The GOBIA Method: Fusing Data Warehouses and Big
Data in a Goal-Oriented Bl Architecture

David Fekete
European Research Center for Information Systems (ERCIS)
Leonardo-Campus 3
Munster, Germany

david.fekete@ercis.de

ABSTRACT

Traditional Data Warehouse (DWH) architectures are chal-
lenged by numerous novel Big Data products. These tools
are typically presented as alternatives or extensions for one
or more of the layers of a typical DWH reference architec-
ture. Still, there is no established joint reference architec-
ture for both DWH and Big Data that is inherently aligned
with business goals as implied by Business Intelligence (BI)
projects. In this paper, the current iteration of a work-in-
progress approach towards such custom BI architectures, the
GOBIA method, is presented to address this gap, combin-
ing a BI reference architecture and a development process.
A use case example is presented to illustrate the proposed
method.

Keywords

Big Data, Business Intelligence, Conceptual Architecture,
Development Method, Business Intelligence Architecture

1. INTRODUCTION

Big Data has generated widespread interest among both
academia and practitioners [14]. Several new products (such
as Apache Hadoop) and approaches have emerged that allow
to store or process Big Data, which was not feasible or effi-
cient before. Big Data is larger, more diverse, and speedier
than data in established traditional technologies. As a con-
sequence, Big Data challenges often exceed an organization’s
capability to process and analyze data in a timely manner for
decision making [14]. On the other hand, traditional Data
Warehouse (DWH) architectures are an established concept
for Business Intelligence, based on a common reference archi-
tecture (e.g., [13]). Nevertheless, with the plethora of novel
Big Data products, the question arises which impact these
have on analytic architectures and how the investments into
warehouse technology, that companies have made over the
years, can be preserved. In this paper, an initial answer to
these questions is attempted by outlining a reference model
fusing Big Data and DWH.

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 - 27.05.2016, Norten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

50

Apache Hadoop distributions such as MapR! offer so many
component products that building a customized architecture
suited for the specific purposes of an application is rendered
an increasingly complex task. Overall, the solution space
available for Big Data and Business Intelligence endeavors is
far more diverse than in previous times (e.g., cf. [11]). Thus,
additional clarity on the process of deriving a customized ar-
chitecture from a reference architecture is required as well.

The goal of this work is to design artifacts that address
these questions following a design science approach [8]. The
artifacts designed here are an enhancement of a initial pro-
posal for the issue at hand (cf. [4]). To this end, a theoreti-
cal background on the foundations of the solution artifacts is
given in Sec. 2. The various solution artifacts are described
and illustrated by an example case in Sec. 3. Finally, the
work is summarized and next research steps are outlined in
Sec. 4.

2. FUNDAMENTALS

In this section, the basic concepts regarding architectures
and Business Intelligence required for the proposed solution
are explained and the problem statement to be addressed
is outlined. Definitions of and further reading on the basic
terms Data Warehouse and Big Data can be found in [5, 6,
13] and in [15, 14].

The term Business Intelligence (BI) is used to describe a
holistic enterprise-wide approach for decision support that
integrates analytics systems (e.g., a DWH), but also strat-
egy, processes, applications, and technologies in addition to
data [2, p. 13]. Besides that, BI is also said to postulate the
generation of knowledge about business status and further
opportunities [2, p. 13]. More importantly, a crucial aspect
of BI is its alignment to its business area of application [2,
p. 14]. This implies, that BI and also its parts (includ-
ing an analytics system) should be aligned to the respective
business in order to support decision making for business
operations.

While a traditional DWH architecture has well-defined
layers such as the staging area (Extract-Transform-Load,
ETL) or data marts [13, 6], several examples for Big Data
attached to DWH architectures (e.g., with Big Data tools
used for ETL) can be found. Typically, these represent spe-
cific setups (e.g., [15, p. 23], [7, p. 40]), but cannot be
generalized into a reference architecture. Other attempts
include more general (reference) architectures (e.g., [12, p.

"https: //www.mapr.com/products/mapr-distribution-
including-apache-hadoop

The GOBIA Method: Fusing Data Warehouses and Big Data in a Goal-Oriented BI Architecture

62], [7, p. 17], [14]), yet the question remains of how to al-
locate (which) products to specific roles in an architecture,
especially with several alternatives to traditional DWH ar-
chitectures and products available. This is exacerbated by
the fact that some of these new product offerings can be
used for multiple purposes inside such an architecture. For
example, MapReduce as a generic tool can be used for data
preprocessing (e.g., performing large-scale cleansing opera-
tions) as well as for an actual analysis (e.g., basic word count
statistics or sentiment analyses).

However, no BI reference architecture has been estab-
lished yet that is inherently technology-independent, i.e.,
usable for both DWH and Big Data, and addresses the
business-alignment of BI. Such goal-orientation aids the se-
lection of customized architectures, since specific goals can
be considered in the process.

As several combinations of technologies and products can
be placed in an analytics architecture nowadays, the poten-
tial complexity of architectures is increased. For instance,
certain Apache Hadoop distributions (e.g., by MapR? or
HortonworksS) present all of their offered product options
in a single package, where no process to a customized archi-
tecture is outlined and the necessary architectural choices
are left to the implementer. For instance, if a weather pre-
diction BI application should be implemented using these
Hadoop distributions the fitting products have to be cho-
sen. While these choices could possibly be made with cer-
tain effort, e.g., Apache Storm for streaming weather data
processing and MapReduce for batch analytics, the process
of arriving at these decisions cannot be supported best solely
by considering a (simple) classical layered view as with the
DWH reference architecture before. Previously, this view
was sufficient as typical products were located mainly in
the DWH sphere, but to match todays complexity and het-
erogeneity from an architectural point of view, the classical
layered view needs to be further refined.

Reference architectures used in computer applications typ-
ically exhibit a layering of services [1]. The various layers
interact through well-defined interfaces, and their structure
commonly follows an abstraction process. Indeed, the top
layer comprises the most coarse (high-level) services, which
are refined at the next lower layer, and this is often repeated
until a layer of most basic functions is reached. In other
words, in a system representing a service hierarchy, higher-
level services are realized by lower-level services.

An example for a service hierarchy is a high-level telecom-
munication service provided to an end-user that can be com-
prised of several lower-level services in the back-end. In a
data analytics scenario, high-level analytical services could
be placed in a core analytics layer (e.g., "Cluster customer
groups” or ”Sentiment analysis of product-related tweets”)
and be consumed by BI applications on top, possibly sup-
plied to by a middle-ware (e.g., data marts). These ser-
vices are provided for by data preprocessing services (such
as "Cleanse customer data” or "Filter tweets”) at a lower
layer and are ultimately based on several data sources (e.g.,
"Twitter” or "JERP”). Each of these services can be allocated,
respectively be backed, by a novel or traditional product.
However, the challenge of actually allocating these hetero-
geneous products to layers or services in a specific use case

%http://doc.mapr.com/display/MapR/Architecture+Guide
3http://hortonworks.com/building-an-enterprise-data-
architecture/

51

remains and needs to be addressed. We do so using a ser-
vice hierarchy within a layered architecture that serves as
a guide towards a final implementation of a customized ar-
chitecture, since it allows for a clear structuring of complex
architectures in a modern heterogeneous product landscape.

Abeck et al. describe a layered architecture as a founda-
tion for (software) reference architectures, as software sys-
tems development would be based on layering [1]. Employ-
ing a layered architecture for a BI reference architecture
could use these properties during customization and place
adequate Bl-related services at the appropriate architectural
layer, which adhere to the intended level of abstraction.
When BI is seen in this way, a general reference architec-
ture can individually be customized and hence aligned to
the goals and requirements of a specific business use case.
Goal orientation and layered architecture should therefore
be part of the solution artifacts to be designed, which will
be elaborated upon in the following.

3. GOAL-ORIENTED BUSINESS INTELLI-
GENCE ARCHITECTURES

The proposed approach is termed the "Goal-oriented Busi-
ness Intelligence Architectures” (GOBIA) method and con-
sists of a BI reference architecture (GOBIA.REF) and de-
velopment process (GOBIA.DEV). In the following, both
artifacts are briefly presented.

The main idea of the method is to offer a more abstract
and layered BI reference architecture (GOBIA.REF) in com-
bination with a process that aids in transforming business
goals into a customized BI architecture (GOBIA.DEV). It
is not the primary intent of the method to assemble all
BI technologies from an overall BI solution space into an
all-encompassing reference architecture. Instead, guidance
through a vast technological landscape and a large variety
of possible use cases should be offered. This should allow to
cope with present complexity and heterogeneity in architec-
tural possibilities and, potentially, future ones as well.

GOBIA.REF aims to address the architectural gap out-

lined above and is intended as a layered, technology-independent

BI reference architecture. The accompanying development
process GOBIA.DEV aids in its customization, so that the
outcome is aligned to the goals and requirements of a spe-
cific scenario or application. This inherently supports the
principle of BI to be business-aligned. This is achieved with
a high-level conceptual architecture as intermediate step. It
resembles a service hierarchy, which is not yet focused on
technical details, but aims to alleviate the challenge of im-
plementing the architecture in a final step (i.e., assigning
specific products to the defined roles and functions).

An initial proposal for GOBIA (cf. [4]) is enhanced by re-
defining and detailing both GOBIA.REF and GOBIA.DEV.
In this iteration, an overall process for GOBIA.DEV is now
explicated and GOBIA.DEV itself remodeled with a pro-
cess modeling language (Petri nets) to render the process
more precise. Also, the wording of elements is adjusted in
GOBIA.REF (e.g., BI services instead of applications; BI
Functionality Marts instead of Data Marts). The aim is
to make both parts of GOBIA more concise and commonly
exhaustive in total.

3.1 BI reference architecture

The proposed BI reference architecture (see Fig. 2 on the

The GOBIA Method: Fusing Data Warehouses and Big Data in a Goal-Oriented BI Architecture

Business goals

—
|| Derive Bl requirements from business goals

Bl requirements (functional,
informational, org., legal, ...)

| Develop customized conceptual architecture

Customized Conceptual Architecture

|| Select technological artifacts

Customized Architecture

Figure 1: Overview of the 3-phased customized BI
architecture development process for the GOBIA
method (GOBIA.DEV).

bottom left) as a layered architecture generalizes DWH and
Big Data in the core analytics layer as "BI functionality” as
common denominator. The customized architecture is built
based on this reference architecture and should be seen as a
service hierarchy.

Data for the architecture reside at the bottom of the ref-
erence architecture. These can be located internally or ex-
ternally (e.g., in a cloud). While this is comparable to other
architectures, no restrictions are imposed on data formats or
delivery and persistence modes. For instance, data source
blocks could simply be conceptual data entities such as "In-
ventory data”, which are realized by one or more actual
(real) data sources. The "Data Preparation” above it ful-
fills a similar purpose as the staging area in a DWH, but
the tasks should be more coarse-grained and mostly omit
technical details. For instance, a task in this layer could
be to "Transform and normalize prices” or to "Extract pur-
chase history”. Instead of having a DWH or Big Data tools
in the analytics layer, it contains BI functionality, which is
technology-independent and focused on the results of BI.
For instance, BI functionality could include high-level func-
tionalities such as "Classify customer into types” or "Identify
sales patterns”. BI functionality marts, similar to data marts
in a DWH, can fulfill the role to provide flexible subsets of
data to BI services. As the layers are conceptual, a decision
whether to materialize functionality marts is not made at
this point.

Bl services consume the BI functionalities delivered through
the BI functionality mart layer to deliver applications to a
client or end-user, as common in other architectures. The
difference, however, is that GOBIA.REF aims to clarify on
the actually needed BI functionality so that the choice of
selecting suitable technological artifacts afterwards becomes
less complex. BI services are later represented by actual
BI application software providing these BI services to the
respective target user groups.

3.2 Development process

The development process for the customized architecture,
GOBIA.DEV (see Fig. 1), is designed so that business goals
ultimately lead to the customized architecture. GOBIA.DEV
follows a three phase approach, starting with business goals,

52

which are assumed to be given. These are used to derive
specific BI requirements used in the second phase to build a
customized conceptual architecture. This conceptual archi-
tecture, technology-independent and functionality-focused,
is the basis to perform the actual technology artifact selec-
tion and assembly of the customized architecture.

3.2.1 BI requirements definition

In the first phase, specific BI requirements are derived
using more coarse-grained business goals. Firstly, however,
business goals lead to more detailed and specific business
use cases. The underlying domain (e.g., retail, finance...)
is also given by these use cases. Business use cases as a
popular instrument in organizations are used to determine
the actual BI requirements on the customized architecture.
This includes functional and information requirements, e.g.,
business-relevant information such as costs, expected value,
or revenue to be delivered. Moreover, requirements could
be of legal (e.g., for data protection) or organizational re-
spectively project-related (e.g., use of specific tools, budget)
nature. A functional requirement could, for example, be
to ”Analyze customer behavior to map his characteristics
to products that he might find interesting”. Often, these
already hint which kind of information is required to be de-
livered. Existing requirements engineering approaches can
be employed for this purpose (e.g., cf. [10], [3]) as GO-
BIA.DEV does not intent to impose a specific approach as
long as actionable BI requirements for the next phase are
defined in the process.

3.2.2 Conceptual architecture development

The second phase handles the development of a concep-
tual BI architecture (cf. Fig. 2). It focuses primarily on
technology-independent BI functionality and abstract BI data
entities. The development is based on a so-called co-alignment.
The main outcomes are BI functionalities to be placed in the
architecture, as well as necessary data preparation tasks,
and required data (including defined data properties). All
outcomes are finally assembled into a layered conceptual ar-
chitecture. Based on the BI requirements, a custom GO-
BIA.REF is selected if need be. With this, domain-specific
template reference architectures could be possible like, e.g.,
a set of typical finance-algorithms as BI functionality tem-
plates. Also, there can be a strategic impact on it, e.g., to
not use any BI functionality marts.

For this, requirements are aligned with BI functionality
and data properties. The result should be that, eventually,
suitable BI functionalities adhere to the requirements set
before and that these BI functionalities and data prepara-
tion tasks fit the data at hand. If, e.g., a requirements was
to differentiate groups of customers, BI functionality for a
suitable clustering method must be defined.

Data is characterized by using the "V’s” [15, 14], which are
typically used in Big Data context, but should be applied to
any data in this method. For instance, if the quality of a
data source is poor (e.g., low validity or high vagueness),
but the set goal is to work on higher quality data, proper
data cleansing or enrichment tasks have to be conducted.

Notably, co-alignment can also mean that requirements
are re-adjusted iteratively. For example, if the actual data
sources are of higher quality than necessitated by the re-
quirements, the latter could be refined to explicitly exploit
this data. That refinement, then, could lead to a further

The GOBIA Method: Fusing Data Warehouses and Big Data in a Goal-Oriented BI Architecture

adjustment of BI functionality or data preparation tasks.

In addition to this, another co-alignment is used to syn-
chronize required data for the BI functionality and actually
deliverable data (sources) in an organization. This step can
take place right at the beginning or after the aforementioned
co-alignment. If it takes place in the beginning, BI function-
alities can be immediately synchronized with BI data entities
that reflect what is currently deliverable in an organization.
If this is done after BI functionality was co-aligned with re-
quired data entities, the modeling of needed functionality
and data can be aligned to the actual requirements first,
before deliverable data is aligned against it. The respective
modeling parties should be able to choose which approach
fits the architecture development needs or modes of opera-
tion in an organization. For instance, if it is challenging to
retrieve which data sources are actually available, the devel-
opment of required conceptual elements (functionalities and
data entities) could begin without delay.

Then the customized conceptual architecture is assembled
by assigning the outcomes of the co-alignment (e.g., BI func-
tionalities) to the respective layers and by building a service
hierarchy. Such service-hierarchy is built by, on the one
hand, defining lower-level functions and data sources that
comprise the higher-level conceptual elements (if not done
yet). On the other hand, BI functionality marts and BI ser-
vices must be defined so that the BI functionality can be
delivered in accordance with the requirements.

3.2.3 Technology artifact selection

This high-level conceptual output is an intermediary re-
sult to select an appropriate set of technologies. The con-
ceptual architecture should alleviate the technology selec-
tion by providing necessary decision-related information in a
structured way. The technology selection phase is currently
under research. After technologies have been selected and
composed to an actual BI architecture, the implementation
of it can start and GOBIA.DEV has reached its end.

3.3 Sample case: Retail market

To illustrate the first part of GOBIA.DEV a sample use
case based on a IBM game retailer case is employed [9]. It
contains to-be-achieved business goals and certain details of
the case, which lead to BI requirements.

The GOBIA.DEV process is followed until an initial con-
ceptual architecture is developed and deliverable data sources
are aligned to it. Out of scope for this illustration are the
derivation of BI functionality marts and BI services as well
as the technology selection phase.

3.3.1 Business goals, use case, Bl requirements

BestMart, a video game retailer, "wants to become the
salesleader for video games this season” [9]. This is to be
achieved by gaining competitive advantage through novel
analytic techniques. The plan is to enhance existing enter-
prise data with “other relevant information to create predic-
tive models of trends” [9].

These trends should help in predicting the "hot gaming
item” [9] (i.e., a top-selling video game) for the respective
sales season. Also, the quantity of video games in stock is
to be optimized at the retailers and the central online shop.

The requirements can be extracted as-is from the source
material as following [9]:

1. Predict areas where demand would be greatest.

53

2. Synchronize prices hourly with demand, inventory and
the competition.

3. Pinpoint the customers who will likely buy [the top
selling video] game by segmenting customers according
to expected buying behavior. Know what other items
customers would likely purchase with this game.

4. Contacting them as they wish to be reached, when they
are in the right location, engaging them with person-
alized real-time offers.

These requirements are comprised of functional and in-
formational requirements. Other possible requirements (e.g.
legal or organizational) are not detailed in this sample case.

3.3.2 Initial conceptual elements

The creation and alignment of conceptual elements can
follow after BI requirements have been defined. Here, these
can be transformed almost directly into BI functionality by
mainly adjusting the wording (e.g., "Predict hot demand
areas” or "Determine new price suggestions by product”).

Next, required data entities can be created, such as the
conceptual ones "Competitor Prices” and ”Online and Retail
Sales Data” for a hourly price adjustment. Sales data allows
to estimate the product demand as input to the adjustment
BI functionality. There is a certain degree of a freedom when
defining conceptual entities. For example, online and retail
data could be separate if this were to render the architecture
more comprehensible. Distinct data entities could, e.g., help
to partition data when delivering it to the functionality later
during implementation.

Competitor prices may need to be transformed (e.g., due
to varying packing quantities) or normalized (e.g., due to
different currency) before using them. Thus, a data prepa-
ration step is created as as result of an alignment between
functionality and data entity. The full initial conceptual
architecture is depicted in Fig. 3.

3.3.3 Alignment to deliverable data sources

The following step is to ensure that the data entities are
aligned to actually deliverable data sources. A possible mis-
alignment and its resolution can be demonstrated with the
entity "Competitor prices”. Inspection of actual data sources
might reveal that the prices are located on the competitors
websites and must be extracted first. Thus, the data en-
tity is renamed to "Competitor websites with price infor-
mation” and a data preparation step for the extraction is
added ("Extract product prices from websites”) before the
transformation and normalization step.

3.3.4 Refining the conceptual model

After this alignment, lower-level elements (e.g., BI func-
tions for BI functionality) can be determined to add further
detail to the conceptual model. For instance, to "determine
new price suggestions by products”, the current product de-
mand needs to be estimated and the own prices need to be
compared to the competition. These two BI functions de-
liver the necessary information to decide upon new prices
on a hourly basis. Where needed, more sub-layers of BI
functions could be created.

3.3.5 Next steps

The GOBIA Method: Fusing Data Warehouses and Big Data in a Goal-Oriented BI Architecture

I I Bl requirements (functional,
[] informational, org., legal, ...)

SelecﬂCustomize GOBIA.REF

Internally align high-level

elements with deliverable data g D2ia source aligned
required Bl data entites

Bl requirements Customized GOBIA.REF

Co-align Bl data entities &
deliverable data sources

Co-align Bl functionality &
Bl data entities

Aligned high-level architecture
elements (functionality,
preparation, data entities)

Reiterate
requirements and
architecture elements Check alignment with Bl requirements

Misaligned architecture elements

Internally aligned architecture elements

Aligned architecture elements (Bl functionality, Data
. reparation & preprocessing, Bl data entities, Data sources
GOBIA.REF | | BI Services | SR Lty)

I
‘ Bl Functionality Marts ‘

Determine required lower-level Bl functions

Low- and High-level architecture elements

Bl Functionality

Data Preparation Compose Bl functionality marts & Bl services

Internal and External Data ;
‘ Customized Conceptual Architecture

Figure 2: GOBIA.DEV phase II: Customized conceptual architecture development (as simplified Petri net)
using the BI reference architecture proposal (GOBIA.REF) on the bottom left.

Bl services

BI functionality marts

Bl functionality

Contact buyers with

personalized real-time

offers
A

Predict potential ,hot
game"” buyers

Determine new price
suggestions by product

Predict hot demand areas

Estimate product Compare prices to
demand competition

Segment buyers by
purchase behaviour

Data preparjation

Transform & normalize

SiteEs Extract purchase history

a sources

Retail and Online Sales
Data

Retail store locations

Customer behavioural Customer contact
data preferences

Competitor Prices Inventory data

Figure 3: GOBIA retail example: Conceptual architecture before alignment with deliverable data.

54

The GOBIA Method: Fusing Data Warehouses and Big Data in a Goal-Oriented BI Architecture

The immediate next steps would be the completion of the
conceptual BI architecture by determining BI functionality

marts and BI services.

The following third phase would detail the technology se-

lection, which is also a future research item (cf. Sec. 4).

4. SUMMARY AND FUTURE WORK

This work has attempted to show how new developments
that arose in the Big Data trend necessitate a more "univer-
sal” reference architecture for BI. For this end, a BI architec-
ture based on a layered architectures as a basic concept in
Computer Science was proposed. To support this generic Bl
reference architecture and to manage the technology com-
plexity, a proposal for an accompanying development pro-
cess was made, which is to support a goal-oriented develop-
ment of a customized BI architecture. It does so by yielding
a conceptual architecture as intermediate step for selecting
an appropriate mix of analytic technologies. A use case sam-
ple was then employed to illustrate the proposed method.

Future research should address the two following areas.
Firstly, the technology selection phase needs to be detailed,
because the conceptual architecture cannot be implemented
directly. The challenges to select appropriate technologi-
cal artifacts (e.g., from a Hadoop distribution) orchestrate
them to one overall system is not yet solved. One main
issue is to find a way to bridge the conceptual BI architec-
ture and a fitting subset of the BI ”solution space” (i.e., all
technological artifacts that could be used). To tackle this,
properties or characteristics of the artifacts and the concep-
tual architecture could be determined to find commonalities,
which could aid in the selection process. Also, it is to de-
In this
context, it will be important to determine which character-

termined how BI requirements can support this.

istics are rather strictly defined terms (e.g., suitable data

formats that do not necessarily need to be matched manu-

ally) or rather loosely defined (e.g., textual descriptions of
skills required). For instance, existing architecture setups or

use cases could be analyzed to derive best practices or gen-

eralizations. These findings would also be useful to discover
elements for templates such as common BI functionalities

or preparation tasks for specific data situations. Moreover,
these may lead to refinements of the GOBIA method itself.

Secondly, both reference architecture and development
process should be evaluated empirically to test if they fit

their intended usage. Such an evaluation should build, for
example, a customized architecture based on a Hadoop frame-
work (e.g., MapR) to verify whether the process is indeed

less complex when using the GOBIA method. Preferably,
this would be conducted in a real-world environment (e.g.,

by actually using the GOBIA method to define a conceptual

architecture in a real BI project) to gain better practical in-

sights. However, employing the method in several completed
projects or use cases could give further insights about the

performance of the method as well (e.g., as done in the il-
lustration in this work, but with all three phases in full).
Here, the several GOBIA outputs created could be com-
pared to the outcome of the use cases and projects. Also,
such evaluation should include a comparison to other exist-

ing approaches (e.g., for reference architectures) to better
assess to which extent GOBIA.REF and GOBIA.DEV can

utilize the proposed advantages in practice.

5. REFERENCES

55

(1]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Abeck, P. C. Lockemann, J. Schiller, and J. Seitz.
Verteilte Informationssysteme: Integration von
Datentibertragungstechnik und Datenbanktechnik.
dpunkt, Heidelberg, 2003.

A. Bauer and H. Giinzel. Data Warehouse Systeme.
dpunkt, Heidelberg, 3rd edition, 2009.

R. M. Bruckner, B. List, and J. Schiefer. Developing
Requirements For Data Warehouse Systems With Use
Cases. Seventh Americas Conference on Information
Systems, pages 329-335, 2001.

D. Fekete and G. Vossen. The GOBIA Method:
Towards Goal-Oriented Business Intelligence
Architectures. In R. Bergmann, S. Gérg, and

G. Miiller, editors, Proceedings of the LWA 2015
Workshops: KDML, FGWM, IR, and FGDB, Trier,
Germany, October 7-9, 2015., pages 409-418, Trier,
Germany, 2015. CEUR-WS.org.

W. Inmon. Building the Data Warehouse. John Wiley
& Sons Inc., New York, New York, USA, 2nd edition,
1996.

W. Lehner. Datenbanktechnologie fiir

Data- Warehouse-Systeme. d.punkt Verlag, Heidelberg,
2003.

Oracle. Oracle Enterprise Architecture: An Enterprise
Architect’s Guide to Big Data, 2016. URL: http:
//wuw.oracle.com/technetwork/topics/entarch/
articles/oea-big-data-guide-1522052.pdf [last
accessed: 2016-03-31].

K. Peffers, T. Tuunanen, M. A. Rothenberger, and

S. Chatterjee. A Design Science Research
Methodology for Information Systems Research.
Journal of Management Information Systems,
24(3):45-77, dec 2007.

D. Pittmann. Big Data in Retail - Examples in
Action, 2013. URL: http://www.ibmbigdatahub.com/
presentation/big-data-retail-examples-action
[last accessed: 2016-03-10].

J. Schiefer, R. M. Bruckner, and B. List. A Holistic
Approach For Managing Requirements Of Data
Warehouse Systems. Fight Americas Conference on
Information Systems, pages 77-87, 2002.

The Big Data Group LLC. Big Data Landscape, 2016.
URL: http://www.bigdatalandscape.com [last
accessed: 2016-03-29].

M. Thiele, W. Lehner, and D. Habich.
Data-Warehousing 3.0 Die Rolle von
Data-Warehouse- Systemen auf Basis von
In-Memory-Technologie. In Innovative
Unternehmensanwendungen mit In-Memory Data
Management (IMDM), pages 5768, Mainz, 2011.
Wolfgang Lehner, Gunther Piller.

G. Vossen. Datenmodelle, Datenbanksprachen und
Datenbankmanagementsysteme. Oldenbourg,
Miinchen, 5th edition, 2008.

G. Vossen. Big data as the new enabler in business
and other intelligence. Vietnam Journal of Computer
Science, 1(1):3-14, feb 2014.

P. Zikopoulos, C. Eaton, D. DeRoos, T. Deutsch, and
G. Lapis. Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data.
McGraw-Hill, New York, USA, 1st edition, 2012.

