Multiagent Systems Verification via Model Checking

Massimo Benerecetti!, Fausto Giunchiglia’? Luciano Serafini?
L DISA - Universit4 degli Studi di Trento,
Via Inama 5, 38100 Trento, Italy
2 IRST - Istituto Trentino di Cultura,
38050 Povo, Trento, Italy

Abstract

Model checking is a very successful technique which has been applied in the design and verification of finite
state concurrent reactive processes. In this paper we show how this technique can be lifted to be applicable to
multiagent systems. Our approach allows us to reuse the technology and tools developed in model checking,
to design and verify multiagent systems in a modular and incremental way, and also to have a very efficient
model checking algorithm.

1 Introduction

Model checking is a very successful automatic technique which has been devised for the design and verification
of finite state reactive systems, e.g., sequential circuit designs, communication protocols, and safety critical
control systems (see, e.g., [1]). There is evidence that model checking, when applicable, is far more successful
than the other approaches to formal methods and verification (e.g., first order or inductive theorem proving,
tableau based reasoning about modal satisfiability).

In this paper we show how model checking can be “lifted” to become applicable to multiagent systems in a
way to (i) reuse with almost no variations all the technology and tools developed in model checking; and (1)
allow for a modular design and verification of multiagent systems. The first feature allows us to exploit the
huge amount of expertise, technology and tools developed in model checking. The second feature is necessary
in order to deal with real world complex systems (see [3] for a discussion on this topic).

Model checking allows us to model concurrent reactive finite state processes. We model agents as concurrent
reactive non-terminating finite state processes able to have what we call BDI attitudes, i.e., beliefs, desires and
intentions. The specification of an agent has therefore two orthogonal aspects: a temporal aspect and a “mental
attitudes” aspect. The key idea underlying our approach is to keep these two aspects separated. In practice
things work as follows:

e when we consider the temporal evolution of an agent we treat BDI atoms (i.e. atomic formulas expressing
belief, desire, or intention) as atomic propositions. The fact that these formulas talk about BDI attitudes
is not taken into consideration.

e We deal with BDI attitudes as follows. The fact that an agent a; has BDI attitudes about another agent
as is modeled as the fact that a; has access to a representation of as as a process (one representation for
each BDI attitude). Then, any time it needs to verify the truth value of some BDI atom about as, e.g.,
B2AF ¢, a; simply tests whether, e.g., AF ¢ holds in its (appropriate) representation of as. BDI attitudes
are essentially used to control the “jumping” among processes. This operation is iterated in the obvious
way in case of nested BDI attitudes.

SENDER: RECEIVER:

initial state Initial state
all propositions are false p = False; m = (null)
loop loop
read(p) get-msg(m)
if p A =B,p then if m =inform(s, r, p) then
put-msg(inform(s, r, p)) p = True;
if =-p A =B,—p then put-msg(inform(r, s, B,p))
put-msg(inform(s, r, —p)) if m =inform(s, r, —p) then
get-msg(m) p = False;
if m =inform(r, s, B.p) then put-msg(inform(r, s, B,—p))
B,p := True; B,—p := False; endloop

if m =inform(r, s, B,—p) then
B,—p :=True; B,p := False;
endloop

Figure 1: The s and r’s algorithms.

The paper is structured as follows. In Section 2 we describe a motivating example which we then formalize
and study throughout the rest of the paper. The basic ingredients of model checking are: (i) a propositional
temporal logic used to write specifications; (ii) a language for describing the system (i.e., the set of processes)
to be verified as a finite state automaton; and (iii) a model checking procedure which efficiently and automati-
cally determines whether the specifications are satisfied by the state-transition graph generated by the system
automaton. Sections 3, 4 and 5 describe these three ingredients for multiagent model checking. The descrip-
tion is given incrementally over the standard model checking notions. In particular, we adopt CTL [1] as the
propositional temporal logic used to state specifications. We conclude with a discussion of an achievement and
the related work (Section 6).

2 A motivating example

Let us consider the following scenario involving two agents: a receiver r and a sender s. s continuously reads
news on a certain subject from its sensors (e.g., the standard input). Once read the news, s informs r only if
it believes that r does not have the correct knowledge about that subject (this in order to minimize the traffic
over the network). Once received the news, r acknowledges this fact back to s.

We implement this scenario using a FIPA compliant [2] architecture. We have therefore three agents: s, r, and a
network (communication protocol) which allows them to interact. Figures 1, 2 give the algorithmic descriptions
of s, 7 and the communication protocol, respectively in a Promela-like language [4] !. In these algorithms, the
news subject of the information exchange is the truth value of the propositional atom p. inform(s,r, p) returns
a message with sender s, receiver r, and content p (inform is a FIPA primitive). put-msg and get-msg are the
primitives for putting and getting (from the communication channel) a message. read allows for reading from
the standard input. B, is the operator used to represent the beliefs of r as perceived by the other agents, and
dually for Bs;. Notice that the communication protocol has beliefs about r» and s and therefore must have a
representation of how they behave. We suppose that this representation coincides with what r and s actually
are, as described in Figure 1. This allows us to model the fact that the communication protocol behaves correctly
following what s and r do. There is no nesting of belief operators and, therefore, there is no need of further

lpromela is the input language of SPIN and, indirectly, also of other model checkers.

PROTOCOL:
initial state
all propositions are false
loop
set all propositions to false
do-one-of
begin
BsAF Do(put-msg(inform(s, r,p))) = True;
B, AF Do(get-msg(inform(s, r,p))) = True;
end
begin
BsAF Do(put-msg(inform(s,r, —p))) = True;
B, AF Do(get-msg(inform(s, r, =p))) = True;
end
end
set all propositions to false
do-one-of
begin
B, AF Do(put-msg(inform(r, s, B;p))) = True;
BsAF Do(get-msg(inform(r, s, B,p))) = True;
end
begin
B, AF Do(put-msg(inform(r, s, B.—p))) = True;
BsAF Do(get-msg(inform(r, s, B,—p))) = True;
end
endloop

Figure 2: The communication protocol algorithm.

representations. s also has beliefs about r. We suppose that s (which in principle does not know anything
about how r works) only knows that r can be in one of two states, with p being either true or false. In Figure 2,
B,AF Do(<statement>) (B.AF Do(<statement>)) intuitively means that s (r) will necessarily reach a state in
which it will have just performed the action corresponding to <statement>. The algorithm in Figure 2 codifies
the fact that the protocol implements the information flow between s and r, and the fact that it always delivers
the messages it is asked to deliver.

3 The basic idea

Finite state processes can be modeled as finite state machines. In order to model processes we will employ the
logic CTL, a propositional branching-time temporal logic which has been widely used in modeling finite state
processes [1]. Let us consider in turn the language and semantics. Given a set P of propositional atoms, the set
of CTL formulas ¢ is defined inductively as follows:

oY u=p| =g ¢AY[EXG[A(pUYP) |E(p UY)

where p € P. EX¢ intuitively means that there is a path such that ¢ will be true in the next step; A (¢ U)
means that ¢ will be true in a state in the future and that ¢ will be true in all the states before, for all paths;

E (¢ U 1) means that there exists a path such that ¢ will be true in a state in the future and that ¢ will be true
in all the states before. The following abbreviations are used:

def def

1L = pA-p T = =1

$DP = ~(pA-) AF ¢ = A(T Ug)
EF¢ = E(T U) AG¢ = —E(T U—9)
EGop = -A(T U-¢) AX¢ £ —EX-¢

The semantics for CTL formulas is the standard branching-time temporal semantics based on Kripke-structures.
A CTL structure is a tuple m = (S, so, R, L), where S is a set states, so € S is the initial state, R is a total
binary relation on S, and L : S — P(P) is a labeling function, which associates to each state s € S the set L(s)
of propositional atoms true at s. A path x in m is an infinite sequence of states sp, s, - - - such that for every
i > 1, s;Rs;y1. Satisfiability of a formula ¢ in a CTL structure m at a state s is defined as follows:

e m,s = piff pe L(s);

o m,s = ¢ iff m,s £ ¢;

e m,s = dANYiff m,s = ¢ and m,s = o

e m,s = EX¢ iff there’s a s’ with sRs’, such that m, s’ = ¢;

e m,s = A(¢p U) iff for every path z = (s = s1, 82, ---) there’s a k > 1 such that m, s, = 1 and, for every
e m,s = E(¢ U) iff there’s a path z = (s = s1,82,--+) and a k > 1 such that m, s, = v and for every
1<j <k, ms; = ¢

m = ¢ iff m,so E ¢.

We build the notion of agent incrementally over the notion of process. Suppose that we have a set I of agents.
Each agent has its own beliefs, desires, and intentions about itself and the other agents. We adopt the usual
syntax for propositional attitudes: B;¢, D;¢ and I;¢ mean that agent i believes, desires and intends (to bring
about) ¢, respectively. B;, D; and I; are called BDI operators for agent i (or simply BDI operators). O; denotes
any BDI operator for agent i. The idea is to model each nesting of BDI operators as a different process evolving
over time. For example, the beliefs of agent s evolving over time in our example can be modeled by the process
whose algorithm SENDER is given in Figure 1.

Formally, let O = {, D, 1} be a set of symbols, one for each BDI attitude. OI* denotes the set (O x I)*, i.e., the
set of finite (possibly empty) strings of the form 0141 ...0pi, with o € O and iy, € I. We call any o € OI*, a
view. Intuitively, each view in OI* represents a possible nesting of BDI attitudes. We also allow for the empty
string, e. The intuition is that e represents the view of an external observer which, from the outside, “sees”
the behavior of the overall multiagent system. Depending on the goals, the external observer can represent the
person designing the system, or a selected process of the multiagent system which is given this privileged status.

Consider the example in Section 2. We take the external observer to be the point of view of the communication
protocol. Therefore, there is a view € corresponding to the beliefs of the communication protocol, and also two
views Bs, Br corresponding to the beliefs of the two agents s and r. Finally s has beliefs about the beliefs of r.
Figure 3 graphically represents this situation. The dark circles represent the views which exist in principle, the
white ones represent those which are actually needed.

An agent, e.g., s, is thus a tree of views rooted in the view that the external observer has of it, e.g., Bs. Notice
also that the view that an agent has of another agent is in general different from the agent itself. This allows
us for instance, in the example of Section 2, to model the fact that s might have false beliefs about r.

The final step is to associate a logical language L, to each view o € OI*. Intuitively, each L, is the language
used to express what is true (and false) in the representation corresponding to a. Let {P,} be a family of sets
of propositional atoms. Each P, allows for the definition of a different language (also called an MATL language

Figure 3: The set of views for the example of Section 2.

(on {P4})). The family of MATL languages on {P,} is the family of CTL languages {L,} where L, is the
smallest CTL language containing the set of propositional atoms P, and the BDI atoms O;¢ for any formula
¢ of L,0i. In particular, £, is used to speak about the whole multiagent system. Thus, intuitively, a formula
pAB;AG-p € L., (denoted by €: p A B;AG —p) means that p is true and that ¢ believes that in every future
state p will be false. The languages Lp; Lp;, and L; are the languages that i adopts to represent its beliefs,
desires and intentions, respectively. The language Lp;; is used to specify i’s beliefs about j’s intentions, and
so on. Note that the only restriction on the languages is that O;¢ must be an atomic formula of £, if and only
if ¢ is a formula of L40; (see [3] for a study of how this condition can be modified in order to capture various
interesting properties). We allow also for empty languages. However £, cannot be empty as we need to be able
to talk about the whole multiagent system.

4 Multiagent finite state machines

We are interested in extending model checking to multiagent model checking. In model checking we deal with
finite CTL structures, i.e., those CTL structures which have a finite set of states, and also a labeling function
mapping to a finite number of atoms. The crucial observation is that finite CTL structures can be seen as finite
state machines (FSMs), an FSM being an object f = (S, so, R, L) (with everything finite). Our solution is to
extend the notion of FSM to that of MultiAgent Finite State Machine (MAFSM), where, roughly speaking, a
MAFSM is a finite set of FSMs.

A first step in this direction is to restrict ourselves to a finite number of views a. However this is not enough
as also a finite set of views allows for an infinite number of BDI atoms. Even if we have a finite number of
processes we cannot model them as FSMs. We solve this problem by introducing the notion of explicit BDI
atom. Formally if {£,} is a family of MATL languages, then Expl(0i,) is a (possibly empty) finite subset of
the BDI atoms of £,. The elements of Expl(0i,a) are called ezplicit BDI atoms. We have the following.

Definition 4.1 Let {L,} be a family of MATL languages on {P,}. A MultiAgent Finite State Machine
(MAFSM) F = {Fy} for {L4} is a recursive total function such that:

1. F. #0;

2. for all views o € OI™ C OI* with OI™ finite, it associates a finite set F, of FSMs on the MATL language
on the following atoms: P,, Expl(Bi,«), Expl(pi,a) and Expl(ii,q), for all i € I;

3. for all the views oo € OI* \ OI™, Fy = 0.

The first condition is needed as otherwise there is nothing we can reason about; the second allows us to deal
with finite views, and the third allows us to deal with finite sets of atoms.

Example 4.1 Let us construct the MAFSM of the example in Section 2. Let us concentrate on a process and
the corresponding view. The propositional atoms are all the propositional atoms which appear in the Promela-
like specification. O;¢ is a BDI atom of L, if and only if ¢ is a formula of L,0;. The set of explicit BDI
atoms contains all the BDI atoms which are set in the Promela-like specification. The intuition is that explicit
BDI atoms can change independently, while the value of implicit BDI atoms can only change as a consequence
of changes of value of explicit BDI atoms. This identifies the set of state variables and therefore the space of
possible states. The value of the state variables in the initial state can be extracted from the top part of the
Promela-like specification.

Let us detail the FSMs corresponding to the processes of our example. Any Promela-like construct can be
directly translated, with a one-to-one mapping, into transitions of a finite state automaton. We leave to the
reader the definition of the state transitions of the FSMs in the views ¢, Bs, Br. Being the initial state completely
defined there is only one FSM per view. The propositional atoms of all the views can be easily extracted from
the algorithms given in Section 2. We concentrate therefore on the explicit BDI atoms.

FSMs in e: F, contains only one FSM generated from PROTOCOL.?

B AF Do(put-msg(inform(s,r, B;p))),

B, AF Do(put-msg(inform(s,r, Br—p))),
B; AF Do(get-msg(inform(r, s, p))),
(

Expl(Br,e) = (
B AF Do(get-msg(inform(r, s, —p)))

BsAF Do(get-msg(inform(r, s, By —p))),
B AF Do(put-msg(inform(s,r,p))),
BsAF Do(put-msg(inform(s,r, —p))

Expl(Bs,€) =)
)
BsAF Do(get-msg(inform(r, s, Brp)))

and Expl(ps,€) = Expl(pr,e) = Expl(is,€) = Expl(m,e) = (.

FSMs in Bs: Fps contains only one FSM generated from SENDER. Expl(Br, Bs) = {Byp, B,—p}. All the other
sets of explicit BDI atoms are empty.

FSMs in Br: Fp, contains only one FSM generated from RECEIVER. Expl(oi, Br) is the empty set.

FSMs in BsBr: Section 2 does not give an algorithmic specification of this view. It only says that “... s ...
only knows that r can be in one of two states, with p being either true or false”. This tells us that there is only
one state variable p, and that Fgsp, will contain all the FSMs with only one state variable (which are sixteen).
This formalizes the fact that s knows nothing of the initial state and state transitions of r. a

Given the notion of MAFSM, the next step is give a notion of satisfiability in a MAFSM. We start from the
notion of satisfiability of CTL formulas in an FSM at a state. This notion is defined as in CTL structures. This
allows us to determine the satisfiability of all the propositional and explicit BDI atoms (and all the formulas
belonging to the corresponding MATL language). For these formulas we do not need to use the machinery
associated to BDI attitudes. However, this machinery is needed in order to deal with the (infinite) number of
BDI atoms which are not memorized anywhere in MAFSM.

Let the set of implicit BDI atoms of a view «, written I'mpl(0i,a), be defined as the (infinite) subset of
all BDI atoms of £, which are not explicit BDI atoms, i.e. Impl(oi,a) = {O;¢ € L4 \ Ezxpl(oi,a)}. Let
ArgExpl(oi, a, s) be defined as follows.

ArgExpl(oi,a,s) = {¢ € Looi | Oid € L(s) N Ezpl(oi,a)}

Intuitively, ArgFExzpl(0i,a, s) consists of all the formulas ¢ € L,0; such that the explicit BDI atom O;¢ is true
in s. At this point, to define the satisfiability in a MAFSM, it is sufficient to use the fact that we know how
to compute ArgExzpl(oi,a,s) (it is sufficient to use CTL satisfiability and then to compare the results of the
relevant CTL structures) and exploit ArgExzpl(0i,a, s) to compute the implicit BDI atoms which satisfy an
appropriate correctness and completeness condition.

2Note that Do(put-msg(inform(s,r,p))) is a propositional atom of the language of s which is true only if s is in a state in which
it has just performed the action “put-msg(inform(s,r,p))”. The other similar atoms have a similar intuitive meaning.

Definition 4.2 (Satisfiability in a MAFSM) Let F be a MAFSM, a a view, f = (S,s0,R,L) € Fy an
FSM, and s € S a state. Then, for any formula ¢ of L., the satisfiability relation F,a, f,s |= ¢ is defined as
follows:

1. F,a, f,s = p, where p is a propositional atom or an explicit BDI atom: the same as FSM satisfiability;
2. satisfiability of propositional connectives and CTL operators: the same as FSM satisfiability;

3. F,a, f,s = 0;¢, where O;¢ is an implicit BDI atom, iff for all f' € Fy0; and s' state of f', F,a0i, f',s' |E
N\ ArgEzpl(0i,a,s) D ¢

We have furthermore:

4' F,a,f ':¢ iﬁF,Oé,f,S() ':¢7
5. Foa = ¢ iff for all f € Fo, Fa, f = ¢;
6. FEa:¢iff Fa = ¢.

In the definition of F,a, f,s = ¢, item 3 is the crucial step. A\ ArgEzpl(oi,a,s) is the conjunction of all the
elements of ArgExpl(0i,a,s). We need to use ArgExpl(0i,a, s) in order to compute the formulas ¢ such that
0;¢ is an implicit BDI atom. Notice that item 3 gives to BDI operators the same strength as modal K (3m),
where m is the number of agents. In particular, we have that if I' D ¢ is a theorem in a view then O;I' D O;¢
is a theorem in the (appropriate) view above, where O;I" is the set {O;¢ | ¢ € T'}.

Item 4 states that a FSM satisfies a formula if the formula is satisfied in its initial state. Item 5 states that a
formula is satisfied in a view if it is satisfied by all the FSMs of that view. Finally item 6 states that a labeled
formula « : ¢ is satisfied if ¢ is satisfied in the view corresponding to the label.

5 Model Checking a MAFSM

The basic operation of a standard CTL model checking algorithm is to extend the labeling function of an FSM
(which considers only propositional atoms) to all the (atomic and not atomic) subformulas of the formula being
model checked. Let us call Extended FSM (or, simply, FSM when the context makes clear what we mean)
the result of this operation. The generation of an extended FSM relies on the fact that the labeling function
explicitly defines the truth value of all the atoms. The problem is that in the FSMs of a MAFSM the labeling
function is not defined on implicit BDI atoms, whose truth value is therefore left undefined; and that we need to
know the truth values of the implicit BDI atoms occurring in the formula to be model checked. The definition
of satisfiability in a MAFSM (item 3 in Definition 4.2) tells us how to fix this problem. That is, if O;4 is an
implicit BDI atom, then F,a, f,s = Oz if and only if for every f' € F,o; and every state s’ of f’, we have
F,a0i, f',s' E \ ArgEzpl(0i,a,s) D 1.

The crucial observation is that ArgExpl(0i,a, s) is generated from Exzpl(0i,a) and the labeling functions of
the FSMs; that it is a finite set; and that it is a property of the MAFSM (and thus independent of the formula
to be model checked). The idea, therefore, is to precompute, once for all, and store in an appropriate data
structure, this information. In particular, for each BDI operator O;, let Co;, called the (MAFSM) compatibility
relation of O;, be a relation defined as follows. Let exCExpl(0i,a) be a subset of the explicit BDI atoms of a
view a. Then:

Coila,ex) = {{f',5') | f' € Faoi, ' astate of f' and F,aoi, f',s' |= {¢ | 0i¢ € ex}}

Starting from a view a and a set of explicit BDI atoms ex of a, Coi(a,ex) collects all the FSMs f’ and states
s' of f' (in the view aoi below) which satisfy the arguments of the chosen explicit BDI atoms. We need to
consider all the subsets ex of Expl(0i,) as a priori we do not know which explicit BDI atoms are relevant for

Global Variables

Ezpl(oi,a) = {0;¢} with O;¢ an explicit BDI atom of «;
F={F,} with F, a set of FSMs on Lg;
Coi = {{a, ex, f',s")} with ex C Expl(0i,), f" an FSM in F,0; and s’ a state of f'.

Algorithm MAMC(a, ¢)

MAMC-View(e, {¢})
for each f € F,, do
if ¢ & L(sp) then return(False)
end
return(True)
end

Algorithm MAMC-View(a,T)

Sub = U{sub(¢) | ¢ €T}
for each 07 do
ArgImpl(0i, o, Sub) := {¢ | Oj¢ € Sub\ Expl(0i,a)}
if ArgImpl(oi, a, Sub) # () then
MAMC-View(aoi, ArgImpl(0i, o, Sub))
endif
end
for each f € F, do /* f={(Ss0,R,L) x/
if (Sub contains implicit BDI atoms) then
for each s € S do
for each 0i do
ArgImpl(0i, a, Sub) := {¢ | O;¢ € Sub\ Ezpl(0i,a)}
for each (f’,s") € Coi(a, L(s) N Expl(0i,a)) do [/ f' = (S',sh, R', L") * |
ArgImpl(0i, o, Sub) := ArgImpl(0i,a, Sub) N L'(s")

end
L(s) := L(s) U O;ArgImpl(0i,a, Sub)
end
end
endif
CTLMC(f,T)
end
end

Figure 4: The multiagent model checking algorithm.

the computation of the truth value of an implicit BDI atom. Implicit BDI atoms evaluated at different states
will need different ex’s.

It can be easily seen that
(f',s") € Coi(a, L(s) N Expl(oi,a))if fF,a0i, f',s' = /\ ArgEzpl(oi,a, s)
and, therefore, that

Fia,f,s = 0;¢ iff for all (f',s') € Coi(a, L(s) N Expl(0i,a)), F,aoi, f,s' E¢ (1)

where O;¢ is an implicit BDI atom and L(s) N Exzpl(0i,) is the set of explicit BDI atoms satisfied by state s
of f € Fy.

The model checking algorithm relies on the following global data structures: a data structure F' which contains,
for each view, a set of (extended) FSMs F,; a data structure Expl(0i,a) which contains for each operator
and view, the set of explicit BDI atoms O;¢; a data structure C' which contains for each modal operator O;,
a compatibility relation Co; = {a,ex, f',s'). The MultiAgent Model Checking algorithm MAMC(«, ¢) takes
two arguments, namely a view « and the MATL formula ¢ € £, that we want to model check. MAMC(a, ¢)
returns true if F' = « : ¢, false otherwise. Notice that we can model check any view (and therefore any subpart
of the multiagent system). Thus, if we take a to be € we model check the overall multiagent system; if we take
a to be of length 1 we model check a single agent; if we take a to be of length 2 we model check the view that
an agent has of another agent, and so on.

The algorithm of MAMC(q, ¢) is shown in Figure 4. As a first step, MAMC(a, ¢) calls the algorithm MAMC-
View on view « and the set of formulas {¢}. MAMC-View(a,I") takes in input a view « and a set of formulas
I' € L., and labels the MAFSM with all the subformulas of the formulas in I". As a result, after this step,
MAMC can return the appropriate truth value simply by testing whether ¢ is contained in the label set of the
initial state so of all the FSMs f € F, (remember, from Section 3 that an FSM satisfies a formula if and only
if its initial state satisfies it).

Notationally, let sub(¢) denote the set of subformulas of ¢ (remember that O;¢ is atomic and that, therefore,
it is the only subformula of itself). Then, inside MAMC-View, we can distinguish three main phases.

Phase 1: Initialization. This phase, corresponding to the first line of the algorithm, collects in Sub all the
subformulas of the formulas in T.

Phase 2: Model Checking implicit BDI atoms. This phase corresponds to the first loop. This loop
considers in turn all the pairs oi. For each of them, the first step is to compute the set ArgImpl(oi, a, Sub),
i.e., the set of all the formulas ¢ which are arguments of the implicit BDI atoms O;¢ which are subformulas
of I. Notice that this step is performed using the set of explicit BDI atoms Expl(0i,a) and not the set of
implicit BDI atoms I'mpl(0i,), the latter set being infinite. Notice also that the knowledge of the formulas to
be model checked allows us to restrict ourselves to the finite set of implicit BDI atoms Sub\ Ezpl(oi, a) which
are relevant to the satisfiability of these formulas.

The second step is to call recursively MAMC-View on the view below and on the set T' = ArgImpl(oi, a, Sub).
In this phase MAMC-View visits the tree structure which needs to be model checked, extending the labeling
functions of the visited FSMs. The leaves of this tree are the views for which there is no need to model check
implicit BDI atoms, due to the fact that no more implicit BDI atoms occur in the set of formulas I' in input.

Notice that the tree which is visited is usually a subtree of the tree constituent the MAFSM, in particular it
is the subtree which contains all and only the views which are necessary to compute the implicit BDI atoms
mentioned in the top level goal formula given in input to MAMC.

Phase 3: This phase is a loop over all the FSMs f of the current view a. This loop iteratively performs the
following two phases:

Phase 3.1: Labeling f with the implicit BDI atoms. This phase corresponds to the second level loop. It
is entered only if we are at a view for which some implicit BDI atom occurs in the input formulas I'. Here the
algorithm extends the labeling function of f with the true implicit BDI atoms O;¢ occurring in I'. This step is
computed according to Definition (1) of satisfiability of implicit BDI atoms. Thus L(s) N Expl(0i, «) is the set
of true explicit BDI atoms in a state s of the FSM f of view a. (f’,s') is any FSM f' and state s’, where f' in
view a0 is compatible with the true explicit BDI atoms computed before. The innermost loop computes and
stores in ArgImpl(oi, a, Sub) the arguments of the implicit BDI atoms which occur in Sub and which are true
in all the pairs (f',s'). O;ArgImpl(oi,a, Sub) at the end of the loop is the set of implicit BDI atoms true in
the current state s. This set is therefore used to extend the labeling of s.

Phase 3.2: Model checking f. At this point every state s in the current f has been labeled with all the atoms
(i.e, propositional atoms, explicit and implicit BDI atoms) occurring in T'. Therefore, it is sufficient to apply

the usual CTL model checking algorithm CTLMC(f,T"). CTLMC(f,TI") takes in input an (Extended) FSM f
and a set of formulas I' and extends the labeling function of f to all the subformulas of ' (see for instance [1]).
Notice that we can call any state-of-the-art model checker as a black box.

The following result states that MAMC-View actually solves the model checking problem for MATL.

Theorem 5.1 (Correctness of MAMC-View) Let f = (S, s, R,L) € F,, with a any view, and s a state
inS. Fa, f,s |= ¢ iff MAMC-View(a,{¢}) applied to F constructs a new F such that ¢ € L(s), with s state
of f.

6 Conclusion

In this paper we have defined a model-checking based decision procedure for multiagent systems. Our approach
allows us to reuse the technology and tools (!) developed in model checking and to specify multiagent systems
incrementally.

The closest work to ours is the work by Rao & Georgeff [5]. Similarly to us, they employ a class of logics obtained
by combining branching-time temporal logics (e.g., CTL), with logics for BDI attitudes. The resulting logics
are relatively similar to ours. The main (essential) difference is that, in their approach, a multiagent system is
specified by using a unique language. Similarly, their semantics consists of a unique Kripke structure with a
temporal accessibility relation and one accessibility relation for each BDI attitude. This “having everything in
a single pot” makes them lose some of our properties, in particular: the modularity and incrementality of the
specification, but also the structural correspondence we have between the agents’ specification and the structure
of the model. Notice that, together being important per se, these two features give us important advantages
in the definition of the model checking algorithm. In particular: we can deal very naturally with the case of
bounded nesting; we can implement multiagent model checking by directly calling, as a subroutine, the standard
model checking algorithm; and we can implement an algorithm which visits the smallest possible submodel (this
last property does not seem to be possessed by the algorithm in [5] — as they need to label all the worlds in the
model). Finally, we also improve on their work as they don’t face the problem of the automatic generation of
a model starting from the specification of a multiagent system. Notice that, at the current state-of-the-art, we
can take a standard model checking language (e.g., Promela) and compiler, and extend them so that it becomes
possible to generate models of multiagent systems.

References

[1] E. Clarke, O. Grumberg, and D. Long. Model Checking. In Proceedings of the International Summer School
on Deductive Program Design, Marktoberdorf, Germany, 1994.

[2] FIPA Foundation for Intelligent Physical Agents. Fipa '97 draft specification, 1997. Revision 2.0 available
at http://drogo.cselt.stet.it/fipa/.

[3] E. Giunchiglia and F. Giunchiglia. Ideal and Real Belief about Belief. In Practical Reasoning, International

Conference on Formal and Applied Practical Reasoning, FAPR’96, number 1085 in Lecture Notes in Artificial

Intelligence, pages 261-275. Springer Verlag, 1996.

G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated reasoning systems.

In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93), pages

318-324, Chambéry, France, 1993.

o

10

