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Abstract

Practically speaking, how small can a test suite be and still be of
value? In the context of temporal graph-theoretic abductive validation,
the answer to this question is very language-dependent. Seemingly trivial
variations in a language can have a significant impact on how large a test
suite must be. This paper is hence a cautionary note to those who invent
languages and ontologies without experimentally testing the practicality
of those languages.

Submitted to the Validation and Verification of Knowledge-Based Sys-
tems, 1 June 1998, in conjunction with the Sizth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’98)
Trento, Italy, June 2-5, 1998.

1 Introduction

Validating a theory is hard work. Validation is complicated even further in
poorly-measured domains. In such domains, the cost of data collection prevents
us collecting all the observations we desire. Such observations could be used to
validate that a theory of X can reproduce known behaviour of X. Such obser-
vations are lacking in many domains; e.g. economics and neuroendocrinology.
The (in)famous Limits to Growth study attempted to predict the international
effects of continued economic growth [7]. Less than 0.1 percent of the data re-
quired for the theories was available [3]. Data collections in neuroendocrinology
can be just as sparse since data collection in that domain is very expensive. In
one extreme example, 300,000 sheeps brains had to be filtered to extract 1.0
milligrams of purified thyroptin-releasing hormone [6].

Techniques exist for automatically generating test data sets. For example,
the dependency network of a system can be used to determine inputs that will



exercise all branches of the system. Sophisticated non-monotonic techniques can
be used to separate inputs into sensible subsets [5,18]. However, note that once
an input suite is inferred, an expert still has to decide what are the appropriate
outputs for those inputs. This may be a significant analysis task and, in practice,
may only be practical for small systems.

For all the above reasons, it is difficult and expensive to find or build test
data sets containing valid pairs of inputs and outputs. Given this, practioners
often need to rationalise the process of building test data sets. The value of
building bigger test data sets must be weighed up against the cost of their
construction. To avoid wasting money, practioners must build test data sets big
enough to be useful, but no bigger.

This paper explores how big is big enough? i.e. practically speaking, what
are reasonable lower bounds on the size of a test suite. Size will be expressed
as the percentage of variables in a theory which are not measured in the test
data set. The lower bound on size will be found as follows. Assuming our
temporal graph-theoretic abductive validation procedure [8,11,12,17], we will
reduce test suite size until we can no longer distinguish good theories from bad
theories. It will be found that seemingly minor variations in a language can
have a significant impact on this lower bound on test suite size. This paper is
hence a cautionary note to those who invent languages and ontologies without
experimentally testing the practicality of those languages.

This article is structured as follows. Before we describe our experiments, the
abductive validation framework is explained: first the kind of theories it process;
next the details of abductive validation. Four language variants of a temporal
extension to this validation procedure are defined: XNODE, INODE, XEDGE,
IEDGE. An experiment is described in which theories written in these four
variants are executed using fewer and fewer measurements. The lower practical
bound on the size of the test data sets will be found to be crucially dependent
on minor variations in the language used. For example, XNODE is only a small
variant on the IEDGE language. However, XNODE is practical down to 70
percent unmeasured while IEDGE fails after 40 percent unmeasured.

The theoretical framework of this article has been presented before (e.g.
[8,11,12,17]). The new contribution of this article is the data reduction ex-
periments and the observation that languages react very differently to data
reduction.

2  Theories

This section describes the types of theories used in this analysis. The next
section describes a validation procedure which executes over these theories.
This analysis assumes that theories fall into the following framework:

e Theories contain a finite number of variables, each with a finite number
of N mutually exclusive states.

e Theories are written in some language L and a language-specific trans-
lator can convert theories into a directed dependency graph connecting
and/or-nodes. Loops in this depenency graph may implies extra edges
from comparisons at time I to time J.



e To use and-nodes in a proof, all the parents of that node must also appear
in that proof. To use or-nodes in a proof, only one of the parents need
appear in that proof.

e Internally, or-nodes are time-stamped comparisons. Such comparisons
record our belief that a variable at some time has some state. For example,
age@0 above 10 says that at time 0, we believe that age is over 10.

e Certain pairs of comparisons are illegal; e.g. age@0 above 10 contradicts
age@0 below 8.

e A test data set documenting required behaviour is available. This data
set comprises pairs of inputs and outputs where each input or output is a
comparison.

e Testing is a validation process which searches for consistent pathways from
inputs to outputs across the dependency connections (see next section).

Many symbol-level knowledge bases can be expressed in the above form.
The dependency graph of a propositional rule base used in a match-select-act
cycle can be mapped into the above structure (literals in rule left-hand-sides at
time I can be connected to right-hand-side literals at time I+1). Qualitative
equations can also be expressed in this form. For example, A=38B*2C-5D would
generate influences from right-hand-side variables to the left-hand-side-variables
(and also for all valid rearrangements of the equation such as D=(3B*2C-4)/5).
Most generally, any horn clause that can be partially evaluated to a ground state
would satisfy the above description (subgoals connect via an and-node to the
head).

Parts of knowledge-level models can also be expressed in the above form.
If a problem solving method ever needs to access variables near some variable
of interest (e.g. in fault-localisation during model-based diagnosis), then that
problem-solving method would be traversing the dependency network described
above. In the special case where a KADS knowledge source is expressed in a rule
base, then the whole knowledge-level model can be reduced to such a dependency
graph. Elsewhere, Menzies and Mahidadia [13] argue that many problem solving
methods can be modelled as choice operators controlling the traversal of the
above dependency network (a proposal similar to that implemented in SOAR
[14]).

3 Temporal Graph-Theoretic Abductive Vali-
dation

3.1 Graph-Theoretic Abductive Validation

Abduction is a demonstration that a theory, plus some assumptions, can reach
some goal without causing contradictions. If contradictions can occur, abduc-
tion must create worlds: maximal consistent sets of beliefs. If multiple such
worlds can be generated, then a BEST assessment operator selects the pre-
ferred world(s). For more details on abduction, see [2,10]. For an example of
abduction, see below.
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Figure 1: An economics theory.

Graph-theoretic abduction implements abduction using the above depen-
dency network. Consistent pathways (ordered sets of edges with no illegal
pairs of comparisons) are found between output goals back to known inputs.
Pathways that cross unmeasured variables must make assumptions. Worlds
are generated by collecting maximal subsets of these pathways with compatible
assumptions.

Graph-theoretic abductive validation uses a BEST operator that returns the
worlds with the largest number of outputs. Intuitively, this procedure is search-
ing for the assumptions that let us explain the most of our known behaviour. As
an example, let us search a theory of economics for the assumptions that let us
explain the most number of outputs (We shall use the theory in Figure 1.) In the
language of that theory, variables have three states: up, down or steady. These
values model the sign of the first derivative of these variables and model the rate
of change in each value. Dependencies between them can be created as follows.
The direct connection between foreignSales and companyProfits (denoted with
plus signs) means that companyProfits being up or down should be connected
back to foreignSales being up or down respectively. The inverse connection be-
tween publicConfidence and inflation (denoted with minus signs) means that
inflation being up or down should be connected back to publicConfidence being
down or up respectively. Also, in this language, competing upstream influences
can cancel out to explain a steady. There are two upstream influences to com-
panyProfits. Dependencies are created from companyProfits=steady back to an
and-node with parents (e.g.) foreignSales=up and domesticSales=down.

In the case where the inputs are foreignSales=up, domesticSales=down and
the outputs are investor Confidence=up, inflation=down, wageRestraint=up, there
are six pathways connecting inputs to outputs;

e PATHI1: foreignSales=up, companyProfits=up, corporateSpending=up,
investorConfidence=up

e PATH2: domesticSales=down, companyProfits=down, corporateSpend-
ing=down wageRestraint=up
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Figure 2: A set of consistent pathways: PATH1 and PATH5 and PATHSG.
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Figure 3: Another set of consistent pathways: PATH2 and PATH3 and PATH5
and PATHS.

e PATH3: domesticSales=down, companyProfits=down,inflation=down

e PATH4: domesticSales=down, companyProfits=down, inflation=down,
wagesRestraint=up

e PATHS: foreignSales=up, publicConfidence=up, inflation=down

e PATHG: foreignSales=up, publicConfidence=up, inflation=down, wageR-
estraint=up

Note that these paths contain contradictory assumptions; e.g. companyProf-
its=up in PATH1 and companyProfits=down in PATH2. If we sort these paths
into the biggest compatible subsets, we get the worlds shown in Figure 2 and
Figure 3. Applying our BEST criteria, we see that the world that assumes
companyProfits=up lets us explain all of our outputs. That is, this theory has
passed the abductive validation test. This process has found numerous inex-
plicable outputs in theories of neuroendocrinology published in international
refereed journals [4,8,12]. The diagrams from those papers were expressed in
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Figure 4: Direct(A,B) and inverse(B,A) renamed over 3 time intervals using
different time linking policies. Dashed lines indicate time traversal edges.

the qualitative language of our economics example. Interestingly, the faults were
found using data taken from the papers that proposed those theories. Also, the
faults had never been detected before, even by the reviewers of those journals.
Further, when experts reviewed the detected faults, they found them exciting
and insightful to their domain [16].

3.2 Temporal Graph-Theoretic Abductive Validation

The above example had no feedback loops. In theories with feedback loops,
it is possible that a literal can be assigned multiple values over the life time
of the simulation. To handle time, we add a time stamp to the definition of
a literal; e.g. population could be renamed to population@1, population@2 ...
population@T where T is some time point.

How are we to connect literals at time I to literals at time J? Depending
on how we answer this question, we can define variants on a qualitative sim-
ulation language. Consider the theory containing two edges: direct(A,B) and
inverse(B,A). If we execute this theory over three time steps, we could search
one of the spaces illustrated in Figure 4. In the implicit node linking language
(or INODE), we cross time on every node; i.e. every comparison at time I is
connected to the same comparison at time I+1. In the implicit edge linking
language (or IEDGE), we cross time on every edge. In the explicit node linking
language (or XNODE), we only cross time on the nodes explicitly denoted as
time nodes by the user (in this example, A). In the ezplicit edge linking language
(or XEDGE), we only cross time on the edges explicitly denoted as time edges
by the user (in this case, the direct link from A4 to B).

Once the search space has been defined, it can be compiled into the depen-
dency graphs and tested using graph-theoretic abductive validation.
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Figure 5: The fisheries model. Adapted from [1] (pp135-141). Variables in
italics are the first derivative variables used in the XNODE and XEDGE study.

4 Limits to Temporal Graph-Theoretic Abduc-
tive Validation

In the context of the above architecture, what can we say about how much test
data is enough? To answer this question, we need one more definition. We say
that a validation device is adequate if it can distinguish good theories from bad
theories. If we can identify precisely the point where we lose adequacy, then
we have found a limit to that validation device. To operationalise this theory
in the context of how much data is enough, we need to validate good and bad
theories using different sizes of test data sets. This section describes how this
can be done. First, a range of theories must be generated ranging from good
theories to bad theories. Next, input-output sets must be generated. Lastly,
validation must be attempted with more and more of the theory unmeasured.

4.1 Generating Theories

To generate theories, we started with the quantitative equations of a fisheries
system using equations from [1] (pages 135-141). Next, we built a qualitative
form of the fisheries model as shown in Figure 5. Note that this fisheries model
is ambiguous concerning how to handle time. We must add in a temporal causal
interpretation (e.g. XNODE, XEDGE, INODE, or IEDGE) in order to handle
the feedback loops. When using XNODE or XEDGE, we must somehow assign
our explicit time traversal nodes. XNODE used the first derivative variables
which show time rate of change. Example first derivative variables in the fish-
eries models are fish population change and change in boat numbers. XEDGE
used the edges leaving a first derivative variable.

To generate a range of theories, we corrupted some portion of the qualita-
tive version of the fisheries model. Fisheries has 17 edges. These edges were
corrupted as follows. The annotations of between 0 to 17 edges edges in fish-
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Figure 6: Implicit linking: corrupting 0 to 17 edges, running validation with
less and less data.

eries were flipped (inverse to direct, or visa versa), chosen at random. Once the
model was mutated, it was then copied over several time steps and connected
via one of the XNODE, XEDGE, INODE, or IEDGE temporal linking policies.

Note that as the number of edges mutated increases from 0 to 17, the mutated
model becomes less and less like the original model. That is: at mutations=0 we
are processing the correct fisheries model; at mutations=17 we are processing
a very incorrect fisheries model; at mutations=2..16 we are processing progres-
sively worse fisheries models.

4.2 Generating Data

To generate data, we ran the quantitative fisheries model 15 times. Next, we
generated input and output ups and downs by comparing all pairs of the mea-
surements in the 15 runs (105 such pairs exist). Inputs were always observations
found in the first copy of the model. Outputs were always observations not found
in this first copy.

Once we had the data, we threw some of it away. U percent of the output
from was discarded to produce 10 variants of the data with U at 0, 10, 20, 30,
40, 50, 60, 70, 80, and 90 percent unmeasured.

4.3 Validation Results

This section shows the results from graph-theoretic abductive validation running
with different test suite sizes. Test suite size was expressed as what percentage
of the variables in the fishing were measured and included in the output set.
Between 0 to 17 edges were corrupted 20 times to create 360 new models. This
process was repeated 10 times each time U was increased (i.e. resulting in 3600
models). These were exercised for both XNODE, XEDGE, IEDGE, INODE
using the qualitative 105 data sets created above; i.e. 3600*105*4=1,512,000
runs. The results are shown in Figure 6 and Figure 7.

To read these results, note that the x-axis shows a progression from a correct
fishery model (at 0 edges corrupted) to a very incorrect fisheries model (at 17
edges corrupted). The y-axis shows the percent explicable found by graph-
theoretic abductive validation. In order to distinguish a good model from a bad
model, this x-y plot should start high on the y-axis, and fall off to a low figure
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Figure 7: Explicit linking: Corrupting 0 to 17 edges, running validation with
less and less data.

on the right-hand-side of the x-axis; e.g. the U=0 plot for XNODE. If the x-y
plot remains flat, then the validation procedure is given the same score to good
models and bad models; e.g. the U=40 plot for IEDGE.

Several effects can be read from these graphs:

e In all cases, as the percentage unmeasured in the theory increased, the
x-y plots flattened out. That is, with less and less data, it becomes harder
and harder to distinguish a good model from a bad model.

e Consider the U=0 case. As reported previously [17], some time linking
policies are clearly inferior. XEDGE can explain, at best, only half the
data. INODE can barely distinguish good from bad models: lowest expli-
cable percentage is 88 percent. XEDGE and INODE are poor candidates
for a validation system in this framework.

e The remaining adequate languages (XNODE and IEDGE) react differently
to increasing the percentage unmeasured. IEDGE is not recommended
above U=40. However, XNODE is adequate for distinguishing good from
bad models down to U=70.

5 Discussion

Seemingly trivial variants to a language can have a major impact on the min-
imum practical size of a test suite. The difference between the definition of
INODE and XNODE is very small. Yet experimentally it has been shown here
that INODE is an impractical validation language while XNODE lets us use
only very small test data sets (up to 70 percent unmeasured).

How general are these results? This analysis assumes graph-theoretic abduc-
tive validation. It was argued above that this process is relevant to the validation
of a range of symbol-level and knowledge-level models. The results above come
only from the fisheries model. However, in this study, nearly 400,000 mutations
of that model were generated and validated. Furthermore, the methodology
used here for testing limits to validation is quite general. After defining the
core parameters of your validation procedure and theories, build numerous vari-
ants of the procedure and theories and look for the cases where the validation



engine fails. (This methodology is analogous to that used in the satisfiability
community [15].) Menzies has argued elsewhere [9] that the knowledge engi-
neering field is in urgent need of such empirical evaluations. For example, this
paper is a cautionary note to those who invent languages and ontologies without
experimentally testing the practicality of those languages. Ontologies define a
language and the choice of language can have significant implications; e.g. the
minimum amount of data needed to validate a theory written in that language.
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