
Towards Specification and Execution of Linked Systems

Andreas Harth
Institute AIFB

Karlsruhe Institute of Technology (KIT)
Kaiserstr.12, 76131 Karlsruhe, Germany

harth@kit.edu

Tobias Käfer
Institute AIFB

Karlsruhe Institute of Technology (KIT)
Kaiserstr.12, 76131 Karlsruhe, Germany

tobias.kaefer@kit.edu

ABSTRACT
We introduce the formalism of Linked Systems for specifying
and executing dynamical systems that operate over Read-
Write Linked Data. Linked Systems cover user agents (com-
ponents that emit HTTP requests) and servers (components
that receive HTTP requests). The formalisation is inspired
by automata theory and the concepts of state transition sys-
tems and state machines. For the proposed formalism to
scale to the web, we try to minimise the burden on compo-
nent providers. We thus assume a Read-Write Linked Data
interface that offers only a few operations: resources identi-
fied via URIs can be created and deleted, and the state of
resources is expressed in RDF and can be read and updated.
Our near-term goal is to provide executable specifications of
autonomous behaviour expressed in a rule-based language,
without requiring formal service descriptions of the opera-
tions on resources. In the long term, we plan to use our
formalism as basis for applying techniques from the fields of
formal verification and artificial intelligence (AI) planning.

1. INTRODUCTION
Users can gain access to arbitrary content and functional-

ity on the web with a browser in one unified user interface.
On mobile devices, however, the dominant user interface
to content and functionality are apps. Each tailored app
communicates with a backend server, often via web proto-
cols. Universal user interfaces are desirable so that users
can comfortably access any network-accessible component
or combinations of components. Potential future universal
user interfaces could be dialogue systems, such as chatbots
and virtual assistants, or virtual reality environments.

A fundamental research challenge has been to find the
appropriate abstractions for interfaces to networked compo-
nents to facilitate the interaction with components and en-
able the interoperation between them. Realising the overall
goal of enabling flexible access to content and functionality
from a large number of sources requires at least the following
from component providers:

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 – 27.05.2016, Nörten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

1. A uniform protocol to decentralised components, to
be able to manipulate and interact with components
without writing adaptors.

2. A uniform data model, a suitable knowledge represen-
tation language and an associated query language, to
be able to represent, integrate and query data on a
global scale.

3. A uniform description of the behaviour of components,
to be able to apply techniques from the fields of formal
verification and AI planning.

With these uniform interfaces we could specify and ex-
ecute systems that operate autonomously; perform static
analysis, verification and simulation of these systems; and
automatically generate these systems, given component de-
scriptions and a goal. While these uniform interfaces been
available in closed systems (for example, in the field of arti-
ficial intelligence), such a level of elaboration has been elu-
sive on the web, which is an open decentralised system with
many contributors. Different communities, however, work
towards providing (parts of) elaborate uniform interfaces in
open environments:

1. The followers of the architectural style Representa-
tional State Transfer (REST) [7] encourage people to
use the abstraction of resources, on which a constrained
set of operations (e.g. reading and writing, creating
and deleting) can be executed. Hyperlinks provide
connections between resources that provide data and
functionality. The Richardson Maturity Model (RMM)1

introduces different levels of adherence to the REST
ideas. RESTful interfaces, however, do not require a
certain syntax for the representation of resource state.

2. The Linked Data community follows a different (but
similar) set of principles [3] to publish and access data
on the web that mandate the Resource Description
Framework (RDF) as a graph-structured data model
for representing resource state. The Linked Data prin-
ciples, however, only cover read-access to resource state.
The combination of the higher RMM levels and Linked
Data leads to Read-Write Linked Data [4], in which
resources are linked and resource state represented in
RDF can be manipulated.

1http://martinfowler.com/articles/
richardsonMaturityModel.html

62



3. Finally, different communities concerned with dynam-
ical systems (for instance, control systems and cyber-
physical systems) abstract from specific protocols and
often use a simple data model. Formal descriptions of
services or actions – the “laws” of a system – are cen-
tral to the applied verification methods, such as model
checking or simulation. The Semantic Web commu-
nity had attempted to create a respectable amount of
fully-described services, and the REST community is
working towards having standardised input and output
descriptions for APIs widely available.

Currently, we cannot assume that elaborate uniform inter-
faces to components are commonplace on the open web. To-
day, many APIs provide a resource-oriented modelling with
constrained operations (REST). Linked Data is popular for
read-access to RDF data. Read-Write Linked Data, as the
combination of the two popular paradigms, could provide
access to a sizable amount of components with a limited
additional burden for component providers, for example as
specified in the W3C Linked Data Platform recommenda-
tion2 with editors from IBM and Oracle.

Thus, in this paper, we focus on manual specification of
systems that operate on components which have a Read-
Write Linked Data interface, but do not provide formal ser-
vice descriptions. The goal is to have a formal model of
systems that are able to use and provide Read-Write Linked
Data resources. We present an approach for executable for-
mal specifications. The approach can be extended to sup-
port formal verification and AI planning in case a suffi-
cient amount of components with formal service descriptions
should become available.

We have applied prototypes that implement the proposed
formalism for specifying interactive systems based on a Read-
Write Linked Data interface in several settings. In the Ger-
man ARVIDA project3, we break up monolithic industrial
Virtual and Augmented Reality (VR and AR) systems into
components with a Read-Write Linked Data interface, and
specify and execute VR applications based on these inter-
faces. In the European i-VISION project4, we provide means
to connect a workflow analysis software with a flight simu-
lator to perform Human Factors analysis of aircraft cock-
pits in a VR environment at run-time; the components are
also based on Read-Write Linked Data interfaces. We have
demonstrated that the execution of the system specifications
achieved update rates sufficient for an immersive experience
in the VR environment [11, 12].

We begin the remainder of the paper with related work
in Section 2, introduce necessary definitions in Section 3,
formalise the notion of a Linked System in Section 4, and
conclude with a summary and a list of open issues in Sec-
tion 5.

2. RELATED WORK
Dynamical systems are fundamental to many fields. Fields

concerned with the “real” world – such as physics, control
theory, and cyber-physical systems – study primarily con-
tinuous-time systems. In the digital world of computation,
discrete-time systems are common, with a monotonically in-
creasing sequence of integers denoting time (often written

2http://www.w3.org/TR/ldp
3http://www.arvida.de/
4http://www.ivision-project.eu/

as t). Given the enormous breadth of dynamical systems,
we can only provide a subjective selection of related work of
the discrete-time variants.

In computational systems, Harel and Pneuli [9] introduce
the dichotomy between a transformational system “that ac-
cepts inputs, performs transformations on them and pro-
duces output” and reactive systems that in contrast “are
repeatedly prompted by the outside world and their role is
to continuously respond to external inputs”. The goal of our
work is to provide a formalism to specify reactive systems5

that combine both user agents (systems that emit requests)
and servers (systems that accept requests) into a single rep-
resentation.

Formal models are popular for describing reactive systems
in closed environments [5, 2, 15, 1]. These approaches re-
quire full descriptions of the “laws” of the systems, to be
able to generate the entire state space for a given vocabu-
lary if the systems have finite domains, or to use simulation
for infinite domains. However, often the data representation
is limited: either variables with values in the case of the
cyber-physical systems community, or propositional logic in
the case of the model checking and automata communities.

McCarthy’s situation calculus is an early formalism to
describe dynamical systems in the area of artificial intel-
ligence. The situation calculus includes actions that can be
performed in the world and fluents that describe the (chang-
ing) state of the world. As we conceptually operate on a
single ternary triple predicate for representing state, we do
not have the possibility to identify fluents (predicates that
change over time). Also, we assume the open web as task
environment rather than a closed system, and distinguish
between user agents and servers.

Abstract State Machines (ASMs) [8] use first-order struc-
tures (functions and relations) over a fixed vocabulary to
represent state. ASMs heavily inspired our approach, but
our formalism is targeted for the web: we use RDF instead
of first-order structures. We further do not make the as-
sumption of a fixed vocabulary, as on the web we want to
follow links during runtime, which may lead to hitherto un-
known URIs. Instead of arbitrary external functions to in-
teract with the environment, we limit the external functions
to HTTP requests with create-read-update-delete (CRUD)
methods.

Approaches for Web Service Composition [13] are based
on XML-based WS-* standards, such as WSDL for inter-
face description to remote procedure calls [14]. We use a
resource-based abstraction with CRUD operations instead.
These approaches use BPEL (Web Services Business Process
Execution Language), an industry standard for specifying
service compositions. We rather use a formal model based
on state transition systems as the foundation.

The Guard-Stage-Milestone (GSM) framework for artifact-
centric workflows [6] provides a business process view on
dynamical systems. Instead of a fixed data schema (that is,
the information model as attribute/value pairs) partitioned
into data (static) and status attributes (fluent), we use the
semistructured RDF triples data model without the distinc-
tion of fixed and fluent partitions. GSM systems operate on
incoming events and outgoing events. In contrast to GSM
and also our earlier work [16], we distinguish between ac-

5Or interactive systems, that in contrast to newer definitions
of reactive systems do not have the strict timing requirement
to react at the pace of the environment.

Towards Specification and Execution of Linked Systems

63



tions and events, and user agents and servers. While GSM
assumes a fixed representation of different steps and mile-
stones in the system, we do not assume a fixed model but
provide the possibility to model such representations in RDF
triples. In GSM, updates to the world state are visible im-
mediately. In our model, updates to the world state are only
visible in the next step once a new sensing round accessing
the resource state has been carried out.

Semantic Web Services [17] assume a fully described task
environment, and use expressive first-order logic, similar to
ASMs, to represent the state. In Semantic Web Services,
AI planning based on descriptions is central for combining
arbitrary network-accessible functions (via SOAP) into an
executable plan. Instead of arbitrary functions, we assume
a resource-oriented CRUD interface. We share the long-
term vision of Semantic Web Services and Agents in the
Semantic Web [10]. But we focus on the part that we feel
is widely deployable today, namely specifying and executing
systems combining comparably simple Read-Write Linked
Data components without descriptions.

3. PRELIMINARIES
In the following, we provide definitions for web interfaces

based on a common access protocol and a common knowl-
edge representation language. We assume Read-Write Linked
Data [4], which informally can be alternatively viewed as
the combination of Linked Data [3] and HTTP CRUD oper-
ations, or as Web APIs on an RMM level of at least 2 that
serve RDF in one of its various syntaxes.

3.1 Resources and URIs
The following definitions build on the notions of a resource

a URI, an identifier for a resource.

Definition 1 (Resource, URI). A resource is an ab-
stract notion for things of discourse, be they abstract or con-
crete, physical or virtual (e.g., a document on the web, a
car, or the set of the natural numbers). A Uniform Re-
source Identifier (URI) is a character string that identifies
a resource.

A URI has a scheme, which is the beginning of the charac-
ter string until the first colon. The scheme specifies how to
interpret the rest of the URI. We focus on the http scheme
(the considerations analogously apply to the https scheme).
Moreover, we provide an analogy for http URIs with the
scheme file. Collections (e. g. lists, sets) are a particular
kind of resources, treated later.

3.2 Hypertext Transfer Protocol
While a URI with the scheme http first is to identify a

resource, the scheme also indicates that second we may be
able to interact with the resource using the Hypertext Trans-
fer Protocol (HTTP)6. HTTP is the prototypical variant of
REST.

Definition 2 (HTTP Request, HTTP Response).
A HTTP message is a tuple 〈S,H,B〉, where S is the manda-
tory start line, H is an optional list of header name/value
pairs, and B is the message body, also optional. A HTTP re-
quest is a HTTP message in which the start line S consists
of a request line (with the HTTP method and the request

6http://tools.ietf.org/html/rfc7230

URI and the version information). In a HTTP response
message, the start line S consists of a HTTP status code
and information on the used HTTP version.

Interaction with HTTP URIs is done in request/response
pairs. The message body B of a HTTP message contains a
representation of the current state of the resource identified
via the request URI in the start line. Representations of
state can vary over time, just like the resource can change.

A HTTP request has a HTTP method in its status line.
The HTTP methods include GET, PUT, POST, and DELETE.
Less popular methods include PATCH and OPTIONS7. There
exists a rough mapping from the HTTP methods to the
CRUD operations, create, read, update, delete – the basic
operations for persistent storage, which we present as we
describe the HTTP methods. We call methods that are free
of side effects “safe”. The safe HTTP methods are:

• A GET request retrieves the representation of the cur-
rent resource state (corresponding to“read”in CRUD).

• An OPTIONS request results in the methods that are
allowed on a resource. The body of response messages
to OPTIONS requests could contain formal service de-
scriptions in a possible extension of our approach. We
currently do not use OPTIONS.

Methods that change the state of a resource are called“un-
safe” (e.g., PUT, POST, DELETE, PATCH). The unsafe requests
(those are for “create”, “update” and “delete” in CRUD) are:

• A PUT request with message body b assigns b as the
representation of the resource state. PUT can be used
to create a resource with a URI set by the client.

• A PATCH request with body b updates a resource rep-
resentation (remove and add data) based on the sent
patch specification b.

• A POST request can serve different purposes:

– append data to an existing representation of a
resource;

– create a new resource with a URI determined by
the server; or

– perform RPC-style arbitrary data-processing (not
possible on file URIs).

The POST request allows for data processing in a remote
procedure call (RPC) fashion. Therefore, POST allows
for invoking arbitrary operations (functions). To ben-
efit from the uniform interface of REST, in this pa-
per we only consider state updates, in-line with RMM
level 2.

• A DELETE request removes a resource.

If multiple applications of the same method yield the same
result, we call these methods“idempotent”(e.g., GET because
it is safe, PUT because if the resource state is overwritten
multiple times with the same data, the resulting resource
state is still the same).

Using the HTTP methods, we operate with resources iden-
tified by URIs with the http scheme. Alternatively, we

7http://tools.ietf.org/html/rfc7231

Towards Specification and Execution of Linked Systems

64



can define the HTTP methods also for URIs with the file

scheme, i.e. URIs that identify files and directories. For ex-
ample, GET on such a URI would retrieve the content of the
file; PUT on a file URI would create the file with the pay-
load; PUT on a file URI ending in a slash character would
create a directory.

3.3 Resource Description Framework
As indicated by the Linked Data principles, we assume

that the representation of the state of resources is given us-
ing the Resource Description Framework (RDF) in an RDF
graph.

Definition 3 (RDF Term, Triple, Graph). The set
of RDF terms consists of the set of URIs U , the set of blank
nodes B and the set of RDF literals L, all being pairwise dis-
joint. A tuple 〈s, p, o〉 ∈ (U ∪B)×U × (U ∪B ∪L) is called
an RDF triple, where s is the subject, p is the predicate, and
o is the object of the triple. A set of triples is called RDF
graph.

To be able to talk about the state representations retrieved
from multiple resources, i.e. multiple RDF graphs, we intro-
duce the notion of an RDF dataset.

Definition 4 (Named Graph, RDF Dataset).
Let G be the set of RDF graphs and let U be the set of URIs.
A pair 〈g, u〉 ∈ G × U is called a named graph. An RDF
dataset consists of a (possibly empty) set of named graphs
(with distinct names) and a default graph g ∈ G without a
name.

To talk about the state of resources at different times, we
introduce an index t, which denotes the point in time to
which an RDF dataset D refers, thus yielding Dt. We as-
sume discrete time represented as monotonically increasing
integers.

4. LINKED SYSTEMS
In the following, we first introduce the general notion for

dynamics in Linked Data which we call Linked Data Tran-
sition System. We then define user agents and servers, and
next outline Linked Systems.

The Linked Data Platform (LDP) recommendation poses
restrictions on how to interact with web resources, partic-
ularly collection resources, in a Linked Data context. Our
Read-Write Linked Data interface as described in the fol-
lowing definitions adheres to LDP where it concerns HTTP-
based interaction with collection resources. We omit the
various header fields that are part of LDP.

On the web, we operate in a decentralised system in which
we cannot control each participant. REST provides a lim-
ited set of constraints on the components that allow users
to assume a certain behaviour. The use of resource-based
CRUD operations is one such constraint. However, certain
behaviours are under-specified. For instance, if we overwrite
a resource state with PUT, the resulting state of the resource
may differ from what has been sent in the message body
of the PUT request. Also, changing the state of resource A
may affect the state of resource B. In our definitions of the
semantics of HTTP operations that follow, we allow such
side effects only to occur between collection resources and
element resources.

4.1 Semantics of HTTP Operations
Let S be an RDF dataset. We write St for RDF dataset

S at time t. With GET, we are able to obtain the resource
state, so that we can process the resource state as part of
our world model. Let u be a URI from U identifying not a
collection resource. Let r a request/response pair involving
u which relates to a named graph in S.

We contrast the current state t of an RDF dataset S before
the request/response pair r with the state of S at t+ 1 after
the request/response pair r. Now we can formally define how
PUT, POST and DELETE behave. We denote a “don’t-care” as
a dot (“·”).
• PUT: Let r be a request/response pair 〈PUT u, ·, B〉,
〈200 OK, ·, ·〉. Applying r to St yields St+1, where in
St+1 the triples belonging to u are B.

• POST: Let r be a request/response pair 〈POST u, ·, B〉,
〈200 OK, ·, ·〉. Applying r to St yields St+1, where in
St+1 there are additional triples (related to those in B,
if B 6= ∅) related to u.

• DELETE: Let r be a request/response pair 〈DELETE u, ·, ·〉,
〈204 No Content, ·, ·〉. Applying r to St yields St+1,
where in St+1 there is no representation available at u.

Now, let uc be a URI from U identifying a collection re-
source.

• PUT: PUT is not possible on collection resources (we as-
sume collections are managed by the server). LDP
does not require the PUT request to be supported in
the context of collections either.

• POST: Let r be a request/response pair 〈POST uc, ·, B〉,
〈201 Created, H, ·〉. Applying r to St yields St+1,
where in St+1 there are additional triples (those in B)
related to a newly created8 URI ue that is linked to
uc. Also, uc is different now, as the link to the newly
created resource identified via URI ue is part of the
state of the collection resource. The set of headers H
contains ue as the value of the Location header. In
compliance with LDP, we assume no representation in
the body of the response.

• DELETE: Let r be a request/response pair 〈DELETE uc, ·, ·〉,
〈204 No Content, ·, ·〉. Applying r to St yields St+1,
where in St+1 there is no representation available for
uc. Whether deleting the collection resource uc also
affects its associated element resources depends on the
type of the relation between the collection and its ele-
ments (cf. the container types specified in LDP).

4.2 Linked Data Transition System
Having covered the semantics of one transition from t to

t + 1, we now can define a transition system that describes
resource states (represented as RDF datasets) over multiple
transitions. That is, we can we say what happens with the
resource state at t + 1 relative to resource state at t.

Definition 5 (Linked Data Transition System).
Let Req,Resp be the set of all request/response pairs with
unsafe operations. A Linked Data Transition System is a
pair (S,→):
8Or taken from a pre-filled reservoir of URIs, for example
as defined in ASMs.

Towards Specification and Execution of Linked Systems

65



• A set of RDF datasets S representing resource states.

• The transition relation → over S × 2Req,Resp ×S. We
can contrast the current state st with the next state
st+1, given a transition occurs. A transition consists
of a set of request/response pairs.

For Linked Data Transition Systems we assume an om-
niscient view, where we assume we can readily observe all
request/response pairs in the system and all resource states.
The states S are the states of all resources in the system. We
write s0, s1 . . . sn to denote datasets at different time points.

We write (so, ro, s1) ∈→ as so
r0−→ s1. We can define the his-

tory of a system by a sequence so
r0−→ s1

r1−→ s2 . . ., where
so, s1, s2 are states, and r0, r1 are sets of request/response
pairs.

Next, we introduce a limited point of view, where we dis-
tinguish the direction of requests relative to a user agent or
server.

4.3 Actions and Events
We now can define the notion of a Linked Data User

Agents and Linked Data Servers. A HTTP message ex-
change involves two parties: user agents and servers. The
user agent creates the request and the server creates the
response.

Definition 6 (User Agent, Action). Let Req be a
HTTP request message, and Resp be a HTTP response mes-
sage. The function send(Req,Resp) denotes a system emit-
ting Req and receiving Resp. An action is an outgoing re-
quest/response pair. User agents are systems that emit ac-
tions.

We can group the actions into safe actions (GET) and un-
safe actions (PUT, POST, DELETE and PATCH).

Definition 7 (Server, Event). Let Req be a HTTP
request message, and Resp be a HTTP response message.
The function receive(Req,Resp) denotes a system receiv-
ing Req and sending Resp. An event is an incoming re-
quest/response pair. Servers are systems that receive events.

We can group the events into safe events (GET) and unsafe
events (PUT, POST, DELETE and PATCH).

The same request/response pair is regarded as an action
in the user agent and as an event on the server. Informally,
the difference between user agents and servers is similar to
the difference between generators and recognisers in state
machines.

4.4 Linked Systems
We can now define the notion of a Linked System.

Definition 8 (Linked System). Let A be the set of
all (outgoing) unsafe actions and let E be the set of all
(incoming) unsafe events. A Linked System consists of the
quadruple (S, s0, F,→):

• A set of RDF datasets S representing resource states.

• The initial state, s0 ∈ S.

• A set of the final states, F ⊆ S.

• The transition relation → over S × 2E × 2A × S. The
transition consists of a set of events from E and a set
of actions from A.

Linked Systems cover both user agents and servers. In
case E is the empty set, we arrive at the special case of a
Linked Data User Agent. In case A is the empty set, we
arrive at the special case of a Linked Data Server.

We now can define the execution of a Linked System.

Definition 9 (Run, Step). A run of a Linked System
M is a sequence of states, unsafe events, and unsafe actions.
A run has multiple steps. One transition is a step. A suc-
cessful run starts in s0 and ends in a state sn ∈ F , where n
denotes the number of steps carried out during the run.

An example of a one-step run would be so
eo,a0−−−→ s1, where

s1 ∈ F .
In case the Linked System is a user agent only (and thus

only emits actions), we can run the system from the com-
mand line. In case the Linked System is a server, we have
to provide a HTTP interface to have the ability to receive
events.

We start the execution of a Linked Data User Agent from
the command line. We start with the initial state so. As the
user agent does not receive events, we successively execute
steps until a final state f ∈ F is reached. Each step t consists
of the following:

• Collect the resource state st by dereferencing the graph
names in the RDF dataset st. We provide link traver-
sal specifications using rules that yield the graph names
to be dereferenced in a fixpoint procedure. We can also
provide deduction rules to encode different semantics
(such as RDFS or subsets of OWL). The result is a
materialised version of the resource state st.

• After computing the fixpoint to yield the overall re-
source state, carry out the unsafe requests as specified
in the transition relation. The responses of the unsafe
requests become part of st+1.

• We also provide means to register queries that are con-
tinuously evaluated on the current internal resource
state. To arrive at a fully streaming model, we are
only supporting SPARQL basic graph pattern queries,
which can be implemented in non-blocking operators.

As the default, a new step t + 1 immediately starts once
step t has been finished. We are able to align the start of
each step at specified interval boundaries, or specify a wait
time between each step. We use the time-triggered execution
in our VR demonstrators at 30 Hertz (one step each 33ms).

The execution of a Linked Data Server has to take into ac-
count events from the external environment. We thus arrive
at an event-triggered execution model: the system runs once
the incoming request (an event) arrives. The run proceeds
as in the case of Linked Data User Agents. In case the run
succeeds, the response to the event includes a HTTP status
code in the 2xx range, denoting a successful run. Otherwise,
a server error (HTTP status code 500) is returned. Per de-
fault, the union of the triples in the state st is serialised as
RDF triples in the body of the response. Optionally, we
can filter the triples with a query to reduce the amount of
returned data.

Towards Specification and Execution of Linked Systems

66



5. CONCLUSION
We have provided a formal account of Read-Write Linked

Data as a transition system. We have identified the two roles
of user agents (components that emit actions) and servers
(components that receive events), and have shown how both
roles can be understood in terms of the transition system.
We have outlined the notion of Linked Systems, which can
be instantiated in user agent or server roles, or both.

We base the presented formalism on our experiences col-
lected with a prototype [16] that we have been using in a
variety of projects. In the implementation, we represent
the state transition relation in a variant of event-condition-
action rules, where the condition serves as a guard that can
trigger the execution of an action. We currently only imple-
ment non-blocking operators to enable stream processing.
Future work includes the finalisation of the syntax for rules
and a representation of traces of runs. We also consider
adding support for state representations other than RDF.
Our plan is to provide the system as open source.

Our formalism can serve as the basis for parallel execu-
tion. Given that Linked Systems are based on fundamental
notions common to many dynamical systems, the formalism
could be extended to incorporate further functionality. For
example, we could add invariants, which are observed and
checked during execution. In case a substantial amount of
descriptions for components become available, we could use
AI planning to generate the transition relation in a Linked
System from the descriptions of the components, given an
initial and a final state. To be able to use verification tech-
niques, we would likely define a reduced subset of the pre-
sented Linked System, for instance providing finite domains
or reducing the flexibility of the RDF triples data model.

Acknowledgements
We thank Dieter Fensel for pointing out the possible con-
nection between REST and Abstract State Machines, Mar-
tin Junghans for explaining IOPE descriptions and process
calculi, and Aidan Hogan for fruitful discussions related to
dynamics in Linked Data. We acknowledge support from the
BMBF ARVIDA project (FKZ 01IM13001G) and AFAP, a
BMBF Software Campus project (FKZ 01IS12051).

6. REFERENCES
[1] R. Alur. Principles of Cyber-Physical Systems. MIT

Press, 2015.

[2] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2008.

[3] T. Berners-Lee. Linked Data. Design Issues, 2006.
http://www.w3.org/DesignIssues/LinkedData.html.

[4] T. Berners-Lee. Read-Write Linked Data. Design
Issues, 2009. http://www.w3.org/DesignIssues/
ReadWriteLinkedData.html.

[5] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, 1999.

[6] E. Damaggio, R. Hull, and R. Vacuĺın. On the
Equivalence of Incremental and Fixpoint Semantics
for Business Artifacts with Guard-Stage-Milestone
Lifecycles. Information Systems, 38(4):561 – 584, 2013.

[7] R. T. Fielding and R. N. Taylor. Principled Design of
the Modern Web Architecture. ACM Transactions on
Internet Technology (TOIT), 2(2):115–150, May 2002.

[8] Y. Gurevich. Abstract State Machines: An Overview
of the Project. In Proceedings of the Third
International Symposium on Foundations of
Information and Knowledge Systems, pages 6–13.
Springer, 2004.

[9] D. Harel and A. Pnueli. Logics and Models of
Concurrent Systems, chapter On the Development of
Reactive Systems, pages 477–498. Springer, 1985.

[10] J. Hendler. Agents and the Semantic Web. IEEE
Intelligent Systems, 16(2):30–37, Mar. 2001.

[11] F. L. Keppmann, T. Käfer, S. Stadtmüller,
R. Schubotz, and A. Harth. Integrating Highly
Dynamic RESTful Linked Data APIs in a Virtual
Reality Environment (Demo). In Proceedings of the
13th IEEE International Symposium on Mixed and
Augmented Reality, pages 347–348, 2014.

[12] F. L. Keppmann, T. Käfer, S. Stadtmüller,
R. Schubotz, and A. Harth. High Performance Linked
Data Processing for Virtual Reality Environments. In
Poster & Demo Proceedings of the 13th International
Semantic Web Conference, 2014.

[13] N. Milanovic and M. Malek. Current Solutions for
Web Service Composition. IEEE Internet Computing,
8(6):51–59, Nov 2004.

[14] C. Pautasso, O. Zimmermann, and F. Leymann.
RESTful Web Services vs. ”Big” Web Services:
Making the Right Architectural Decision. In
Proceedings of the 17th International Conference on
World Wide Web, pages 805–814. ACM, 2008.

[15] K. Schneider. Verification of Reactive Systems:
Formal Methods and Algorithms. Springer, 2004.

[16] S. Stadtmüller, S. Speiser, A. Harth, and R. Studer.
Data-Fu: A Language and an Interpreter for
Interaction with Read/Write Linked Data. In
Proceedings of the 22nd International Conference on
World Wide Web, pages 1225–1236. ACM, 2013.

[17] R. Studer, S. Grimm, and A. Abecker. Semantic Web
Services: Concepts, Technologies, and Applications.
Springer, 2007.

Towards Specification and Execution of Linked Systems

67


