
Rewriting and Code Generation for Dataflow Programs

Philipp Götze
TU Ilmenau, Germany
philipp.goetze@tu-

ilmenau.de

Wieland Hoffmann
∗

IBM Deutschland Research &
Development GmbH

whoffman@de.ibm.com

Kai-Uwe Sattler
TU Ilmenau, Germany
kus@tu-ilmenau.de

ABSTRACT
Nowadays, several data processing engines to analyze and
query big data exist. In most of the cases, if users want
to perform queries using these engines, the complete pro-
gram has to be implemented in a supported programming
language by the users themselves. This requires them to
understanding both the programming language as well as
the API of the platform and also learning how to control
or even enable parallelism and concurrency. Especially with
this tight integration into programming languages, the inter-
nal rewriting of queries to optimize the flow and order of the
data and operators is another big challenge since the query
optimization techniques are difficult to apply. In this paper,
we want to address these problems by utilizing the dataflow
model and a code generator and compiler for various plat-
forms based on it, namely Piglet. The focus of this paper
lies on stream processing platforms and, therefore, the asso-
ciated challenges, especially for two exemplary engines, are
described. Moving on from there, we introduce our inter-
nal procedure for rewriting dataflow graphs and finish with
the presentation of our own DSL approach to even support
user-defined rewriting rules.

Keywords
Query Optimization, Stream Processing, Dataflow, Dynamic
Data, Data Analysis

1. INTRODUCTION
During the last years, the abstraction level of query lan-

guages was subject to some fluctuations. It all started with
a very high level of abstraction by the provision of declara-
tive query languages such as SQL or XQuery. These come
with a lot of advantages like a standardized language, ease
of use even for non-technical users, and automatic optimiza-
tion possible through the well-known relations between the

∗The work presented here was written as a Master’s thesis
at the TU Ilmenau [10].

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 - 27.05.2016, Nörten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

provided operators. However, this type of data retrieval is
only limited extensible. By introducing MapReduce for Big
Data challenges, a lot of new possibilities for data querying
and processing were made available. For this, as a drawback,
one has to deal with a greatly increased level of complexity,
manual optimization, and, in general, a low level of abstrac-
tion. Hence, the current research tries to combine these
worlds to provide platforms with programming language in-
tegrated APIs to raise this level again. For example, Apache
Spark and Apache Flink use Scala (beside Java and Python)
as a kind of dataflow language. However, to get along with
these domain-specific languages (DSLs) the data analyst has
to know and to understand the corresponding language and
the API for the chosen platform. Furthermore, the user has
to write a lot of code beside the actual query, build and de-
ploy the code for the backend, and for a great part manually
optimize the program. Thus, as already mentioned in [14],
the idea is to provide a high-level declarative interface for
streaming queries and at the same time a scalable cluster-
based stream processing platform. From this idea, Piglet1,
a language extension to Pig Latin and dataflow compiler
for multiple batch and streaming backends, recently origi-
nated to meet these requirements. The provision of such
a multi-platform compiler brings some challenges. First of
all, there are the different requirements and conditions for
batch and stream processing. For instance, whereas in batch
processing one deals with a finite amount of stored data
tuples, working with streams means to get along with an
open-ended continuous data stream. This is accompanied
by fault-tolerance and elasticity tasks. In addition, there
are not only differences between batch and streaming, but
also platforms with the same processing type show different
behaviors. This does not mean that some of the backends do
something wrong, but rather arises from the different pro-
cessing approaches (i.e., Spark Streaming via micro-batches,
Flink Streaming and Storm via tuple-by-tuple). Another big
challenge is also the automatic optimization of dataflows
consisting of user-defined operators since they can normally
only be treated as black boxes by the compiler.

With this paper, we try to wipe out the drawbacks of both
the high-level declarative approach (e.g., extensibility) and
scalable cluster-based data processing platforms (e.g., high
coding effort) by combining these two worlds and describe
the challenges associated with it. Here, the focus is mainly
on streaming platforms. The paper consists of two main
contributions:

1https://github.com/ksattler/piglet

56



Piglet Platform libraries

Program-File

YARN/
Mesos

Spark Flink

Storm PipeFabric

Code Generator

Dataflow Plan   (DAG)

Rule Based
RewriterParser

Plugins

REPL

Execution Environment

Worker Nodes
Flink
Template

Spark
Template

Storm
Template Template

Pipe
Fabric

Figure 1: Piglet’s internal architecture: The code generator uses the backend plugins to create platform
specific programs.

• We provide a high-level abstraction for querying data
in the form of a unified model of dataflows and realize
the mapping to various platform-specific concepts.
• With the developed framework for rewriting dataflow

graphs, we offer an easy way of implementing and in-
tegrating user-defined operators together with their
rewriting rules into the dataflow.

Although the implementation was done within our own
dataflow compiler Piglet, we think the ideas are not limited
to this system.

2. THE DATAFLOW MODEL
The dataflow model is nothing really new as it dates back

to the 1960’s and 1970’s [11, 16] having the motivation to
automatically exploit parallelism. Thereby programs are
represented internally as directed acyclic graphs (DAGs)
with its nodes being mutually independent operation blocks,
which are connected by input and output pipes to represent
the dataflow. This creates a segmentation of the operations
having no data dependency between each other and thus can
be executed in parallel. The recognition of data dependen-
cies can be accomplished automatically by the compiler and
normally needs no action taken by the user.

These and further advantageous characteristics of the data-
flow model are meant to be leveraged in Piglet, which uses
such a model as internal representation. The goal of the
project is to provide a language extension to Pig Latin and
a compiler to generate code for several modern data pro-
cessing platforms. In the course of this, the code is also
built and deployed to the specified execution environment
without any necessary intervention of the user.

In figure 1 the internal architecture of Piglet is presented.
As a first step, the Pig Latin input is parsed into a dataflow
plan which contains a list of objects whose types implement
the PigOperator trait. One type exists for each operator of
Pig and the additional ones provided by Piglet. The input
can be provided either as pre-written files or by interactively
entering statements via a Read-Eval-Print-Loop (REPL). In
the next step, a rule based rewriter automatically optimizes
(see section 5) and possibly adapts the dataflow plan de-
pending inter alia on the target platform (see section 4).
Subsequently, the rewritten plan is used together with the
backend plugins to generate the target program. It is then
zipped with the necessary platform library into a jar file and
lastly deployed to the execution environment, which then
takes care of the possibly parallel execution.

The purpose of the platform library is to hide some im-
plementation details from the generated code, mainly used

for source and sink operators, for example, schema extract-
ing loading methods, objects for deployment or aggregate
helper functions. Since backends are treated as plugins, one
can extend the compiler with other platforms by creating a
plugin, which should implement specific interfaces as well as
a template file as input for the code generator to create the
corresponding target code.

Due to the kind of data processing for streams, a lot of
characteristics and challenges arise, which were not tackled
in the batch implementation. The main challenges among
them, which we pick up in the following two sections, are:
• windows,
• blocking operators, and
• different behavior of various streaming backends.

3. RELATED WORK
A similar goal of providing a unified model for defining

and processing dataflows for different platforms is intended
by the Google Dataflow model [1] and the corresponding
Apache incubator project Beam2. In contrast to Piglet,
Apache Beam comes with a Java SDK unifying and sim-
plifying the creation of dataflow programs. As a drawback,
this also means that the data analyst has to be familiar with
Java and has to pick up the new API. Piglet, on the other
hand, provides a high-level dataflow language allowing the
user a much better abstraction and enabling many more op-
timization opportunities.

The challenges in terms of data stream processing men-
tioned above are also partly discussed in [12], where Krämer
and Seeger define a logical algebra with precise query se-
mantics for data streams based on the relational algebra. In
contrast to batch processing, many standard operators such
as join, aggregate or duplicate elimination (i.e., blocking op-
erators) can only refer to a subset of the stream defined by
windows. Instead of integrating windows directly into these
standard operators, they decided to separate these function-
alities as it was also done in Piglet. Thus, the redundant def-
inition of window constructs within the operators is avoided
and it also allows the user to apply multiple operations to
one window specification. On top of that, the well-known
semantics of the relational algebra is preserved as much as
possible.

As implied by the third challenge above, there exist many
data streaming systems, which propose several processing
models especially for handling windows. Since there are no
standards for querying streaming data, they all come up

2http://incubator.apache.org/projects/beam.html

Rewriting and Code Generation for Dataflow Programs

57



with their own syntax and semantics. Because of that, the
engines process queries in different ways although the user
would expect the same behavior. On the other hand, sev-
eral systems sometimes also express common capabilities in
different ways. First introduced in [4] and later described
in greater detail in [5], the SECRET model was proposed
to provide a descriptive model for analyzing and comparing
the execution semantics of stream processing engines. The
four dimensions of the SECRET model are:
• ScopE - gives information about the window intervals.
• Content - maps the intervals to window contents.
• REport - reveals the conditions for window contents

to become visible.
• Tick - states when the engine will trigger an action on

an input stream.
With these dimensions, it is possible to compare and ex-

plain differences in behavior of the various systems. In their
experiments, they reveal the variances in window construc-
tion, window reporting and in triggering. It was shown that
even for the same engine sometimes it happens that the re-
sults are different. The reason for that is the different map-
ping of the content to scopes, for example due to the assign-
ment of time values to tuples based on the system time. It
was also shown that different approaches for reporting might
also lead to different results for the same query. Thus, it can
be seen that it is important to understand the window se-
mantics behind a stream processing engine before writing
queries for it. More explicitly for Piglet, this means, for in-
stance, that the same query can produce different results for
the various backends.

Beside the dataflow model and streaming challenges, there
is also the problem of optimization of dataflow programs,
which was already deeply discussed and implemented in the
past. A famous system, for example, is EXODUS [8], which
can be used to integrate generated application-specific op-
timizers into databases. For the generation of the target
C-code, EXODUS needs the set of operators and methods,
rules for transforming the query trees as well as cost func-
tions for each operator as input. In the running system, the
incoming queries are transformed into trees and optimized
by repeatedly applying the passed rules. Thereby, it main-
tains information about all resulting alternative trees and
the change in cost for each transformation. The successor
framework of EXODUS is Cascade [7], which was introduced
to improve and enrich its predecessor by, for example, ex-
tensibility, dynamic programming, and more flexibility. Es-
pecially the improved handling of predicates is highlighted,
for example, by detaching them from a logical join operator
to transform it into a physical nested loop operation and
pushing it into the selection operator for the inner input
tree.

There also exist optimization approaches for MapReduce
programs. For instance, Spark SQL’s Catalyst [2, 3] that is
an optimizer integrated into Spark and used for Spark SQL
and the corresponding data abstraction called DataFrames.
Similar to the rewriter in Piglet, it uses many features of
the programming language Scala for a seamless integration
into the system’s code. Advantages through that are, for
instance, the ease of adding and connecting new rules, tech-
niques, and features as well as the possibility for developers
to define extensions. Roughly taken, Catalyst works with
trees and applies manipulating rules to them. They use it
in four phases, namely analysis, logical optimization, phys-

ical planning, and the final code generation. The analy-
sis phase resolves, among other things, the relation and at-
tribute names within the given query in the first place. On
the resulting logical plan rule-based optimizations, such as
reordering, are applied. The subsequent physical planning
then maps physical operators from the Spark engine to the
logical plan and selects the optimal plan based on a cost
model (e.g., choosing the best fitting join implementation).
As a final step, code is generated to run on each machine
based on the selected physical plan.

4. FLINK AND SPARK STREAMING
As described in detail in [6], Flink3 with its streaming

API is one of the stream processing platforms integrated
into Piglet. Furthermore, also Spark Streaming4, Apache
Storm5 as well as PipeFabric [13] were added to the sup-
ported target streaming platforms of Piglet. The biggest
challenge here is the presence of different semantics and be-
haviors of the backends as already described in general in
section 2 and 3. In the following, some of the differences of
Flink and Spark Streaming as well as general challenges with
stream processing are sketched, which became conspicuous
during the integration into the code generator.

Since basic Pig Latin is made for batch processing, it was
necessary to enhance Piglet’s input language by streaming
operators such as Socket_Read, Socket_Write and Window

as well as underlying loading functions like PigStream in
the first place. Beside the language extensions, the compiler
has also been equipped with corresponding mappings from
the dataflow operators to the streaming APIs. It was found
that specific operators supported in batch processing are not
logical or sometimes not even possible in its original form for
streams. That is why these operators were either completely
omitted (e.g., Limit) or only supported inside of windows
(e.g., Order By and Distinct).

To make windows and joins work for Flink Streaming the
dataflow plan must be rewritten, that is, defining the win-
dow scope as well as rewriting Join and Cross operators.
The former means to decide which operators need to be
applied to the window and from when the stream is flat-
tened again. For that Foreach, Join, Cross and sink nodes
can represent the terminator of a window scope. At this
point, a corresponding WindowApply node is inserted into
the dataflow, which is taken up in the code generation step.
The later window rewriting process searches for Join and
Cross operators to assign a window definition to them de-
rived from the input nodes. This is necessary because the
Flink Streaming API only allows to join two data streams
on a common time-based window, but not two windowed
streams or a dataset with a windowed stream like in Spark
Streaming. Thus, three requirements must be fulfilled be-
forehand:
• the direct input nodes must be windows,
• the windows must be time-based, and
• all input nodes require having the same window and

sliding size.
If these requirements are met the dataflow plan is rewritten
in a way as shown in figure 2 with the associated Piglet
query:

3https://flink.apache.org/
4https://spark.apache.org/
5https://storm.apache.org/

Rewriting and Code Generation for Dataflow Programs

58



SOCKET_READ

‘localhost:9997’
PigStream(‘,’)

WINDOW

Tumbling Time
60 seconds

JOIN

y1 == x2

SOCKET_WRITE

‘localhost:9999’

x1, y1

Window- 
Iterator(x1, y1)

x1, y1, x2, y2

SOCKET_READ

‘localhost:9998’
PigStream(‘,’)

WINDOW

Tumbling Time
60 seconds

x2, y2

Window- 
Iterator(x2, y2)

SOCKET_READ

‘localhost:9997’
PigStream(‘,’)

SOCKET_WRITE

‘localhost:9999’

x1, y1, x2, y2

SOCKET_READ

‘localhost:9998’
PigStream(‘,’)

JOIN

y1 == x2

Tumbling Time
60 seconds

x1, y1 x2, y2

Figure 2: Rewriting of a Join operator in Piglet for
Flink Streaming

in1 = SOCKET_READ ’localhost :9997’ USING PigStream
(’,’) AS (x1: int , y1: int);

in2 = SOCKET_READ ’localhost :9998’ USING PigStream
(’,’) AS (x2: int , y2: chararray);

w1 = WINDOW in1 RANGE 60 SECONDS;
w2 = WINDOW in2 RANGE 60 SECONDS;
joined = JOIN w1 BY y1, w2 BY x2;
SOCKET_WRITE joined TO ’localhost :9999 ’;

Internally the inputs of the window nodes are collected
and used as new input for the Join operator. That is, the
window definition is extracted and inserted into the unifying
operator, the pipes are redirected, and finally unnecessary
operators are removed.

For Spark Streaming, the window rewriting step is not
necessary since windowed streams can be joined directly.
The only addition is a transformation of the tuples to key-
value pairs before joining the streaming subsets. This task
is done directly in the code generation phase and thus is not
visible in the dataflow plan.

Beside the Join- and Cross-specific rewritings, the general
window scope definition is partly implemented within the
rewriter, too. Currently, the aforementioned WindowApply

node is simply inserted into the dataflow as an extra path
from the window start to the end of the scope. The code
generator then takes care of integrating the operations into
the apply method. An example dataflow written in our Pig
language extension could be the following:

in = LOAD ’file.csv ’ USING PigStream(’,’) AS (x: Int ,
y: Int);

win = WINDOW in RANGE 20 SECONDS;
dis = DISTINCT win;
grp = GROUP dis BY win.x;
cnt = FOREACH grp GENERATE group , COUNT(grp);
STORE cnt INTO ’amount.csv ’;

Here, the read tuples are collected in a tumbling window
of 20 seconds. The scope of this window is terminated by the
Foreach statement as explained above. Thus, the duplicate
elimination, grouping and aggregation operation are put into
the apply method. For Spark Streaming, the dataflow is un-
changed since the window operation just adjusts the micro-
batch contents. The structure of the resulting codes for
Spark and Flink Streaming is visualized in figure 3.

Another challenge, as mentioned in section 2, are block-
ing operators, which in batch processing are applied to the
complete input. In the previous examples one could see such
operations, namely Join and Count (in general: aggregates).
Since a data stream can be potentially endless, one cannot
just collect the data until the last tuple arrives. Even if the

LOAD
‘file.csv’

PigStream(‘,’)

WINDOW
Tumbling Time

20 seconds

APPLY

STORE
‘amount.csv’

foreach Window:

  Distinct

  Group By x

  Generate (x, count())

Flink Streaming

LOAD
‘file.csv’

PigStream(‘,’)

WINDOW
Tumbling Time

20 seconds

DISTINCT

GROUP BY
x

FOREACH
group, COUNT

STORE
‘amount.csv’

Spark Streaming

x, y

Window- 
Iterator(x, y)

x, count

RDD(x, y)

RDD(x, y)

RDD(x, y)

RDD(x, Iterator(x,y))

RDD(x, count)

Figure 3: Structure of the generated code for Flink
and Spark Streaming

stream eventually ends, it is not guaranteed that all the tu-
ples fit in memory. Nevertheless, to support such operators
there are two alternative approaches. On the one hand, one
could apply them only to a subset like it was done in the
examples with the help of windows. On the other hand,
the results could be updated for every incoming tuple by
using stateful operators. In the current state, we also sup-
port the second variant for aggregates, which are also called
rolling aggregates or accumulations. Since Spark and Flink
Streaming support stateful operators, we directly use them
for this task. To achieve this behavior one just has to omit
the window statement.

5. QUERY PLAN PROCESSING
As shown in Figure 1 and described in detail in [10], Piglet

performs a rewriting step that transforms the output of the
parser by repeatedly applying rules to the dataflow plan be-
fore passing it on to the code generator. Compared to other
frameworks like Cascades [7] and EXODUS [8], the rewrit-
ing process in Piglet is fully integrated into Piglet itself and,
therefore, can use features of the host language. However,
it would not be easy to integrate it into another system.

The rewriting step serves a few different purposes. The
first is optimization by modifying the dataflow plan to ex-
ploit relationships between different operators of the same
or different types. This allows, for example, to rewrite the
order of Filter and Order By operators such that the Fil-

ter operator is always executed first, potentially shrinking
(but never enlarging) the data set flowing to the Order By

operator.
The second goal is the support of Pig operators that can-

not be mapped 1:1 to Spark or Flink operations, but can
be rewritten to existing functions (for example Pig’s Split

Into operator is rewritten to multiple Filter operators).

Rewriting and Code Generation for Dataflow Programs

59



The same principles can be applied to support new opera-
tors beyond those offered by Pig whose syntax better fit a
certain problem domain. We chose to implement most of
the rewriting rules of [9] as examples for this goal.

Piglet also allows the user to embed user-defined functions
for use with Pig’s Foreach operator directly into the input
script like in the following example:

<% def myFunc(i: Int): Int = i + 42 %>
out = FOREACH in GENERATE myFunc(f1);

Despite those usually being small functions, they still might
interact with other types of operators, so being able to sup-
ply rewriting rules in addition to the user-defined functions
themselves was another goal.

At a very high level, the rewriting process consists of
two parts. The first of those is activating available rules
at startup, depending on the settings with which Piglet is
run, and applying the rules to a dataflow plan after the
parser has been executed. Several objects called Rulesets,
one for each backend and language feature, exist, each pro-
viding a method called registerRules which registers zero
or more functions with an object called Rewriter. Rules are
represented as functions of the type

Function1[Any , Option[Any]]

mapping each input object to either Some(newobject),
indicating that the object has been changed and is to be
replaced by newobject, or None, indicating that the func-
tion did not change the object. As soon as the options have
been read, the registration method of each applicable rule-
set is executed. After the input script has been read and
transformed into Scala objects by the Parser, the method
processPlan of the rewriter object will be called, passing
the dataflow plan as the argument. This method will then
repeatedly apply all registered rules to all operators in the
plan in a top-down fashion, starting with the source nodes,
until no rule leads to a change anymore. For traversing the
dataflow plan we use the library Kiama [15]. Not only does
it provide a data type Strategy that abstracts rewriting
operations (this type extends the function type mentioned
previously), it also includes methods for combining several
separate operations of that type (and, ior, . . . ), extending
them with repetition (repeat, repeat, . . . ), and traversal
(bottomup, topdown, . . . ) behaviour, or any combination of
those. This means that, unless otherwise necessary, a rule
only needs to handle a single operator as its input, being ap-
plied to all possible operators is taken care of by the Piglet
system. The traversal operations work with every type that
implements the Rewritable trait supplied by Kiama, which
the operator objects in Piglet do.

6. USER-DEFINED REWRITING
While implementing a set of rules it became apparent that

our first approach writing them (as ordinary functions) is
quite cumbersome. It involved first checking the input type
of the object (because the type of the argument is Any, but
most rules only apply to a specific type of operator), check-
ing additional conditions on the operator object (for example
the function called by a Foreach operator), usually through
a series of calls of the form if (...) {return None} and
only then changing the object.

We, therefore, make extensive use of features offered by
the Scala programming language to ease the implementa-
tion and registration of rules. Its local type inference and

applyRule

toMerge when and applyPattern

toReplace whenMatches andMatches

unless or

unlessMatches orMatches

Figure 4: Syntax diagram for the rewriting DSL

ClassTags, for example, are used to great effect for making
it easier to implement rules that are only applied to spe-
cific types of operators by wrapping the rule at runtime and
registering the wrapper, which is now able to only call the
wrapped function if the input object is of a type that it ac-
cepts, thereby working around the type erasure that happens
at compile time for languages targeting the JVM.

Scala also makes it easy to develop embedded DSLs by al-
lowing to replace the dot before method calls and the paren-
theses around the argument with spaces if the method is of
arity one (it takes only one argument). This is called in-

fix notation and is used by, for example, the ScalaTest
framework to produce code similar to english sentences.

Instead of forcing each rule to implement the steps out-
lined above anew, we decided to use the infix notation to
provide a DSL of our own, which takes care of creating
the wrapper function mentioned earlier automatically (given
appropriate type signatures) and moves the checks for ad-
ditional conditions out of the rule itself into zero or more
anonymous functions.

Figure 4 shows the syntax for this DSL. The applyRule

and applyPattern methods can be used to register a single
function as a rewriting rule. The methods when, unless,
and, or and their counterparts ending in Matches can be
used to supply additional functions for checking precondi-
tions on the input object. The only difference between both
types is that functions whose name ends in Matches accept
partial functions as their argument. Lastly, toMerge and
toReplace will activate special behaviour for the two cases
of merging operators (passing not one, but two operators
to the other functions) and replacing one operator with ex-
actly one other. Internally the builder pattern is used to
keep track of all the preconditions and to wrap the func-
tion given to applyRule in them before registering it. The
following is an example of a rule utilizing the DSL:
def groupedSchemaJoinEarlyAbort(op: BGPFilter)

Boolean

Rewriter unless groupedSchemaJoinEarlyAbort
and { op => RDF.isPathJoin(op.patterns) }
applyRule J4

In the type signature of groupedSchemaJoinEarlyAbort

the type of the operator is restricted, so the anonymous
function passed to and can already use that information to
access the patterns attribute that only BGPFilter objects
have. The same operations can be used for implementing
rewriting rules for user-defined functions embedded in the
script. Piglet’s parser has been extended to treat every-
thing in a section of embedded code that follows the key-
word rules: as Scala code containing the implementation
of rewriting rules as in the following example:
<% def myFunc(i: Int): Int = i + 42

rules:
// Rules can be written here

%>

A few imports are automatically added to the code before
it is executed inside the same JVM Piglet is running in. To

Rewriting and Code Generation for Dataflow Programs

60



further ease the implementation of rules for embedded code,
which only apply to Foreach operators that usually only
call a single function, we provide an additional extractor
object that returns the operator object and the name of the
function that is getting called if the operator matches that
pattern. Other extractor objects for providing quick access
to predecessors and successors of operators are provided as
well. All of them return a tuple whose first element is the
object that is matched, so the patterns can be nested.

7. CONCLUSION AND FUTURE WORK
We have presented our approaches of code generation and

rewriting for dataflow programs integrated into Piglet with
the major concentration on data streaming. As mentioned
above, we think the concepts can be applied to other sys-
tems, too.

As a future perspective, we also want to further extend
the presented ideas. Relating to streaming features, there is
still a lot to do for supporting a comprehensive range of ap-
plication scenarios. First of all, there exist many widespread
connectors for source and sink nodes, such as Apache Kafka,
Twitter’s Streaming API or Flume, which should be made
available in Piglet. Another point in our agenda are op-
erator alternatives, for example, Join, since at the current
state only equijoins are supported. It was also considered
to support states for the Sample (e.g., reservoir sampling)
or Order By (e.g., keeping all seen tuples and reporting the
new order) operator. Obviously, one must always keep in
mind the required memory for such an approach. On top of
that, because the window operator is one of the main con-
cepts in data streaming, we think about adding more vari-
ants like delta-based windows. As mentioned in section 4 a
WindowApply node is simply inserted to define the window
scope. Another approach would be to put all operations
within the window scope directly into this node in the form
of a sub-plan already during the rewriting step. Thereby,
the code being produced is more transparent in the internal
representation and this is also a much cleaner solution.

Furthermore, the rewriting system can be extended to
make it easier to assign specific properties to operator types
that can automatically be used by general rewriting rules
that are not tailored to one type of operator. Another pos-
sible extension is the support for rewriting by utilizing alge-
braic properties of operators such as associativity and dis-
tributivity. Using these properties, not only one, but a set
of new plans can be generated from an initial plan. If a Pig
script is run multiple times, information gathered during
execution could be used to choose the best of those plans.

Apart from embedded functions, the parser and rewriting
rules associated with them, adding new types of operators
and rules has to happen in Piglet’s code itself. Extending
this to support loading user-defined operator types at run-
time, possibly via the ClassLoader system, is also an option
for the future.

8. REFERENCES
[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,

R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing.

Proceedings of the VLDB Endowment,
8(12):1792–1803, 2015.

[2] M. Armbrust, Y. Huai, C. Liang, R. Xin, and
M. Zaharia. Deep Dive into Spark SQL’s Catalyst
Optimizer.
https://databricks.com/blog/2015/04/13/

deep-dive-into-spark-sqls-catalyst-optimizer.

html, 2015.

[3] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: Relational
Data Processing in Spark. In Proceedings of the 2015
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 1383–1394.
ACM, 2015.

[4] I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J.
Miller, and N. Tatbul. SECRET: A Model for
Analysis of the Execution Semantics of Stream
Processing Systems. Proceedings of the VLDB
Endowment, 3(1-2):232–243, 2010.

[5] N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas, and
I. Botan. Modeling the execution semantics of stream
processing engines with SECRET. The VLDB
Journal, 22(4):421–446, 2013.

[6] P. Götze. Code Generation for Dataflow Programs
using the example of Flink Streaming. Master Thesis,
Technische Universität Ilmenau, October 2015.

[7] G. Graefe. The Cascades Framework for Query
Optimization. IEEE Data Eng. Bull., 18(3):19–29,
1995.

[8] G. Graefe and D. J. DeWitt. The EXODUS Optimizer
Generator, volume 16. ACM, 1987.

[9] S. Hagedorn, K. Hose, and K.-U. Sattler. SPARQling
Pig - Processing Linked Data with Pig Latin. In
BTW, March 2015.

[10] W. Hoffmann. Regelbasierte Transformation von
Datenflussgraphen. Master Thesis, Technische
Universität Ilmenau, January 2016.

[11] W. M. Johnston, J. R. P. Hanna, and R. J. Millar.
Advances in dataflow programming languages. In
ACM Computing Surveys, volume 36, pages 1–34,
2004.

[12] J. Krämer and B. Seeger. Semantics and
Implementation of Continuous Sliding Window
Queries over Data Streams. ACM Trans. Database
Syst., 34(1):4:1–4:49, Apr. 2009.

[13] O. Saleh and K.-U. Sattler. The Pipeflow Approach:
Write Once, Run in Different Stream-processing
Engines. In Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems,
DEBS ’15, pages 368–371. ACM, 2015.

[14] K.-U. Sattler and F. Beier. Towards Elastic Stream
Processing: Patterns and Infrastructure. First
International Workshop on Big Dynamic Distributed
Data (BD3), 2013.

[15] T. Sloane. Experiences with Domain-specific Language
Embedding in Scala. In Domain-Specific Program
Development, page 7, 2008.

[16] T. B. Sousa. Dataflow Programming Concept,
Languages and Applications. In Doctoral Symposium
on Informatics Engineering, 2012.

Rewriting and Code Generation for Dataflow Programs

61


