment authors can independently decide on, where to
host their infrastructure and especially resources. Using Se-
mantic Pingback, publishers are informed about newly cre-
ated comments on the web and an aggregated Comment
Container is created as comment feed for a Web Resource.
Further with PubSubHubbub it even enables third party
agents to subscribe their services to the feed and follow
newly created comments (Comment Container). The formu-
lated requirements, “Decentralized Storage of Comment Re-
sources”, “Structured Feedback for Web Resources”, “Com-
ment Container for Web Resource”, “Active Updating of
the Comment Container with new Comment Resources” and
“Active Notification for Subscribers of Comments on Web
Resources” are met by the protocol and implementation
(cf. section 6). We have deployed the system on our work-
group homepage19 to demonstrate its functionality and to
increase the quality of the published data.
The proposed protocol is integrated in the DSSN and a

web wide infrastructure of social services. Further with the
establishment of such a feedback protocol, data curation pro-
cesses as well as web wide distributed co-evolution strategies
for linked data sets would be promoted. As future work the
Comment Containers should be integrate in resource cura-
tion platforms, such as OntoWiki [9] to make use of crowed
based collaborative quality assessment and quality cleans-
ing processes. This can happen by presenting the proposed
changes in a curation process, where the publisher of the
commented Web Resource can decide on applying the patch
on the resource or ignore it. Another possibility would be
to automatically evaluate all proposed patches and include
them into a draft version of the resource, similar to the
unsighted version of articles in the German Wikipedia33.
If multiple changes target the same resource and lead to
conflicts in their application, semiautomatic conflict reso-
lution mechanism an be applied, for example as part of a
co-evolution system.
The Annotation Client will be further develop to support

the inclusion into arbitrary web pages, without causing side
effects in the CSS-styling or JavaScript execution. We have
already got in touch with the DBpedia maintainers to inte-
grate our system on dbpedia.org. This would enable a wide
deployment and usage of the protocol.

33https://de.wikipedia.org/wiki/Wikipedia:Gesichtete_
Versionen (German)

https://en.wikipedia.org/wiki/Google_Sidewiki
https://www.w3.org/annotation/
https://www.w3.org/annotation/
https://de.wikipedia.org/wiki/Wikipedia:Gesichtete_Versionen
https://de.wikipedia.org/wiki/Wikipedia:Gesichtete_Versionen

9. ACKNOWLEDGEMENT
This work was partly supported by the following grants

from the German Federal Ministry of Education and Re-
search (BMBF) for the LEDS Project under grant agree-
ment No 03WKCG11C and the European Union’s Horizon
2020 research and innovation programme for the SlideWiki
Project under grant agreement No 688095.

References
[1] Rss 2.0 specification. http://www.rssboard.org/rss

-specification, Mar. 2009.

[2] N. Arndt and S. Tramp. Xodx: A node for the dis-
tributed semantic social network. In M. Horridge,
M. Rospocher, and J. van Ossenbruggen, editors, Pro-
ceedings of the ISWC 2014 Posters & Demonstrations
Track, volume Vol-1272 of CEUR Workshop Proceed-
ings, pages 465–468, Riva del Garda, Italy, Oct. 2014.

[3] T. Berners-Lee. Linked Data. http://www.w3.org
/DesignIssues/LinkedData.html, June 2009.

[4] C. Bizer, A. Jentzsch, and R. Cyganiak. State of
the LOD Cloud. http://www4.wiwiss.fu-berlin.de/
lodcloud/state/, March 2011.

[5] R. Cyganiak, D. Wood, and M. Lanthaler. Rdf
1.1 primer. https://www.w3.org/TR/rdf11-concepts/,
Feb. 2014.

[6] I. Davis, T. Steiner, and A. J. L. Hors. Rdf 1.1 json
alternate serialization (rdf/json). https://www.w3.org
/TR/rdf-json/, Nov. 2013.

[7] S. Fernández. Rdfohloh, a rdf wrapper of ohloh.
In ISWC2008 workshop on Social Data on the Web
(SDoW2008), October 2008.

[8] B. Fitzpatrick, B. Slatkin, M. Atkins, and J. Gen-
estoux. Pubsubhubbub core 0.4 – working draft.
https://pubsubhubbub.github.io/PubSubHubbub
/pubsubhubbub-core-0.4.html, Feb. 2014. work in
progress, expired.

[9] P. Frischmuth, M. Martin, S. Tramp, T. Riechert, and
S. Auer. OntoWiki—An Authoring, Publication and
Visualization Interface for the Data Web. Semantic
Web Journal, 6(3):215–240, 2015.

[10] T. Heath and E. Motta. Revyu.com: A reviewing and
rating site for the web of data. In K. Aberer, K.-S. Choi,
N. Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck,
P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and
P. Cudré-Mauroux, editors, The Semantic Web, volume

4825 of Lecture Notes in Computer Science, page 895–
902. Springer Berlin Heidelberg, 2007.

[11] T. Heath and E. Motta. Revyu: Linking reviews and
ratings into the web of data. Web Semantics: Science,
Services and Agents on the World Wide Web, 6(4):266–
273, 2008. Semantic Web Challenge 2006/2007.

[12] S. Langridge and I. Hickson. Pingback 1.0. http://www
.hixie.ch/specs/pingback/pingback, 2002.

[13] R. Sanderson. Web annotation protocol. https
://www.w3.org/TR/2015/WD-annotation-protocol
-20150702/, July 2015. work in progress.

[14] R. Sanderson, P. Ciccarese, and B. Young. Web
annotation protocol. https://www.w3.org/TR/2015/
WD-annotation-model-20151015/, Oct. 2015. work in
progress.

[15] M. Schmachtenberg, C. Bizer, and H. Paulheim. Adop-
tion of the linked data best practices in different topi-
cal domains. In P. Mika, T. Tudorache, A. Bernstein,
C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth,
N. F. Noy, K. Janowicz, and C. A. Goble, editors, Se-
mantic Web Conference (1), volume 8796 of Lecture
Notes in Computer Science, pages 245–260. Springer,
2014.

[16] S. Speicher, J. Arwe, and A. Malhotra. Linked
data platform 1.0. https://www.w3.org/TR/ldp/, Feb.
2015.

[17] S. Tramp, P. Frischmuth, T. Ermilov, and S. Auer.
Weaving a Social Data Web with Semantic Pingback.
In P. Cimiano and H. Pinto, editors, Proceedings of the
EKAW 2010 - Knowledge Engineering and Knowledge
Management by the Masses; 11th October-15th October
2010 - Lisbon, Portugal, volume 6317 of Lecture Notes
in Artificial Intelligence (LNAI), pages 135–149, Berlin
/ Heidelberg, October 2010. Springer.

[18] S. Tramp, P. Frischmuth, T. Ermilov, S. Shekarpour,
and S. Auer. An Architecture of a Distributed Semantic
Social Network. Semantic Web Journal, Special Issue
on The Personal and Social Semantic Web, 2012.

[19] S. Tunnicliffe and I. Davis. Changeset Vocabulary. http
://purl.org/vocab/changeset/schema#, May 2009.

[20] M. Vander Sande, S. Coppens, D. Van Deursen,
E. Mannens, and R. Van De Walle. The terminator’s
origins or how the semantic web could endanger hu-
manity. In What will the Semantic Web look like 10
years from now? in conjunction with the ISWC2012
(SW2022), Nov. 2012.

http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-json/
https://www.w3.org/TR/rdf-json/
https://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
https://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
http://www.hixie.ch/specs/pingback/pingback
http://www.hixie.ch/specs/pingback/pingback
https://www.w3.org/TR/2015/WD-annotation-protocol-20150702/
https://www.w3.org/TR/2015/WD-annotation-protocol-20150702/
https://www.w3.org/TR/2015/WD-annotation-protocol-20150702/
https://www.w3.org/TR/2015/WD-annotation-model-20151015/
https://www.w3.org/TR/2015/WD-annotation-model-20151015/
https://www.w3.org/TR/ldp/
http://purl.org/vocab/changeset/schema#
http://purl.org/vocab/changeset/schema#

	Introduction
	Requirements
	Preliminaries
	Distributed Semantic Social Network
	Semantic Pingback
	PubSubHubbub
	Linked Data

	The Structured Feedback Architecture and Protocol
	Procedure of the Structured Feedback Protocol

	Implementation
	Annotation Client
	Resource Hosting Service
	Semantic Pingback Service and Publish Subscribe System

	Demonstration and Evaluation
	State of the Art and Related Work
	Conclusion and Future Work
	Acknowledgement

