
Challenges of Index Recommendation for Databases

[With Specific Evaluation on a NoSQL Database]

Parinaz Ameri
Karlsruhe Institute of Technology (KIT)

Hermann-von-Helmholtz-Platz 1, Bldg. 449
76344 Eggenstein-Leopoldshafen, Germany

parinaz.ameri@kit.edu

ABSTRACT
One important aspect of physical database design is the se-
lection of a proper set of indexes for a workload. Creation
of indexes in a database system is subject to storage con-
straints. It is also affected by the ratio of update operations
in the workload. Therefore, the cost and benefit of each
set of indexes should be evaluated by a proper optimiza-
tion method. The large number of index sets that must
be assessed and the iterative nature of such optimization
methods impose an additional load on the database sys-
tem. Therefore, an efficient algorithm is needed to develop a
practical framework for automating index recommendation.
Furthermore, due to the fundamental differences between
data models and query languages of NoSQL databases to
each other and the relational databases, evaluation of such
index recommendation system for NoSQL databases faces
many challenges. This paper reviews the challenges and my
proposed solutions for developing a self-tuning index recom-
mendation system, especially for a document-based NoSQL
database instance.

General Terms
Index Recommendation

Keywords
Indexing, Query Optimizer, NoSQL Databases, Optimiza-
tion, Representative Sampling, Synthetic Workload, Gener-
ation, Benchmark

1. INTRODUCTION
The performance of a database is dependent on its phys-

ical design. A crucial part of the physical design is the se-
lection of the proper set of indexes concerning a particular
workload. Given the large size of conventional in-production
databases and the heavy workload of queries on them, au-
tomating the process of choosing proper indexes for them is
necessary.

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 - 27.05.2016, Nörten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

The index recommendation problem is defined as the course
of determining a subset of indexes so that the benefit of cre-
ating them for a particular workload is maximized concern-
ing the storage capacity.

Each database normally has a query optimizer that ex-
ecutes the cost of running a query with different scenarios
based on available indexes in the database. Each query op-
timizer itself has a cost function to evaluate different sce-
narios. The recent trend in developing index recommen-
dation solution is to benefit from this cost function. This
approach eliminates the risk of developing an entirely sep-
arated cost function for the index recommendation system
that would recommend indexes which might not even be
considered by the optimizer. The estimated cost by the op-
timizer can directly be used in benefit function of the opti-
mization method.

On the other hand, utilizing the estimated cost of the
query optimizer requires provoking it by the index recom-
mendation system for all of the candidate indexes. A large
number of calls to the optimizer can affect the performance
of the database itself in response to its applications. There-
fore, a good framework design is needed to avoid putting lots
of overhead on the in-production database and having bet-
ter performance for the index recommendation system. To
prevent this problem, we introduce a virtual environment
consisting of a sample of the targeted database. The can-
didate indexes can be estimated in this environment rather
than in the in-production system itself.

The number of candidate indexes can grow drastically in
proportion to the size of the database. Consecutively, a
method is needed to eliminate candidate indexes considered
by the recommendation system without removing the most
relevant indexes. Our proposed solution is discussed more
in Section 3.

Furthermore, the performance of the index recommenda-
tion system needs to be tested by a series of workloads.
This evaluation on NoSQL databases runs to a lack of well-
defined benchmarks. The reason is the various data model
of NoSQL databases and the vast variety of their query lan-
guages. These differences result in the ineffectiveness of
well-known benchmarking models of traditional relational
database models for NoSQL databases. This issue and our
developed solution for this challenge is discussed more in
Section 5.

The rest of this paper is organized as following: some re-
lated work are surveyed in Section 2. In Section 3, some of
the practical challenges in developing a framework for a self-
tuning index recommendation system are explained. Addi-

10



tionally, some of our solutions for these difficulties and the
proposed architecture for such a framework are presented.
The Section 4 provides a mathematical definition of index
recommendation problem followed by a discussion about
possible optimization methods to solve the problem. The
Section 5 provides a brief discussion on difficulties of eval-
uating such database related systems for NoSQL databases
and a solution that we developed for this problem. At the
end, Section 6 concludes the work.

2. RELATED WORK
There are several optimization methods to solve this issue.

Some recent approaches [7] neglect storage limitations and
instead calculate a lower bound for the cost of a workload
based on each query’s individual optimal index. Despite
being advantageous, the derived bounds are not pragmatic
in a context of the real storage limitations.

In the literature, many different optimization methods are
used to find the optimal solution for this problem such as
Knapsack problem usage [16], genetic algorithm [12] or even
linear programming optimization techniques [8] and branch-
and-bound [18]. However, this problem is often solved by
using a greedy algorithm [6, 9, 2]. In order to estimate better
how close we get to the optimal solution, other solutions such
as Integer Linear Program (ILP) can be used [14].

Instead, we propose using ILP, because it not only enables
us to explore more cases than for example the mostly used
greedy algorithm, but it also allows us to evaluate the qual-
ity of the optimal solution. Also, by applying Linear Pro-
gramming relaxation, we can have useful information about
approximate solutions that had optimal performance, but
due to lack of storage space are not chosen.

3. FRAMEWORK DESIGN AND ITS CHAL-
LENGES

The practical challenges of developing a framework for
recommending indexes and our solutions are presented in
this section.

We refer to the set of indexes chosen for cost evaluation
as candidate indexes. The first challenge in designing a good
framework for recommending indexes is limiting the search
space for candidate indexes.

On modern databases, there are not only traditional as-
cending and descending index types, but also many new in-
dex types, e.g. spatial, text indexes, etc. Consider there
are s types of indexes in a database with n attributes in a
collection. The following equation gives number of possible
single and multi-attribute indexes on that collection:

n∑

k=1

(sk)n!

(n− k)!
(1)

where k is number of fields and k ≤ n [5]. On a collection
of only five attributes and the possibility to create four types
of indexes, the number of possible indexes exceeds 150,000.

Therefore, it is important to limit the search space for
candidate indexes to the most relevant ones. As presented
in [5], we consider the most relevant indexes as the ones
derived from attributes of the most frequent queries in the
workload. Accordingly, the search space reduces from all the
possible combinations of the whole attributes in the data set

to the single and repeatedly present combinations of the fre-
quent queries in the workload. The Frequent Itemset [1] as a
data mining algorithm is used to build single and compound
indexes related to the most frequent queries of the workload.

However, as described in [3], the frequency of queries
should not be the only determining factor for defining can-
didate index proposal. For example, consider a query that
user wishes to issue frequently, but the response time of it
on a large database takes very long time. Due to the long
response time, its frequency might fall below the configured
threshold of the frequent itemset. To avoid missing such
important queries for candidate index evaluation, a proper
combinatorial algorithm is needed to combine the frequency
and length of a query as two determining factors for gener-
ating candidate indexes.

Extracting attributes from the most frequent queries and
setting order for them in a compound index should be done
automatically. This is the responsibility of Syntax Analyzer
in Figure 1. This component is crucial for analyzing queries
and also for scalability of the system to work with large
workloads. The functionality of the syntax analyzer com-
ponent is directly affected by different query languages and
data models of NoSQL and relational databases.

The mostly denormalized structure of NoSQL databases
allows each attribute to contain non-scalar values, e.g. ar-
rays and nested documents in document-based databases.
Such data models eliminate usage of join operations while
querying the data. Consecutively, most NoSQL databases
developed their query language (normally an object-oriented
one) instead of using SQL queries.

The query for different data models influences the access
path to the data. Successively, the query optimizer plans are
affected. Therefore, while developing the syntax analyzer to
gather the attributes and order them after each other, the
order that the query optimizer of each database arrange its
data should be taken into account. We considered develop-
ing the syntax analyzer for the particular case of MongoDB
based on the rules explained in [5].

The input of this component is the workload of the database
that is logged in the Profiles. Its output is an ordered set of
attributes and their corresponding index type that is passed
to the Miner. Then, the Miner component generates a set
of most frequent single and compound attributes and sends
it to the Config Evaluator.

The new tendency in developing index recommendation
systems is to use the query optimizer of the database itself
to estimate the costs of running a query with a configuration
of indexes. This approach eliminates the effort to develop
an additional cost function for index recommendation. Also,
utilizing the query optimizer of the database itself as op-
posed to an external cost function prevents recommending
indexes that in reality are not considered by the database to
execute a query.

In our proposed and examined approach in [5], all of the
candidate indexes are created on a sample set of the targeted
data set. Then the chosen indexes by the query optimizer are
returned as the recommended set of indexes. However, this
approach relies entirely on the cost function of the database.
The estimation of the distance of the recommended indexes
to the optimal set of indexes is not possible.

Therefore, developing an ILP optimization method (dis-
cussed in Section 4) enables us to compare the performance
of these techniques with each other and also evaluate the

Challenges of Index Recommendation for Databases

11



Figure 1: The Architecture of the Index Recommendation System.

recommended set of indexes. To avoid being separated from
the database query optimizer and its internal evaluations
while using our defined cost function, the cost of running
queries in formula (2) are taken from the query optimizer.

For this purpose, the cost of running the query with or
without each of candidate indexes should be inquired from
the optimizer. Accordingly, the Config Evaluator in our
design in Figure 1 creates all of the candidate indexes on
a sample set of targeted collection and inquiries the cost
of running each query in the workload with and without
indexes. The obtained information from the optimizer along
with the required storage space estimation for each index are
passed to the ILP optimizer. This component - which can be
replaced with any other optimization method - is responsible
for recommending the optimal set of indexes to the Creator
component to create them on the In-Production Database.

This approach brings us to the second major challenge
in developing index recommendation framework: number of
calls to the query optimizer. Each call to the optimizer
for estimating the cost of a query applies an overhead on
the system. For a large number of the candidate indexes,
the process can interfere with the work of the in-production
system. Moreover, creating all of the candidate indexes on a
large in-production system takes lots of resources and effects
the performance of the system negatively.

Thus, our index recommendation system contains a Sam-
ple System that all of its characteristics are the same as
the original database system only smaller. Sand-boxing the
data set in the sample system enables us with obtaining the
query costs from the optimizer for a larger number of candi-
date indexes. This cost estimation and also estimating the
required storage space can be done without disturbing the
performance of the in-production system.

However, utilizing a sample of the data set imposes some
challenges itself that require careful research. One problem
is that the ratio of presence of each attribute in the original
data set to its appearance in the sample changes with each
write operation (i.e. insert, update and delete) to the sys-
tem. The challenge is to keep the sample representative of
the current state of the database over time.

Therefore, an appropriate interval for updating the sam-
ple set should be chosen. Since determining the sample set
requires reading the entire data set and it implies an over-
head on the database, the interval should not be too short.
The optimization of selecting the appropriate interval for
sampling should be done with consideration of the ratio of

read to write operations to the database, the size of the data
set and the overhead on the in-production system.

Evidently an evaluation of the performance of such index
recommendation system is required. The assessment of this
system for a NoSQL database in comparison to the simi-
lar systems for traditional relational databases is subject to
many difficulties that are discussed in Section 5.

4. FORMULATION OF THE INDEX REC-
OMMENDATION PROBLEM

In this section, a description of the mathematical form of
ISP and discussion on optimization methods to solve it are
given.

The objective of index recommendation is to recommend
the optimal set of indexes for a given database and a work-
load. The workload is a set of m queries as Q = {Q1, Q2, ..., Qm}.
Let I = {I1, I2, ..., In} be the set of all possible indexes. In-
dexes can be single- or multi-attribute. Each index has a
corresponding size of s1 to sn.

The execution cost of each query Qi is different, depending
on the indexes that are used by it. Not only a single index
but a set of indexes can be used to run one query.

A configuration is defined as a subset of indexes that are
all used for executing some query, Ck = {Ik1, Ik2, ...}. This
is known as atomic configuration for a workload [9]. There is
a set P of all the possible configurations that can be derived
from indexes in I and potentially be used by some query, as
P = {C1, C2, ...Cp}. Accordingly, each configuration Ck ∈
P is associated with some subset of Iτ ⊂ I. A configuration
is known as active if all of its indexes are built.

Our objective is to find the optimal configuration which
its indexes have the maximum benefit for a specific workload
under the storage constraints of the system. Each query Qi

has a corresponding cost of running with usage of configu-
ration Ck which we call as cost(i, Ck). Likewise, the cost
of running query i without any index is cost(i,∅). There-
fore, the benefit of running each query with a configuration
is defined as the following:

bik = cost(i,∅)− cost(i, Ck) (2)

It should be considered that having indexes for update
queries enforces a maintenance cost on the system. Each
update operation consists of two parts: finding the proper
data unit and modifying it. The finding part is yet another
query whose benefit can be calculated from formula (2). The

Challenges of Index Recommendation for Databases

12



modification part can be considered as an insert (or a delete)
that does not benefit from having indexes due to the lack
of finding statement. Moreover, each update operation en-
forces maintenance of indexes that are associated with that
update operation. In general, a negative benefit −fj can
be associated with each index Ij that is related to the to-
tal overhead of that index in association with m′ update
operations.

Therefore the objective function can be defined as

max(

M∑

i=1

p∑

k=1

bik · xik −
n∑

j=1

fj · yj) (3)

where M = m + m′. This objective function is subject to
the following constraints:

∀i ≤M :

p∑

k=1

xik ≤ 1 (4)

∀k : Ij ∈ Ck, ∀i ≤M, j ≤ n : xik ≤ yj (5)

∀i ≤M, j ≤ n, k ≤ p : xik, yj ∈ {0, 1} (6)

n∑

j=1

sj · yj ≤ S (7)

Constraint (4) ensures that at most one configuration is
used for any query. Constraint (5) represents the fact that
a configuration can not be used unless all of its indexes are
built. Constraint (7) enforce the limitation of available stor-
age S on the number of indexes that can be built.

Constraint 6 defines the binary nature of the two intro-
duced decision variables xik and yj . For each pair of query
Qi and configuration Ck, xik is defined as:

xik =

{
1 query Qi uses configuration Ck
0 otherwise

(8)

In the same way, the variable yj is associated with built
indexes and can be defined as:

yj =

{
1 index Ij is built
0 otherwise

(9)

We consider using ILP methods so that we can estimate
the quality of the optimal solution in a tight bound, similar
to the approach take by [14]. Also, usage of methods such as
branch-and-bound enables us to improve the quality of an
approximate solution that would have optimal performance,
but cannot be built and used due to storage limitation. In
general, usage of ILP can provide the same performance
as the other optimization methods while it examines much
more alternative solutions.

5. EVALUATION CHALLENGES ON NOSQL
DATABASES

In the previous section, the theory to design the fitting
objective function and our choice for the proper optimiza-
tion method were discussed. This section explains the diffi-
culty of evaluating such system, in particular on a document-
based NoSQL database.

To compare the performance of databases and database-
related systems, different sets of workloads are required to
represent various applications. Some examples of such ap-
plications are Online Analytical Processing (OLAP) appli-
cations with their long and aggregated read-mostly set of
queries and Online Transaction Processing (OLTP) applica-
tions with their short update-intensive set of queries.

Evaluation of traditional relational databases is mostly
done by using variances of the well-known Transaction Pro-
cessing Performance Council (TPC) [15] benchmarks. How-
ever, utilizing TPC benchmarks for evaluating NoSQL data-
bases runs into at least two major challenges: first map-
ping of the tabular data format of the relational model to
a specific NoSQL data format (e.g. documents, key-values,
graphs, etc.) and second translating SQL queries to the com-
monly object-oriented query language of a NoSQL database.

The first challenge arises from the fact that the relational
data models are highly normalized. Mapping such normal-
ized model to the often denormalized models of NoSQL
databases requires careful study. For example, in document-
based databases, there is the danger that the mapped model
either overdo the usage of nested documents or not using
this capability at all. Both of these cases directly affect the
query performance, because it is highly dependent on the
data access path.

In the case of overdoing usage of nested documents, the
access path to the deepest documents is long. Hence, the
database performance is negatively affected. Not using the
capability of nested documents at all enforces usage of refer-
ences in documents to the related documents. In this case,
due to the lack of join operation in most NoSQL database,
more queries should be issued to fetch the required data. It
would also affect the performance of the database in com-
parison to the relational model. A proper mapping between
of these databases is hard and currently missing.

There are however other solutions targeting the problem of
generating different workloads for various databases. One of
them is the Yahoo Cloud Serving Benchmark (YCSB) [17].
Usage of this solution for evaluating our index recommen-
dation system which is developed in combination with Mon-
goDb [13], a document-base database had a major difficulty:
the data set and all queries are handled by the MongoDB
specific primary key, id field, which is by default indexed
in MongoDB.

Another available solution for this problem is the Apache
JMeter [10]. Although JMeter provides a good environment
for benchmarking, it requires the user to enter manually
the set of queries for benchmarking. This setup does not
provide an easy possibility of producing a large and diverse
set of queries that are distributed over a time interval.

Therefore, in order to overcome this problem, we pro-
vided a generic workload generator named Not only Work-
load Generator (NoWog) which is available in [4]. NoWog
provides many features to fulfill its main objective: gener-
ating synthetic workloads similar to realistic workload in an
integrated layer. This layer should make NoWog indepen-
dent from the data model of the database.

Some of these features are the possibility to generate large
workloads by defining simple rules that configure the dis-
tribution of different query types in various time intervals,
usage of arbitrary keys for querying.

Development of such flexible and generic workload gen-
erator was absolutely necessary for enabling the evaluation

Challenges of Index Recommendation for Databases

13



process of our index recommendation system.

6. CONCLUSION AND FUTURE WORK
In this paper, first, we reviewed many challenges in devel-

oping a framework for index recommendation system. Some
of the major challenges are providing a solution for reduc-
ing the search space for candidate indexes and also reducing
the number of calls to the query optimizer for obtaining the
costs of running a query with different indexes. Our solu-
tion for the former is to only consider the evaluation of the
most relevant query attributes (most frequent and longest
queries). We solved the latter with introducing a virtual
environment containing a sample of the targeted data set.

Then, a mathematical definition of index recommendation
is presented and some of the possible optimization methods
to solve the problem are discussed. At the end, the chal-
lenges of evaluating such system for NoSQL database are
briefly discussed. The NoWog is introduced as a solution
for generating synthetic workloads with different distribu-
tions over time.

Investigating similarity of new queries to the previous one
in order to estimate the cost of recommending and creating
new indexes in contrast to using the already existing ones is
part of future plans to expand this work.

7. ACKNOWLEDGMENTS
The author like to thank Large-Scale Data Management

and Analysis project [11] by the German Helmholtz Associ-
ation for funding this research.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc. http:
//dl.acm.org/citation.cfm?id=645920.672836.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and indexes
in sql databases. In Proceedings of the 26th
International Conference on Very Large Data Bases,
VLDB ’00, pages 496–505, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[3] P. Ameri. On a self-tuning index recommendation
approach for databases. Manuscript is accepted to be
published by the IEEE International Conference on
Data Engineering (ICDE) PhD Symposium, 2016.

[4] P. Ameri and H. Guan. Nowog.
https://github.com/ParinazAmeri/NoWog accessed
22-April-2016.

[5] P. Ameri, J. Meyer, and A. Streit. On a new approach
to the index selection problem using mining
algorithms. In Big Data (Big Data), 2015 IEEE
International Conference on, pages 2801–2810, Oct
2015.

[6] K. Aouiche and J. Darmont. Data mining-based
materialized view and index selection in data
warehouses. CoRR, abs/0707.1548, 2007.

[7] N. Bruno and S. Chaudhuri. Automatic physical
database tuning: A relaxation-based approach. In
Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’05,
pages 227–238, New York, NY, USA, 2005. ACM.

[8] A. Caprara, M. Fischetti, and D. Maio. Exact and
approximate algorithms for the index selection
problem in physical database design. IEEE Trans. on
Knowl. and Data Eng., 7(6):955–967, Dec. 1995.
http://dx.doi.org/10.1109/69.476501.

[9] S. Chaudhuri and V. Narasayya. An Efficient,
Cost-Driven Index Selection Tool for Microsoft SQL
Server. In VLDB. Very Large Data Bases Endowment
Inc., August 1997.

[10] JMeter. Apache jmeter. http://jmeter.apache.org/
accessed 22-April-2016.

[11] C. Jung, M. Gasthuber, A. Giesler, M. Hardt,
J. Meyer, F. Rigoll, K. Schwarz, R. Stotzka, and
A. Streit. Optimization of data life cycles. Journal of
Physics: Conference Series, 513(3):032047, 2014.
http:

//stacks.iop.org/1742-6596/513/i=3/a=032047.

[12] J. Kratica, I. Ljubic, and D. Tosic. A genetic algorithm
for the index selection problem. Technical report, In
Applications of Evolutionary Computing, 2003.

[13] MongoDB. Mongodb for giant ideas.
https://www.mongodb.com/ accessed 22-April-2016.

[14] S. Papadomanolakis and A. Ailamaki. An integer
linear programming approach to database design. In
In ICDE Workshop on Self-Managing Databases, 2007.

[15] tpc, 2016.
http://www.tpc.org/information/benchmarks.asp

accessed 22-April-2016.

[16] G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman,
and A. Skelley. Db2 advisor: An optimizer smart
enough to recommend its own indexes. In Proceedings
of the 16th International Conference on Data
Engineering, ICDE ’00, pages 101–, Washington, DC,
USA, 2000. IEEE Computer Society. http:
//dl.acm.org/citation.cfm?id=846219.847390.

[17] YCSB. Home brianfrankcooper/ycsb wiki github.
https://github.com/brianfrankcooper/YCSB/wiki

accessed 22-April-2016.

[18] D. C. Zilio. Physical database design decision
algorithms and concurrent reorganization for parallel
database systems. Technical report, 1997.

Challenges of Index Recommendation for Databases

14


