
Reachability Queries in Public Transport Networks

Bezaye Tesfaye
University of Salzburg

Department of Computer Science
Jakob-Haringer-Str. 2

5020 Salzburg, Austria
bezaye.belayneh@stud.sbg.ac.at

Nikolaus Augsten
University of Salzburg

Department of Computer Science
Jakob-Haringer-Str. 2

5020 Salzburg, Austria
nikolaus.augsten@sbg.ac.at

ABSTRACT
Given a query point in a spatial network, the reachability
query retrieves all points of interest that are reachable from
the query point in a specific amount of time respecting net-
work constraints. Reachability queries have a number of inte-
resting applications, and for road networks efficient solutions
have been proposed. Road networks are time-independent,
i.e., the cost for traversing an edge is constant over time.
Efficient algorithms for road networks heavily rely on pre-
computing shortest paths. In public transport networks, ho-
wever, the edge costs depend on schedules, which renders
most solutions for road networks inefficient. In particular,
shortest paths between node pairs cannot be easily precom-
puted because they change over time.

The goal of this work is to develop efficient solutions for
reachability queries in public transport networks. The core
idea is to partition the network into cells and compute time
upper and lower bounds to traverse a cell. At query time, the
reachable region is expanded cell by cell (instead of expan-
ding edge by edge). All points of interest that are reachable
using upper bound expansion are part of the result; all points
that are not reachable in a lower bound expansion can safe-
ly be discarded; all other nodes are candidates and must be
verified. This paper presents the expansion algorithm and
and discusses interesting research directions regarding good
network partitions, effective bounds, and efficient candidate
verification.

Keywords
Spatial Network, Reachability Query, Public Transportati-
on, Isochrones, Spatial Index, Spatial Network Databases,
Spatio-temporal Databases

1. INTRODUCTION
Analyzing the reachability of geographic locations has ma-

ny interesting application, for example, allocating hospitals
and schools in urban planning, positioning franchise stores

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 - 27.05.2016, Noerten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

in geomarketing, or exploring the surroundings in mobile ap-
plications. In spatial networks, the reachability of a location
does not only depend on the Euclidean distance, but also the
restrictions and the structure of the network must be taken
into account. For example, cars can only move on roads and
must obey traffic rules, buses have schedules and can only be
boarded at bus stops. Networks that allow different trans-
port modes (e.g., pedestrian, car, and public transport) are
called multi-modal networks.

Queries over spatial networks are essential for spatial and
spatio-temporal databases [14, 18, 27, 29]. The integrati-
on of spatial networks into databases enables queries that
respect network constraints and provides support for new
fields of application. Many commerical and open source sys-
tems provide extensions for spatial networks, for example,
Oracle Spatial, PostGIS for PostgreSQL, and ESRI ArcGIS
Network Analyst. At the technical level, spatial networks po-
se a challenge regarding data modeling, indexing, and query
processing. Examples of spatial network queries are shor-
test path queries, spatial joins, range queries, and nearest
neighbor queries [19, 21, 23, 24].

A reachability query retrieves all points of interest (POI)
in the network that reach (resp. are reachable from) a given
query point within a given time frame (the cost budget) at
a specific point in time. For example, in the query “return
all students that can reach their school at 8am within 10
minutes either on foot or via public transport”, the student
homes are the POIs, the query point is the school, the cost
budget is 10 minutes, and the time point is 8am.

There are two basic approaches to solve reachability que-
ries: (a) compute the subset of the network that reaches the
query point and intersect with the POI set, (b) compute the
shortest path between each POI and the query point, and
retain those POIs that are close enough. The first approach
is beneficial for network areas with many result points; un-
fortunately, the algorithm must also expand network areas
that do not contain any result. The efficiency of the second
approach depends on the overall number of POIs and may
require a large number of shortest path computations even
for small result sizes.

For road networks, a number of solutions have been propo-
sed, for example, Range Network Expansion (RNE), Range
Euclidean Restriction (RER) [24], and Incremental Network
Restriction [9]. Unfortunately, these approaches are not ap-
plicable to public transport networks: they rely on the Eucli-
dean distance as a lower bound, which is not useful in the
presence of schedules.

The problem of reachability queries is closely related to

109

the computation of shortest path queries. The fastest algo-
rithms for the shortest path problem heavily rely on precom-
putation. If the shortest path between all pairs of nodes is
precomputed, the shortest path computation is reduced to a
single lookup; this approach, however, is not feasible for large
networks. Algorithms like Contraction Hierarchy (CH) [12],
Customized Route Planning (CRP) [8], and Transit Node
Routing (TNR) [4] store the distances between a selected
set of nodes which allow very fast query times with feasible
index sizes in continent size networks. Unfortunately, these
approaches assume road networks, which have constant cost
for traversing an edge. Thus, there is a single shortest path
between each pair of nodes. In public transport networks,
the shortest path between two nodes depends on the query
time. The edge cost is given by a schedule and varies over ti-
me. The cost fluctuation may be substantial: between a few
minutes (during the day) and several hours (over night).

As stated by Bast et al. [2], “journey planning on pu-
blic transportation systems, although conceptually similar
[to journey planning in road networks], is a significantly har-
der problem due to its inherent time-dependent and multi-
criteria nature”. We identify two main problems: (1) The ti-
me dependent edge costs causes distances and shortest paths
to change depending on the query time. (2) The number of
incident edges of a single vertex in the network (e.g., train
station) is much larger than the one in road network, where
street junctions have few incident edges [2]. The time depen-
dence of edge costs and the larger neighborhood of vertices
render most approaches that rely on preprocessing infeasible
for public transportation networks.

The goal of this work is to find an efficient solution for
reachability queries in public transport networks using pre-
computation. Time and space for the precomputation should
scale to continent size networks; the resulting index should
support incremental updates in response to local network
changes (e.g., new bus lines or changing schedules).

Our solution is based on graph partitioning. We split the
transportation network into cells and precompute upper and
lower bounds to traverse each cell. The precomputed bounds
are used to efficiently expand the reachable region cell by cell
(instead of edge by edge). Points of interest that are within
a region found by an upper bound expansion are reachable,
while points that are outside the lower bound region are not
reachable. All points of interest that are within the lower
bound but outside the upper bound region are candidates
and must be verified.

2. RELATED WORK
In spatial networks, reachability queries are closely related

to the shortest path (SP) problem, which has received much
attention from the research community in recent years. Most
of the current SP algorithms are based on Dijkstra’s algo-
rithm [10] or the A* algorithm [17]. These algorithms do
not require any precomputation. Dijkstra’s algorithm fol-
lows an expansion technique that visits edges in all possible
direction until the target is reached, which makes the algo-
rithm too slow for large networks. A* uses a heuristic (e.g.,
Euclidean distance) on top of Dijkstra’s approach to direct
the expansion. A good heuristic prevents unnecessary ver-
tex expansion. Different optimization techniques have been
proposed for Dijkstra’s algorithm [25, 20, 7, 30] and the A*
algorithm [15, 16].

By using extensive precomputation, the online time for

SP queries can be substantially reduced. Highway Hierarchy
(HH) [28] decreases the query time of Dijkstra’s algorithm
by up to three orders of magnitude [28]. The idea of HH is
used by the Contraction Hierarchy algorithm [12, 13], which
organizes vertices in hierarchies and applies a contraction
technique to reduce the graph size for query processing. SPs
are precomputed by adding new edges in the graph, which
are leveraged at query time. This preprocessing technique of
CH is used by SHARC (Shortcuts + ArcFlags) [5]. SHARC
is considered one of the fastest unidirectional algorithm, whi-
le CH only works for bidirectional queries.

Another algorithm for SP computation mainly based
on graph partitioning is Precomputed Cluster Distance
(PCD) [22]. It partitions the graph into disjoint clusters and
precomputes the SPs between all pairs of clusters. Transit
node routing (TNR) [3] is based on an intuitive observation
in road networks: all trips to a far destination typically share
a small number of paths that contain important road juncti-
ons called access nodes. Using this idea, TNR first finds the
access nodes in the graph and precomputes shortest path
distances from and to the access nodes.

Customized Route Planning (CPR) [8] is based on a graph
separator technique and is used for real time queries on road
networks. The preprocessing of CRP is metric-independent,
which is an advantage over CH and algorithms that follow
similar precomputation techniques: CH provides fast query
time, but is sensitive to small changes in the edge cost. Ano-
ther algorithm based on graph separator is GRASP (Graph
separators, RAnge, Shortest Path) [11], which uses a multi-
level graph partitioning technique.

Most of the above algorithms have been evaluated in road
and public transport networks, and the result is discussed
in [2]. The evaluation shows that there is a big performance
gap between the two types of networks. This is due to the
time-dependent edge cost of public transportation networks,
which make the precomputation effort of many algorithms
infeasible for large networks.

To model a public transportation network as a graph,
two approaches have been widely used: the time-expanded
and the time-dependent approach. In time-expanded mo-
dels, each arrival and departure event in each station (e.g.,
bus stop or train stop) is represented by a vertex, and an ed-
ge is used to represent the link between two events. The cost
to traverse each edge is the time difference between the sour-
ce and target event. In time-dependent models, each station
is represented by a single vertex and an edge is used between
two stations if there is a connection between them. A cost
function that depends on the departure time at the source
vertex is associated with each edge. The disadvantage of the
first approach is the large size of the resulting graph. But,
since each event is represented by a vertex, most of the SP
algorithms designed for road networks can be applied in the
resulting graph of this approach. See [26, 1] for a detailed
explanation of both modelling techniques.

Range Euclidean Restriction (RER) and Range Network
Expansion (RNE) [24] use an expansion technique similar
to Dijkstra’s algorithm to answer reachability queries. RNE
first determines the reachable area and then intersects this
area of the road network with the set of POIs. RER restricts
the number of relevant POIs to the points that are reachable
using Euclidean distance, i.e., ignoring the network. For the-
se candidate points, the shortest path is computed in order
to remove false positives. Deng et al. [9] reduce the number

Reachability Queries in Public Transport Networks

110

of shortest path computations to candidates in RER: similar
to the A* shortest path algorithm [17], an Euclidean lower
bound is maintained for each node that is expanded during
the shortest path computation; the node that is closest to
one of the candidates is expanded first, and the expansi-
on stops when the lower bound to all remaining candidates
exceeds the cost budget.

Bauer et al. [6] consider multimodal networks and do not
rely on precomputation. They expand the query point using
Dijkstra [10] and improve memory usage by expiring network
nodes that have already been processed. The result of the
computation is a so-called isochrone, which is the reachable
portion of the network at a given point in time. Since all
edges in the isochrone must be expanded, this approach does
not scale to large networks and isochrones.

3. PROBLEM DEFINITION
We model the spatial networks as a directed graph G =

(V,E) with vertices V and edges E. Vertices are embedded
in the plane, i.e., they have coordinates. A cost function
c(e, t) assigns each edge e ∈ E a positive cost: the time
to traverse the edge e = (x, y) at time t (starting time at
vertex x). The distance dt(u, v) between two nodes u, v ∈ V
is the minimum cost required to travel from u to v at time
t (dt(u, v) =∞ if v is not reachable from u). A point p is in
G if it is located on an edge or a vertex of G. The cost to
traverse a partial edge is a linear fraction of the total cost.

Definition 1 (Reachability Query). Given a spati-
al network G = (V,E), a cost budget ∆t, a set of points of
interest P in G, a query point q in G, and the query time t.
A reachability query computes all points of interest, R ⊆ P ,
that are reachable from q at start time t with cost ∆t:

R = {p ∈ P | dt(q, p) ≤ ∆t}
The reverse reachability query computes all points of interest
from which q is reachable at arrival time t with cost ∆t.

The main objective of this work is to develop an algorithm
for reachability queries in public transport networks. Cur-
rent solutions for reachability queries are either restricted to
road networks (i.e., time-independent edge cost) or do not
scale to large networks.

4. A PARTITION-BASED APPROACH TO
REACHABILITY QUERIES

In this section we sketch a technique for reachability que-
ries based on network partitions and local precomputations
within each partition.

We focus on public transport networks, which pose the
main challenge to precomputation techniques. In a public
transportation network graph, nodes are stations, e.g., bus
stops or train stations. The time-dependent cost function
that is associated to each edge represents the connection
between two stations and depends on schedules and waiting
times.

To simplify the discussion, the following presentation of
our algorithm assumes undirected graphs. Later in this sec-
tion we discuss possible extensions to directed graphs, which
are a realistic model for a public transportation network.

4.1 Precomputation

4.1.1 Partitioning
We partition the graph into n cells. A cell C is a connected

subgraph that consists of nodes VC ⊆ V and edges EC ⊆ E,
where EC is the set of all edges that connect a pair of nodes
in VC . The cells are disjoint (i.e., for any pair Ci 6= Cj :
VC,i ∩ VC,j = ∅) and cover the nodes of the graph (i.e.,
∪n

i=1VC,i = V). Edges that connect nodes from different cells
are border edges, the end points of border edges are border
nodes. The set of border nodes of cell Ci is denoted with Bi.

4.1.2 Graph Extension and Computation of Bounds
We add new nodes and edges to the graph. (1) In each

cell Ci we connect all pairs of border nodes (b, b′), b, b′ ∈ Bi.
(2) We add a virtual node εi to each cell Ci and connect the
virtual node to all border nodes. The virtual nodes are not
part of the original graph. The cost between a border node
b ∈ Bi and the virtual node εi is the cost between b and the
node in cell Ci that is most distant from b.

We compute time upper bounds and lower bounds between
specific pairs of nodes. The upper bound is the shortest path
between two nodes at the time of the slowest connection,
i.e., the maximum shortest path over all points in time. The
lower bound is the shortest path at the time of the fastest
connection. We precompute upper and lower bounds for the
following edges:

• border nodes: edges between all pair of border nodes
within each cell;

• virtual node: edge between each border node b ∈ Bi of
a cell Ci and the virtual node εi of the cell;

• all border edges.

The index size (i.e., number of precomputed bounds) is

index size = 2|Bi,j |+
n∑

i=1

|Bi|(Bi + 1),

where Bi,j is the set off all border edges in G, and Bi is the
set of border nodes of cell Ci. Note that Bi,j is a (hopefully
small) subset of the nodes E in the original graph G. The
summation adds up all upper and lower bounds that are
computed within each cell. The summands only depend on
the number border nodes in each cell, and the sum linear-
ly increases with the number of cells. Thus, we expect the
precomputation to scale to very large graphs.

The index can be incrementally updated in response to
schedule changes, edge insertion, and edge removal. Only
the updated edges and the cells that contain the updated
edges are affected. The upper and lower bounds of all other
cells and border edges remain unaffected by the update.

4.2 Candidate Generation
The core idea of our reachability algorithm is to expand

cell by cell rather than expanding edge by edge. The ex-
pansion with upper bounds (slowest connection) defines a
region Ru ⊆ V that can always be reached within the gi-
ven cost budget, independent of the starting time. All POIs
in the upper bound region are part of the result set. The
lower bound expansion (fastest connection) defines the re-
gion Rl ⊆ V that is reachable under the assumption that

Reachability Queries in Public Transport Networks

111

each edge is traversed using the fastest connection, indepen-
dent of the traversal time. All POIs outside the lower bound
region Rl can safely be rejected since they are not part of
the query result. The POIs between upper and lower bound
region, Rl \Ru (Ru ⊆ Rl), are candidates which we must to
verify. Compared to an approach that computes SP for all
POIs, in our approach SP computations are limited to can-
didates. As will be discussed below, in some cases it might
not be necessary to compute SP between a candidate and
the query point in order to verify the candidate.

Next we discuss the expansion with upper and lower
bounds. For the expansion algorithm we only need to consi-
der border nodes, border edges, and the virtual nodes, i.e.,
all edges for which we have precomputed bounds. The ex-
pansion area is increased by units of cells, not nodes or edges.

4.2.1 Upper Bound Expansion
Assume a query point q that is located in cell Cq =

(Vq, Eq) with border nodes Bq ⊆ Vq and virtual node εq.
The expansion must first deal with cell Cq and then pro-
ceeds to neighboring cells until the budget is exhausted.
Initialization. We first expand cell Cq. The result is a

(possibly empty) set of border nodes B of neighboring cells,
i.e., B 6⊆ Vq; each border node bi ∈ B has a time budget
∆ti. The expansion proceeds as follows:

1. Expand cell Cq: If all nodes in Cq are reachable from q
with the cost budget ∆t, then the upper bound region
is initialized with the nodes of Cq, Ru = Vq; otherwise
Ru = ∅. Cq is reachable from q if ∆t ≥ 2 ub(bq, εq) for
any node bq ∈ Bq, where ub(x, y) is the upper bound
between nodes x, y. The intuition is that we reach bq
from any node in Cq (i.e., also from q) at cost at most
ub(bq, εq); from bq we reach any other node in Cq with
the same cost upper bound.

2. Expand to neighboring cells. Compute B, the set of all
nodes that are reachable from a border node of Cq via a
border edge and have a non-negative cost budget. The
cost budget of node bi ∈ B that is reachable via border
node bq ∈ Bq is ∆ti = ∆t− ub(bq, εq)− ub(bq, bi).

Expansion Step. Given a set of border nodes B outside
Ru and a time budget ∆ti for each bi ∈ B, the expansion
proceeds as follows. For each node bi ∈ B:

1. Expand current cell: Let Ci be the cell that contains
border node bi. If all nodes in Ci are reachable with
the remaining cost budget at bi, the cell is added to
the upper bound region, i.e., if ∆ti ≥ ub(bi, εi) then
Ru = Ru ∪ Vi. Otherwise only add border node bi:
Ru = Ru ∪ {bi}.

2. Expand to neighboring cells. Follow the edges between
bi and all other border nodes in Bi. The budget at
node bj ∈ Bi \ {bi} is ∆tj = ∆ti − ub(bi, bj). For all
border nodes bj ∈ Bi: (a) if tj ≥ 0, Ru = Ru ∪ {bj};
(b) for all nodes d reachable from bj via a border edge:
compute the cost budget td = tj − ub(bj , d) of node d;
if td ≥ 0, B = B ∪ {d}.

3. Remove bi from B.

The expansion step is repeated until the set of border
nodes to be expanded is empty, B = ∅.

4.2.2 Lower Bound Expansion
The expansion with lower bounds is similar to the expan-

sion with upper bounds. The main differences are:

1. The expansion uses lower bounds instead of upper
bounds to compute the budgets of the nodes in B.

2. A cell Ci is added to the lower bound region Rl if (a)
Ci contains the query node q (and ∆t > 0), or (b) Ci

contains a node of bi ∈ B with budget ∆ti > 0.

We need to expand all cells that are reachable via lower
bounds with a non-zero budget. Even if we know that some
nodes in the cell are unreachable (i.e., the lower bound to the
virtual node exceeds the budget), we must make sure that
the subset of nodes that is reachable is in the candidate set.

4.3 Extending the Algorithm
In the remaining section, we discuss extensions of the basic

reachability algorithm. In particular, we discuss the exten-
sion to directed graphs, postulate criteria for a good par-
titioning of the graph into cells, introduce the concept of
time-dependent bounds, and point to opportunities for can-
didate verification.

4.3.1 Directed Graphs
Public transportation networks will typically be modeled

as directed graphs. In a directed graph, the bounds between
a pair of nodes may depend on the direction. We extend our
precomputation algorithm to compute two upper and lower
bounds for each relevant node pair (one for each direction).
For example, we distinguish the upper bound from a border
node bi to the virtual node εi from the upper bound in the
reverse direction. Overall, the size of the precomputation will
increase by a factor of two. The expansion algorithm must
be adapted to the directed bounds, e.g., when expanding
cell Cq, the condition will be ∆t ≥ ub(εq, bq) + ub(bq, εq)
(instead of ∆t ≥ 2 ub(bq, εq), cf. Section 4.2.1).

In an undirected graph, all nodes in a cell are pairwise re-
achable. This may, in general, not hold for directed graphs,
i.e., the bounds between a pair of nodes may be infinite.
While still correct, the expansion algorithm would be less
effective for the affected cells. Since we model public trans-
port networks, this situation is very unlikely. If for some
node there is a path only in one direction, we could reach
that station but never leave it (or vice versa).

4.3.2 Effective Partitioning Strategy
So far we assumed that the partitioning of the graph into

cells is given. Our algorithm is correct for any partitioning,
but obviously the partitioning strategy will have an impact
on the efficiency of the approach.

We identify a set of properties that an effective partitio-
ning should satisfy:

• the number of border nodes per cell should be small;

• the overall number of border edges should be small;

• the difference between the upper and lower bounds of
a cell should be small;

• all nodes in a cell should be pairwise reachable;

• different cells should be of similar size (i.e., homoge-
neous in terms of upper bound traversal time).

Reachability Queries in Public Transport Networks

112

For the cell size, there is a balance to strike: Large cells
improve the expansion speed since the processing time of a
cell is independent of its size. Small cells allow finer grained
expansion and lead to smaller candidate sets.

We expect that an algorithm for computing the optimal
partitioning will have infeasible runtime. Thus we will target
heuristics or approximations of the optimal algorithm.

4.3.3 Time-Dependent Bounds
In Section 4.1, we define the upper (lower) bound as the

shortest path between two nodes at the time of the slowest
(fastest) connection over all points in time. These bounds
may be very loose for public transportation schedules, where
the frequency of the connections will typically vary depen-
ding on the time of the day. For example, during rush hours
the buses travel with the highest frequency, while there are
no buses over night. This leads to lower bounds of minu-
tes and an upper bounds of hours. For reachability queries
during the day, the upper bound is too loose, leading to a
very small upper bound region. Likewise, the lower bound
is too small for departures in the evening, leading to large
candidate sets.

Our solution are time-dependent bounds. We split the
schedule into intervals and compute a different bound for
each interval. During the expansion, we check the earliest
(t1) and latest (t2) arrival time at a specific border node b.
The upper bound is the maximum upper bound in the inter-
val [t1, t2]; the lower bound is the minimum lower bound in
the interval [t1, t2]. The interval of the arrival time is com-
puted while expanding with the upper and lower bounds.
Let b be a border node with time budget ∆tl during the
lower bound expansion and time budget ∆tu during the up-
per bound expansion. With the query time t (i.e., the start
time at the query node q) the earliest arrival time at node b
is t1 = t+∆t−∆tli; the latest arrival time t2 = t+∆t−∆tui .

We have different options to split the schedule into inter-
vals: We either use intervals of fixed length (e.g., 6 hours)
or intervals of variable length. Variable length intervals will
lead to tighter bounds since we can choose the intervals such
that the bounds best approximate the true schedule. For
example, we can create intervals that cover the rush hours,
the day schedule, and the night schedule. Individual inter-
vals can be chosen for each pair of nodes. The intervals may
even be different between upper and lower bound for a gi-
ven pair of nodes. The limiting factor is the precomputation
size, which increases with each additional interval.

Table 1 shows an example of time-dependent bounds bet-
ween a border node b and the virtual node ε. The 24-hours
schedule is split into 4 intervals. The table shows the mini-
mum and maximum travel time from b to any node in b’s
cell during the different time intervals. For example, bet-
ween 6:01 and 12:00 the upper and lower bounds are 10min
and 5min, respectively, while the bounds are 240min resp.
30min during the night. When we arrive at node b in the
time interval [11:17, 13:03], the upper bound is 15min and
the lower bound is 5min.

Table 1: Time-dependent upper and lower bounds.

0:00-6:00 6:01-12:00 12:01-18:00 18:01-24:00

ub 240min 10min 15min 30min
lb 30min 5min 10min 25min

4.3.4 Efficient Candidate Verification
The straightforward approach to verify a candidate node is

by computing the shortest path between the query point and
the candidate. Since we have precomputed lower bounds, we
do not need to resort to Dijkstra’s algorithm, but can use
the efficient A∗ algorithm and do a directed search.

In some cases we can reject or accept candidates without
computing the shortest path. For example, the border no-
des of the upper bound region that are in partially reachable
cells can be used. These nodes have a remaining time bud-
get. All candidates that are reachable from the border node
within the given time budget (considering the shortest path
between the border node and the candidate) are part of the
result. Similarly, the border nodes of the lower bound region
that do not reach all nodes in their cell can be used to reject
candidates in that cell.

5. CONCLUSION
We propose a technique to compute reachability queries

in public transportation networks by partitioning the graph
into cells and use a novel expansion technique based on up-
per and lower bounds. The expansion algorithm generates
a set of reachable points, a set of unreachable points that
can be rejected without verification, and a set of candidates
that must be verified. To get tighter bounds (closer upper
and lower bounds), time-dependent upper and lower bounds
are considered. This reflects the frequency patterns in pu-
blic transportation schedules, which differ depending on the
time of the day and the date (e.g., night buses, weekend
schedules, holiday schedules). Better bounds lead to smaller
candidate sets.

Different from the Dijkstra-like expansion techniques used
in related work, we use precomputation and expect to dra-
matically reduce the number of shortest path computations
for reachability queries. This will lead to better online query
performance. The precomputation scales linearly with the
network size, and local changes (e.g., schedule changes, new
transport routes) require only a local update of the precom-
puted index.

As future work, we plan to develop an effective partitio-
ning algorithm that satisfies the properties outlined in this
paper. We will evaluate the proposed technique on real pu-
blic transportation networks and empirically compare the
performance to relevant competitors from related work. Fur-
ther, we plan to generalize our solution for public transport
networks to multimodal networks, which also include road
and pedestrian edges.

6. REFERENCES
[1] H. Bast. Efficient Algorithms : Essays Dedicated to

Kurt Mehlhorn on the Occasion of His 60th Birthday,
volume 5760 of Lecture Notes in Computer Science,
chapter Car or Public Transport – Two Worlds, pages
355–367. Springer, Berlin, Germany, 2009.

[2] H. Bast, D. Delling, A. V. Goldberg,
M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in
transportation networks. CoRR, abs/1504.05140, 2015.

[3] H. Bast, S. Funke, and D. Matijevic. TRANSIT –
ultrafast shortest-path queries with linear-time
preprocessing. In In 9th DIMACS Implementation
Challenge [1], 2006.

Reachability Queries in Public Transport Networks

113

[4] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
Routing in Road Networks with Transit Nodes.
Science, 316(5824):566, Apr. 2007.

[5] R. Bauer and D. Delling. Sharc: Fast and robust
unidirectional routing. J. Exp. Algorithmics,
14:4:2.4–4:2.29, Jan. 2010.

[6] V. Bauer, J. Gamper, R. Loperfido, S. Profanter,
S. Putzer, and I. Timko. Computing isochrones in
multi-modal, schedule-based transport networks. In
Proceedings of the 16th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, GIS ’08, pages 78:1–78:2, New
York, NY, USA, 2008. ACM.

[7] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders.
A parallelization of dijkstra’s shortest path algorithm.
In L. Brim, J. Gruska, and J. Zlatu?ka, editors,
Mathematical Foundations of Computer Science 1998,
volume 1450 of Lecture Notes in Computer Science,
pages 722–731. Springer Berlin Heidelberg, 1998.

[8] D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Customizable route planning. In
Experimental algorithms, pages 376–387. Springer,
2011.

[9] K. Deng, X. Zhou, H. T. Shen, S. W. Sadiq, and
X. Li. Instance optimal query processing in spatial
networks. VLDB J., 18(3):675–693, 2009.

[10] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numer. Math., 1(1):269–271, Dec. 1959.

[11] A. Efentakis and D. Pfoser. Grasp. extending graph
separators for the single-source shortest-path problem.
In A. Schulz and D. Wagner, editors, Algorithms -
ESA 2014, volume 8737 of Lecture Notes in Computer
Science, pages 358–370. Springer Berlin Heidelberg,
2014.

[12] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. In Proceedings
of the 7th International Conference on Experimental
Algorithms, WEA’08, pages 319–333, Berlin,
Heidelberg, 2008. Springer-Verlag.

[13] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter.
Exact routing in large road networks using contraction
hierarchies. Transportation Science, 46(3):388–404,
2012.

[14] B. George and S. Shekhar. Spatial network databases.
In Encyclopedia of Database Systems, pages
2714–2719. Springer, 2009.

[15] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A* search meets graph theory.
Technical Report MSR-TR-2004-24, Microsoft
Research, Vancouver, Canada, July 2004.

[16] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A search meets graph theory. In
Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’05, pages
156–165, Philadelphia, PA, USA, 2005. Society for
Industrial and Applied Mathematics.

[17] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, July 1968.

[18] V. Kanjilal and M. Schneider. Spatial network

modeling for databases. In Proceedings of the 2011
ACM Symposium on Applied Computing (SAC),
TaiChung, Taiwan, March 21 - 24, 2011, pages
827–832, 2011.

[19] M. R. Kolahdouzan and C. Shahabi. Continuous
k-nearest neighbor queries in spatial network
databases. In STDBM, pages 33–40. Citeseer, 2004.

[20] U. Lauther. An extremely fast, exact algorithm for
finding shortest paths in static networks with
geographical background. In Geoinformation und
Mobilität – von der Forschung zur praktischen
Anwendung, volume 22, pages 219–230, 2004.

[21] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S.-H. Teng. On trip planning queries in spatial
databases. In Proceedings of the 9th International
Conference on Advances in Spatial and Temporal
Databases, SSTD’05, pages 273–290, Berlin,
Heidelberg, 2005. Springer-Verlag.

[22] J. Maue, P. Sanders, and D. Matijevic. Goal-directed
shortest-path queries using precomputed cluster
distances. J. Exp. Algorithmics, 14:2:3.2–2:3.27, Jan.
2010.

[23] S. Nutanong and H. Samet. Memory-efficient
algorithms for spatial network queries. In Data
Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 649–660, April 2013.

[24] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao.
Query processing in spatial network databases. In
Proceedings of the 29th International Conference on
Very Large Data Bases - Volume 29, VLDB ’03, pages
802–813. VLDB Endowment, 2003.

[25] I. S. Pohl. Bi-directional search. Machine Intelligence,
6:127–140, 1971.

[26] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis.
Efficient models for timetable information in public
transportation systems. J. Exp. Algorithmics,
12:2.4:1–2.4:39, June 2008.

[27] P. Rigaux, M. Scholl, and A. Voisard. Spatial
databases: with application to GIS. Morgan
Kaufmann, 2001.

[28] P. Sanders and D. Schultes. Engineering highway
hierarchies. In Proceedings of the 14th Conference on
Annual European Symposium - Volume 14, ESA’06,
pages 804–816, London, UK, UK, 2006.
Springer-Verlag.

[29] S. Shekhar and S. Chawla. Spatial databases: a tour,
volume 2003. prentice hall Upper Saddle River, NJ,
2003.

[30] M. H. Xu, Y. Q. Liu, Q. L. Huang, Y. X. Zhang, and
G. F. Luan. An improved dijkstra’s shortest path
algorithm for sparse network. Applied Mathematics
and Computation, 185(1):247–254, 2007.

Reachability Queries in Public Transport Networks

114

