Verifying and Validating a Task/Method
Knowledge-Base

Francky TRICHET & Pierre TCHOUNIKINE
IRIN
Université de Nantes & Ecole Centrale de Nantes
2, rue de la Houssiniere - BP 92208
44322 Nantes cedex 03 FRANCE

trichet@irin.univ-nantes.fr

Abstract

In this paper, we present how verification and validation tools can be of effective help when constructing
the problem-solving model of a Knowledge-Based System (KBS) in the context of the Task/Method modeling
paradigm. The problem-solving model of a KBS defines how expert-knowledge should be modeled and
organised in order to solve problems. Constructing such a model in the context of the Task/Method paradigm
consists in adopting a Task/Method Knowledge Representation Language (KRL) and using it to express a
Problem-Solving Method. DSTM is a flexible framework that allows prototyping the problem-solving model
of a KBS. The prototyping process concerns both the custom-built KRL and the PSM expressed within
this KRL. Prototyping the KRL aims at constructing a satisfactory high-level Task/Method language which
is both a modeling language and an implementing language. Prototyping the PSM aims at defining the
PSM itself (i.e., defining the Task/Method knowledge-base). In order to support such an approach, DSTM
provides verification and validation tools. DSTM verification tools aim at checking if the Task/Method
knowledge-base respects some given modeling constraints. DSTM validation tools aim at checking if the
prototype fits the needs, i.e., if the current problem-solving model allows emulating the expected problem-
solving behaviour.

1 Introduction

Second generation KBSs have popularised modeling problem-solving in terms of tasks and methods [4]. Problems
and sub-problems are modeled as tasks and possible means to solve a problem are modeled as methods. Such
a modeling allows the definition of different means to reach an objective (different methods for a task) and the
expression of static strategies (static decomposition of tasks into sub-tasks) or opportunistic strategies (dynamic
selection of tasks and methods at run-time, according to the problem-solving context). Using task and method
notions appears as an adapted way for describing Problem-Solving Methods! at an abstract implementation-
independent level. Although with some differences, the task and (for some of them) method modeling primitives
are used as a high-level language in works such as the Generic Tasks Theory [2], Commet [16], the Task framework
[14] or the works of [1].

Constructing a KBS within the Task/Method modeling paradigm consists in (1) adopting a Knowledge
Representation Language (i.e., a language that proposes task and method modeling primitives and selection
mechanisms) and (2) defining the knowledge-base according to the adopted KRL (i.e., defining the effective tasks
and methods by using the current KRL as a modeling guide). This two-step process can possibly be performed
in a sequential way. However, a lot of modeling problems generally appear when confronting the adopted
representation language with the expert-knowledge. Therefore, a prototyping approach where several versions
of the couple KRL/knowledge-base can be tested and refined until fixing the final KRL is preferable. In order
to enable such a process, we have constructed DSTM (Dynamic Selection of Tasks and Methods), a flexible
framework that allows prototyping the problem-solving model of a KBS in the context of the Task/Method
paradigm [17]. The prototyping process concerns both the current custom-built KRL and the PSM expressed
within this KRL. Prototyping the KRL aims at constructing a satisfactory high-level Task/Method language

!Tn this paper, a Problem-Solving Method (PSM) is a way to solve problems. It is not necessarily a generic PSM, i.e., a way to
solve a type of problem that can be used over different domains. The description of a PSM at an abstract level is a description of
what actions are to be performed and how, at a level that ignores implementation issues.

winicn 1S both a modeling language and an impliementing language. rrototyping the r'sivl aims at denning tne
PSM itself (i.e., defining the Task/Method knowledge-base that allows emulating the expected problem-solving
behaviour).

The flexibility provided by DSTM allows the modeling-team? to model all the relevant specificities of the
studied expertise. However, as one can modify the KRL (i.e., the modeling primitives and the selection mech-
anisms), the complexity of the KBS construction is increased. In order to help the modeling-team to deal with
this complexity, we have enhanced the DSTM framework with verification and validation tools.

DSTM verification tools are concerned with checking if the knowledge-base respects some given modeling
constraints (evaluation of the structure/form of the KBS in order to answer the question “Am I building the
system right?” [10]). These tools can (1) check if the domain tasks and methods respect some syntactical
constraints defined on the task and method modeling primitives, (2) analyse the influence of missing knowledge
(e.g., an instance with an omitted slot value) according to how this knowledge can be manipulated by the
selection mechanisms and (3) check if the domain tasks and methods respect some integrity constraints (e.g.,
“each task must be associated with at least one method”) explicitly defined by the way of a graphical language
based on the Entity-Relationship model.

DSTM validation tools are concerned with checking if the prototype fits the needs, i.e., if the model allows
emulating the expected problem-solving behaviour (evaluation of the substance/content of the KBS in order
to answer the question “Am I building the right system?” [10]). These tools aim at providing the modeling-
team with a synthetic understanding of how, given the current selection mechanisms, the tasks and methods
of the knowledge-base can interact. In other words, DSTM validation tools aim at explaining the consequences
of the current confrontation knowledge-base/custom-built KRL, consequences that the modeling-team cannot
simply retrieve by itself [18]. Each validation tool is concerned with an explanation objective which emphasises
an interesting Task/Method modeling feature that requires a complex process to be presented (e.g., “Analyse
how the achievement of tasks preceding T; influences the selection of a method for T;” or “Analyse how the
achievement of T; influences the selection of methods for the following tasks”). Therefore, we call what these
tools calculate “explanations dedicated to the modeling-team”.

The characteristic of the DSTM verification and validation tools is that they are meta-tools in the sense
introduced in [5]. They are based on a reflective analysis of the problem-solving model explicitly represented
in the prototype and thus adapt themselves to the adopted KRL. Therefore, they can be used without further
programming work.

The remainder of this article is organised as follows. In order to keep the paper self-content, we first present
the architecture of the DSTM kernel (i.e., the operational kernel that allows constructing the Task/Method
knowledge-base and the underlying custom-built KRL). More details about this kernel can be found in [17].
In section 3 and section 4, we present (respectively) the DSTM verification tools and the DSTM validation
tools. These sections are illustrated with examples from the construction of the KBS embedded in the Emma
educational system [3]. In section 4, we highlight the interest of building verification and validation tools based
on a reflective analysis of the couple knowledge-base/KRL, we discuss the scope of our approach and we compare
it with related work.

2 Constructing a KBS within the DSTM framework

2.1 Modeling principles

The DSTM framework is based on a structuration of the Task/Method modeling paradigm in four layers: the
modeling primitives, the abstract notions, the high-level actions and the control. This four-layer architecture
is associated with a limited-interaction principle: the control is defined on the high-level actions, a high-level
action is based on an abstract notion and an abstract notion denotes a possible state of a task or a method
during resolution.

The following abstract notions have been retained: applicable Task (a task that can possibly be achieved),
achieved Task (a task that has been achieved by a method and whose objective is attained), unsuccessfully
considered Task (a task for which all the possible methods have been considered and none of them allows it to
be achieved), pending Task (a task which is neither an achieved Task nor an unsuccessfully considered Task),
candidate Method (a method that can achieve a task), applicable Method (a method that can be fired) and
favourable Method (a method that is particularly relevant).

These abstract notions are used as selection criteria by the high-level actions that perform the different
selection mechanisms. The following high-level actions have been retained:

2The modeling-team is composed of one or several domain-expert(s) and one or several knowledge-engineer(s).

® oselect a task: seleCts a task that can be achleved Irom a Set oI not yet achlieved tasks. 10N1S action 18 based
on the applicable Task abstract notion.

o Identify candidate methods: identifies the methods that can achieve a task. This action is based on the
candidate Method notion.

o Identify applicable methods: identifies the methods that can be used from a set of methods. This action
is based on the applicable Method notion.

o Select a method: selects a method from a set of methods. This action is based on the favourable Method
notion.

o Fualuate the state of o task: evaluates the state of a task after the activation of a method. This action is
based on the achieved Task, unsuccessfully considered Task and pending Task abstract notions.

Different types of control (e.g., static decomposition of tasks or dynamic selection of tasks and methods)
can be defined over these high-level actions. As an example, a dynamic selection of tasks and methods can be
modeled by a simple (and intuitive) sequential algorithm over all the high-level actions.

2.2 The DSTM operational kernel

The architecture adopted for the DSTM kernel respects the modeling principles underlying the DSTM
framework and therefore is a four-layer one. It has been implemented above the Zola language [9]. This
language provides a set of primitives which allows an explicit representation of the modeling primitives and the
underlying selection mechanisms (i.e., the abstract notions and the high-level actions).

The modeling primitives level

The basic definitions that have been retained for the task and method primitives are as follows. A task is
defined by its results and the context in which it can be achieved. If known, methods that can achieve it can
be associated. A method is defined by the results it produces, the context in which it can be fired and the
knowledge required for its achievement. If known, the description of when it is particularly relevant can be
added.

These definitions are explicitly represented in the kernel as Zola knowledge-types. These knowledge-types
are structured in an inheritance hierarchy and are described by a set of slots (e.g., Expected-Results, Input-
Context and Associated-Methods for the task knowledge-type). Each slot can be associated with syntactical
constraints. These constraints are concerned with the mandatory filling of the slot (the slot S; has to be filled
in when defining a new instance of the knowledge-type), the type of the slot (the slot S; has to be filled in with
a SET-OF instances of a particular type, with a Boolean value, etc.) and the domain of the slot (the slot S;
has to be filled in with a value belonging to a list of predefined ones or to an interval).

What makes DSTM kernel originality is that these structures can be customized according to the definition
adopted for the considered expertise.

For instance, in Emma2, the basic definition of a task is not totally satisfactory. First, the relevance of a
task is defined by taking into account aspects related to mathematical constraints as well as aspects related to
the PSM that is to be taught. Second, some interpretation knowledge must be attached to every task. Such
knowledge is used to interpret (at an abstract level) the results of a task once it is achieved. One dissociates
necessary interpretations (interpretations that must be considered when the task is achieved) from possible
interpretations (interpretations that can be considered when the task is achieved). Finally, some tasks are
decomposed into sub-tasks but, at the moment this decomposition is achieved, one cannot yet define what
these tasks effectively are. For instance, at the first step of a resolution, the task “Deal with an exercise” is
decomposed into “Analyse the problem”, “Formalise the problem”, “Solve the problem” and “Examine the
results”. When this decomposition is achieved, one cannot yet know if “Formalise the problem” corresponds to
the task “Formalise an optimisation problem” or to the task “Formalise a statistic problem”, as this depends
on the results of the task “Analyse the problem”.

These differences lead to the adaptation of the basic definition of a task as adopted in DSTM kernel. This
is achieved by modifying some of the slots (e.g., Input-Context is changed into Activation-Context that denotes
the pertinence from the mathematical point of view, and into Pre-Conditions and Resources that denote the
relevance from the taught method point of view) or adding some new slots (e.g., Necessary-Interpretations and

3Emma is an educational system that aims at training students in the practice of linear programming as a technique to solve
concrete problems (for example economic problems). In order to be able to solve problems and to analyse students’ resolutions,
Emma embodies a KBS whose problem-solving model has been defined within the DSTM framework [3].

I~ossiwole-inierpretations). 1n order to respect the teacner's vocabulary, a task nas been renamed an activity.
Two specialisations of the activity primitive have been defined: the prototype activity primitive (activities that
are planned but cannot yet be explicited and therefore do not have associated methods) and the concrete
activity primitive (effective activities that can be associated with methods). During resolution, when a pro-
totype activity is selected, the concrete activity to be used to “instantiate” it is defined according to the context.

The abstract notions level

The basic definitions that have been retained for the abstract notions are founded on the basic definitions
that have been retained for the modeling primitives. For instance, the definition adopted for the abstract notion
candidate Method is: “a method M; is a candidate Method for the achievement of a task T; if and only if M;
has explicitly been defined as achieving T; or if M; produces the results that are expected for T;”.

These abstract notions are represented as Zola operations defining a logical connector (and, or, not) over a
set of sub-operations. Sub-operations can be expressed as the application of predefined primitives (e.g., check-
domain-knowledge, belongs-to or subset) over the different slots of the modeling primitives. As an example,
figure 1 presents the Zola operation used to represent the candidate Method abstract notion.

(operation ''name ‘candidate-Method
"profile ‘or
' parameters '(method-1 task-1)
" body
(
(belongs-to method-1 'NAME task-1 'ASSOCIATED-METHODS) OP1
(subset task-1 'EXPECTED-RESULTS method-1 'RESULTS) oP2
)
)

A Zola operation is constructed from a set of predefined profiles that correspond to control structunéi(e.or |f-Then-Else), logical
connectors (e.gAnd or Or) or manipulation primitives (e.gMatch, Belongs-to or Subset). Thus, an operation is an instance of
predefined profile. The operatiarandidate-Method is an instance of the profil@r (text in bold font corresponds to the syntax of t
Zola language). It is defined as a disjunctiat (profile) of two sub-operationsQP1 andOP?2. It takes as input a Methodethod-1 and
a Tasktask-1 (method-1 andtask-1 are formal parameters) and returns 'true' if on®RI or OP2 returns 'true'OP1 checks if the name
of method-1 belongs to the list of methods associatedatk-1 . OP2 checks if the results expected farsk-1 are a subset of the
results produced bynethod-1 .

Figure 1: Representing an abstract notion in Zola

According to the modifications that have been made at the modeling primitive level, the basic definitions of
the abstract notions must be adapted and/or some others must be created. Such modifications can easily be
made through the graphical interface provided by the DSTM kernel. For instance, in Emma, the applicable Task
abstract notion must be modified into the applicable Activity abstract notion. An activity A; is an applicable
Activity if it satisfies the mathematical constraints (modeled by the slots Activation-Context and Resources) and
the constraints related to the taught method (modeled by the slot Pre-Conditions). First, two support notions*
have been defined, verify-mathematical-constraints activity and verify-taught-method-constraints
activity. Then, the applicable Task abstract notion has been modified by changing its logical connector and
its sub-operations (cf. figure 2).

The high level actions level and the control level

The high-level actions correspond to selection mechanisms based on criteria that are denoted by the abstract
notions. These actions are represented as control operations over the operations that implement the abstract
notions. For instance, the operation Identify-applicable-methods takes as input a set of methods M1 and
returns as output the set of methods M2 that can be fired, i.e., that respect the criterion denoted by the
abstract notion applicable Method (represented by the Zola operation applicable-Method). This is explicitly
represented in Zola by an operation whose body is: match set-of-methods set-of-applicable-methods
applicable-Method. The primitive (match setl set2 criterion) constructs set2 by selecting the items
from set1 that respect criterion.

The modification of the abstract notions can require some detailed adaptations of some of the high-level
actions and/or the definition of new high-level actions. All the high-level actions have the same structure, their
differences only stand in their signature and the abstract notions they manipulate. For the DSTM high-level
actions that are reused in Emma (such as Select an applicable task), the only modification is to introduce the
Emma abstract notions. This is a direct advantage of the limited-interaction principle. For new actions such

4When defining an abstract notion, predefined primitives (e.g., check-domain-knowledge, belongs-to or subset) and support
notions can be used. The interest of defining a support notion can be to simplify the description of an abstract notion and/or to
reify a pertinent aspect of the modeling (as abstract notions do). In the present case, these support notions have been introduced
because they correspond to modeling notions.

Figure 2: Modifying the applicable Task basic definition into applicable Activity

as Identify possible concrete activities, the high-level actions directly proposed by the kernel can be used as
patterns.

The control over the high-level actions is represented by a Lisp function which performs a sequential and
iterative launching of the high-level actions (see [17] for more details).

2. The DSTM kernel assess ent

DSTM operational kernel allows the modeling-team (1) to define knowledge-types used to represent the defi-
nitions adopted for the task and method modeling primitives, (2) to define operations used to implement the
selection mechanisms (i.e., the abstract notions and the high level actions) and (3) to construct the Task/Method
knowledge-base (instantiation of the task and method knowledge-types). This kernel has been developed above
the Zola langage [9]. Zola is not the only language that can be used to implement the DSTM kernel, but it
proposes a set of properties that are essential for implementing such a kernel, in particular:

e The capacity to construct and modify representation structures that correspond to modeling primitives.

e The capacity to construct operations that explicitly represent the definition adopted for the abstract and
support notions. The explicitness is an important point. If the encoding of an abstract notion or a support
notion is a black-box or is defined with low-level features, these notions cannot be easily modified nor
analysed by reflective modules.

e The capacity to construct Zola operations that can analyse other Zola operations .

These properties allow constructing a prototype which reifies the problem-solving model. The modeling
primitives, the abstract notions and the high-level actions are explicitly represented in the implementation.
Such explicitness makes the evolution of these notions easy and straightforward. Moreover, the capability to
construct operations that can analyse other ones allows constructing reflective modules that can analyse the
current prototype and produce relevant information on the current problem-solving model. In the next sections,
we present how we have greatly benefit from these properties to develop the DSTM verification and validation
tools.

DSTM eri cation too s

erification as intended here aims at making a structural evaluation of the KBS. This kind of verification is
based on a set of structural properties [12]. In our approach, these properties can be explicitly mentioned by

With the ola language, one can construct an operation which takes as input an operation and retrieves its functionality
by analysing its structure (i.e., its body).

the modeling-team oOr 1mplicCitly retrieved Dy the System according to now the slots oI the modeling primitives
are manipulated by the selection mechanisms.

1 plicit constraints on the odel

First, as we have mentioned in section 2.2, the slots of the modeling primitives can be syntactically constrained.
For instance, in Emma, the Post-Conditions of an Activity are supposed to be a set of strategic facts . Analysing
the knowledge-base and checking such constraints can help in discovering some structural errors.

Second, some integrity constraints on the modeling components can be defined by the use of (binary)
relationships. A relationship allows the representation of (1) what role plays the notions of the model involved
in the relationship and (2) the maximal and minimal cardinalities. Figure 3 presents examples of relationships
defined on the Emma model. As an example, the Instantiation relationship can be used to state (1) that a
prototype activity must be instantiable by at least a concrete activity (minimal cardinality on the Is-instantiated-
by role) and (2) that a concrete activity can instantiate at most one prototype activity (maximal cardinality
on the Instantiates role). This allows putting into evidence violations of quantitative constraints such as “the
prototype activity A; cannot be instantiated by any concrete activity’ or, using the Achievement relationship
(cf. figure 3), “the method M is not defined as achieving any task”.

The relationships, defined by the use of the graphical Entity-Relationship language, are automatically trans-
lated into Zola representation structures. The roles of a relationship are represented as Zola operations which
are automatically constructed according to the abstract notion (or the support notion) underlying the rela-
tionship. To do that, we use the reflective capabilities provided by the Zola language (i.e., the capability of
constructing operations which analyse the structure of other operations and construct new ones structurally
equivalent). For instance, the Is-achieved-by role is represented by a new operation automatically derived from
the operation used to implement the abstract notion candidate Method, which is the abstract notion mentioned
by the modeling-team when defining the Achievement relationship (cf. figure 3). Such a reflective analysis allows
checking if the knowledge-base respects the quantitative constraints (i.e., the minimal and maximal cardinalities
applied on the roles of the relationships) without further programming work.

rectangular box represents an entity. rounded box represents a relationship. The roles (e.g., nstantiates or s-instantiated-b)
denote qualitative constraints that must respect elements of the corresponding set to be members of the relationship. ardinalities
denote quantitative constraints on the roles. relationship is associated with an abstract notion (or a support notion). This notion

denotes the qualitative constraints underlying the roles of the relationship.

Figure 3: Two integrity constraints on the Emma model

or modeling the domain knowledge of Emma, we use different types of facts and in particular domain acts that describe
the state of the solution such as it is a problem with two variables or the ob ective function is linear and st ategic acts that
describe aspects of the reasoning process such as the problem type is defined or all the constraints are defined .

oL P11CIU COISTIalnets on uvne oac: 11 €inece O ISS1IE KINIO 1€age

The different tasks and methods of the knowledge-base are manipulated by operational selection mechanisms
(cf. figure 1). This defines implicit constraints on how the slots of the tasks and methods must be filled in. For
certain mechanisms, the slots that are manipulated must be filled in, an empty slot conducting to an execution
error. For some other manipulations, an empty slot can conduct to an erratic behaviour of the system for
instance, an empty Resources slot can conduct a method to be never considered as applicable.

In the context of a framework whose mechanisms are fixed, what slots are manipulated and how is known.
Therefore, the constraints that the domain knowledge must respect in order to be manipulable by these mech-
anisms can be explicited and a static syntaxic parser can be hard-encoded in the system. In our prototyping
context, the mechanisms are not considered as fixed. They can be modified whilst not modifying the knowledge-
base, or vice-versa. Therefore, the link between the mechanisms and the effective tasks and methods cannot be
ezxplicited, it must be calculated from the current prototype.

In order to calculate this link, we use Zola reflective capacities. As said before, Zola permits the construction
of operations that can analyse other Zola operations. This capability can be used to retrieve what operations
manipulate a given slot and how they manipulate it. For instance, analysing the source-code of a high-level
action will lead to analyse the source-code of the operation that implements the underlying abstract notion
(and of the support notions if any), and then to analyse what slots of the modeling primitives are manipulated.
This allows the system to highlight that (for instance) a particular method has no domain knowledge associated
to its Input-Context and that this can be problematic because, given the current selection mechanisms, (1) the
high-level action that performs the selection of methods uses the abstract notion applicable Method as a selection
criterion and (2) a method M; is an applicable Method if the domain knowledge associated to its Input-Context
is verified.

DSTM a idation too s

alidation as intended here aims at checking if the current problem-solving model fits the needs, i.e., allows
emulating the expected behaviour (a functional evaluation of the KBS [12]).

1 eeds or a s nthetic presentation o tasks and ethods interactions

An intrinsic di culty of a Task/Method model is that the behaviour of the system is defined by the interactions
of the different tasks and methods. When the knowledge-base contains numerous tasks and methods, one of the
most important di culties is to keep in mind a synthetic understanding of the influence of the characteristics of
all the tasks and methods on these interactions. Defining a new task (resp. method), modifying the character-
istics of some already existing tasks or modifying one of the abstract notions used in the selection mechanisms
can influence the overall system’s behaviour.

Therefore, when analysing the knowledge-base, questions such as “what is the influence of how task T; is
achieved on the rest of the solving ?” appear recurrently. The pertinent answer to this question is the one that
fits the underlying intention, i.e., analysing if the current problem-solving model allows emulating the expected
behaviour. The considered task must be analysed from the point of view of its interactions with other tasks,
and therefore with the methods that can be used to achieve it and its following tasks. This requires confronting
the knowledge-base (the effective tasks and methods) with the selection mechanisms. We use the expression
“explanations dedicated to the modeling-team” to denote that what we want is to explain to the modeling-team
some consequences of the current couple knowledge-base/custom-built KRL. These explanations can highlight
problems in the knowledge-base (e.g., a mistake in the filling of a slot) or problems in the KRL (e.g., the
definition of what is an applicable Method is not satisfactory).

For constructing these explanations, we have developed automatic tools (that we call explanation modules)
that propose synthetic points of view on the current problem-solving model (i.e., the tandem KRL/knowledge-
base). Each explanation module is related to an explanation objective.

2 n e planation o ecti e nal set e ac ieve ent o a tas

Figure 4 presents the explanation objective “Analyse the achievement of a task T;” and how it can be de-
composed. Such an explanation objective is a general framework that must be adapted to take the eventual
specificities of the adopted modeling into consideration. This adaptation is a two-step process.

First, what should be presented must be adapted to the general Task/Method modeling choices (e.g., “a
task can be associated with multiple methods or with only one method’ or “methods associated with a same task

Allaly st Uulc aullicvoliiclit Ul a taosi 1

(A) (B) (C) (D)
Analyse the methodsAnalyse how the achievement ¢ Analyse how the achievemen Analyse how the achievement c
that can achieve Ti the tasks preceding Ti influence of Ti influences the selection ¢ Ti influences the achievement o
the achievement of Ti the following tasks the following tasks

Analyse how the achievement of the tasks precedi Analyse when Ti will
Ti influences the selection of a method for Ti not be achieved

B1a) _— T~ (81-b)

Analysis of Ti as one of the sub-tasks Analysis of Ti asany
defined by a decomposition method other task

Every node from the first level (A, B, C, D) denotes an explanation objective that can contribute to a synthetic view on the achievement of
Nodes from this level can be exploded into sub-objectives. As an example, B1 and B2 denote two different explanation objectives that are
with B. B1 analyses the influence of preceding tasks on how Ti will be achieved; B2 analyses when Ti will not be achieved, i.e., it is

necessary to achieve it (its objectives have already been produced) or it cannot be achieved (the context in which its required resource
produced or none of its possible methods can be used). On the contrary, B1-a and B1-b are not two different objectives, but two different w:
B1 objective. If a method defines that a task Ti should be achieved by successively achieving sub-tasks Til, Ti2 and Ti3, there is a s
between these Tij tasks; therefore, when analysing (for example) Ti2, one must highlight its interactions with Ti on one hand, with Til al
another hand. Note that whpteceding and following tasks are is related to the adopted modeling and that this explanation objective can only
on tasks whose order can be accessed, either because it is explicit (e.g., in the case of hierarchical decompositions) or because it can
(e.g., by analysing pre and post conditions).

Figure 4: The explanation objective “Analyse the achievement of a task”

can have di erent influences on the rest of solving or not”). Some sub-objectives only exist in some particular
contexts. For instance, (A) is only to be examined if a task can be achieved by multiple methods. Some other
modeling choices require a reformulation of some of the sub-objectives. As an example, when a task can be
achieved by multiple methods, two different cases occur: (i) what method is used to solve a task has no influence
on the rest of the solving or (ii) methods have side-effects . How to attain the B1 objective is very different
in (i) and (ii) contexts. In context (ii), the aim is to put the interactions between different methods used to
achieve different tasks into evidence, such as for example the fact that achieving task T; by method M can
influence the selection of the method that will be used to achieve task T . For this purpose, what results will
be obtained according to the possible methods for T; must be defined and compared to the selection criteria of
the possible methods for T . In context (i), the only point is if T; is achieved and not how it is achieved.

Second, how to attain an explanation objective must be defined in the context of the particular specificities
of the current problem-solving model. Figure 5 presents how (B1) explanation objective is achieved for the
Emma model. As an example of adaptation, one can notice that, as in Emma methods do not have side-effects,
the definition of the results of the preceding tasks (B112 in figure 5) does not take the existence of different
possible methods into account. One can also note the influence of the use of different types of knowledge in the
domain model and the different possible status (necessary or possible) of the interpretation knowledge attached
to the tasks (cf. al, a2, b1, b2 nodes in figure 5). Finally, the analysis of “how the results of the preceding tasks
influence the selection of a method” (B12 node) is done according to the slots resources, selection context and
favourable context which are used as selection criteria in the Emma model (cf. section 2.2).

. e sing the DSTM ra e ork ori ple enting the e planation od les

In order to be able to dynamically (and automatically) adapt the explanation to be produced according (1) to
the general Task/Method modeling choices and (2) to the relevant specificities of the considered problem-solving
model, we have implemented the explanation modules by reusing the DSTM framework. Thus, an explanation
module corresponds to a dynamic selection of explanatory tasks and explanatory methods according to a given
explanation objective and to the adopted modeling choices.

daptation to the Tas ethod modeling choices
Each node from the general decomposition of the explanation objectives (cf. figure 4) is represented by
an explanatory task and the different ways to reach an explanation objective are represented by explanatory
methods. Therefore, the final explanation is constructed by dynamically selecting explanatory tasks and
explanatory methods. An exzplanatory task is defined by its underlying explanation objective, the context

they all can be used to achieve the task but some of them can produce additional knowledge that can in uence the rest of the
solving (i.e., the selection or achievement of tasks and/or methods).

\=24)
Analyse how the achievement ¢
the tasks preceding Ti influence
the selection of a method for Ti

AND
(B11) (B12)
Analyse the results of Analyse how the results of the preceding tas|
the preceding tasks influence the selection of a method
(Blll)m (B112) AND | AND
Def:jne tr:e " Define the results of the
receding tasks receding tasks
P 9 P 9 Analyse the Analyse the Analyse the
m resources selection context favourable context
Analysis of Ti as one of the sub-tasks ~ Analysis of Ti asany /)\ (B121) (B122) (B123)
defined by a decomposition method other task
(B1l-a) (B1-b) Define the results that Define the results that
denote the strategy stat denote the solution stat
m m
necessary possible necessary possible
results results results results
(al) (a2) (b1) (b2)

Figure 5: Reformulating the explanation objective for the Emma model (partial)

in which it is relevant to be studied and a set of explanatory methods. Two types of explanatory methods
are distinguished: operational method and decomposition method. A decomposition method specifies how a
task is divided up into sub-tasks and an operational method specifies how a task without further sub-tasks
can be achieved. The operational methods produce texts. The overall explanation is obtained by compil-
ing these texts. To each method is associated a modeling context underlying the different Task/Method
modeling choices. Thus, an explanatory method describes a way to reach an explanation objective in a
particular modeling context. Figure 6 presents the explanatory task “Analyse the candidate Methods of a
Task” and its associated explanatory methods (this explanatory task corresponds to the (A) node of the figure 4).

Task Analyse-candidate-methods

bj ecti ve "Analyse the candidate methods of a task"

Sel ecti on- cont ext (Add-New-Task(Ti) O Modification-Abstract-Notion(candidate-Method) 0..)
Associ at ed- met hods (Present-the-candidate-method, Analyse-candidate-methods-without-side-effects,

Analyse-candidate-methods-with-side-effects)

Met hod Present-the-candidate-method

Mbdel i ng- cont ext (One-Task-One-Method)

Body Zol a- operati on

Met hod Analyse-candidate-methods-without-side-effects

Mbdel i ng- cont ext (One-Task-Muliple-Methods 0 Methods-Without-Side-Effects)

Sub-t asks (Research-Candidate-Methods, Compare-Candidate-Methods/Selection-Criteria)

Met hod Analyse-candidate-methods-with-side-effects

Mbdel i ng- cont ext (One-Task-Muliple-Methods 0 Methods-With-Side-Effects)

Sub-t asks (Research-Candidate-Methods, Compare-Candidate-Methods/Selection-Criteria,
Compare-Candidate-Methods/Produced-Results)

The explanatory tasknalyse-candidate-methods aims at comparing the differents methods of a given domain task. This task is re
when a new task has been defined or when the definition adopted fanthidate Method abstract notion has been modifies#léction-
context slot). Three explanatory methods can be used for achieving it. The firstreaen(-the-candidate-method) is an operational
method which is applicable in the context of a Task/Method modeling where one task is associated with only on&iedethgadntext
slot). The second onérfalyse-candidate-methods-without-side-effects) is a decomposition method which is applicable when one
can be associated with multiple methods which have no side-effects on the rest of the solving. It decomposesdlysd@skdidate-
methods in two sub-tasksResearch-Candidate-Methods andCompare-Candidate-Methods/Selection-Criteria . The first sub-task
aims at retrieving the different candidate methods and the second one aims at comparing these candidate methods according to tt
criteria. The third methodAQalyse-candidate-methods-with-side-effects) is also a decomposition method which is applicable wl
one task can be associated with multiple methods which can have side-effects on the rest of the solving. In this context, the candid
have also to be compared according to the results they can produce. This is why the explanatopmtask-Candidate-
Methods/Produced-Results belongs to the list of the sub-tasks decomposition of the metfygke-candidate-methods-with-side-

effects

Figure 6: An explanatory task and its explanatory methods

This context is related to the different modeling actions that have been performed by the modeling-team within the DSTM
framework. modeling action can be concerned with the customisation of the DSTM operational kernel (i.e., the prototyping
of the K) or the refinement of the current knowledge-base (i.e., the prototyping of the PSM). Examples of such actions are

modi cation o the cha acte istics o the task modeling imiti e , de nition o a new abst act notion or de nition o a new
method in the knowledge-base .

daptation to tne relevant speci cities o the problem solving model

As one can see from figure 6, an operational method is associated with a Zola operation (ody slot). As said
before, these operations produce parts of the final explanation (parts which are linked together thanks to the
selection process provided by the DSTM framework).

Most of these Zola operations reuse those that represent the abstract notions. For instance, in or-
der to compare the different methods that can be used to achieve a task, these methods must first be
retrieved. This is achieved by the Zola operation associated with the operational explanatory method

earch-candidate-Methods. This operation directly reuse (as a selection criterion) the Zola operation that
implements the candidate Method abstract notion. This is a direct advantage of the explicit representation of
the selection mechanisms.

Some parts of the explanation require an analysis of the current selection mechanisms. For
instance, in order to emphasise when a method will be preferred to another (the explana-
tory task ompare- andidate-Methods election- riteria presented in figure 6), the different slots
used as selection criteria must first be retrieve. To retrieve these slots, the explanatory task

ompare- andidate-Methods election- riteria is associated with an operational method whose Zola op-
eration performs a structural analysis of the operation that implements the applicable Method abstract notion.
One can notice that the same reflective analysis is required when analysing how the results of the tasks preceding
a task T; influence the selection of a method for T; (cf. B121, B122, B123 nodes in figure 5).

However, few parts of the explanation require information that cannot be calculated from a reflective analysis
of the current problem-solving model. For such cases, we have defined specific abstract notions dedicated to
our explanation purpose. These abstract notions have to be defined by the modeling-team when customising
the DSTM kernel. For instance, the explanatory task efine-results-tas (cf. B112 node in figure 5) is
associated with an operational method whose Zola operation uses a specific abstract notion called task results.

Figure 7 presents an episode of what is produced by the module “Analyse how the achievement of tasks
preceding T; influences the selection of a method for T;” in the context of the Emma project. Additional
information on our approach of explanations dedicated to the modeling-team can be found in [18].

Resour ces anal ysi s
The method Graphic-method can only be used if the task Constraint-definition has been achieved previously

Sel ection-context anal ysis

The method Define-solution-by-equations can only be used if (1) the task Isoquant-traces has been achieved previously and
(equations.defined) is produced during its achievement and (2) the task Formalisation-of-the-mathematical-optimisation-
situation has been achieved previously or the task Variable-definition has been achieved previously and (nb-
variables>2.true) is produced during its achievement

Favour abl e- cont ext anal ysi s
None of the possible Methods have a favourable context defined

The task that is analysed $slution-determination. Graphic-method andDefine-solution-by-equations are two of the methods that can achieve
What is emphasised here is how the achievement of the tasks presadtian-determination influences the selection of one of these methods.

Figure 7: Information produced by an explanation module (excerpt)

Discussion

.1 Scope o o r approach o eri cation and alidation

Structural verification is currently the most advanced aspect of KBS evaluation, and it is mainly focused on pro-
duction rules [8]. In this paper, we advocate that the problematic of verification and validation of a Task/Method
KBS has to be studied because of the increasing development of such systems. The approach we propose is
based on a reflective analysis of the problem-solving model explicitly represented in the prototype. This allows
constructing tools that automatically adapt themselves to the current problem-solving model. Therefore, our
verification and validation tools can be considered as metatools [5].

Information provided by DSTM verification tools is mainly dedicated to the knowledge-engineers. Anomalies
detected by theses tools generally emphasise a problem in the structure of the Task/Method knowledge-base.
Information provided by DSTM validation tools can highlight a misunderstanding or a distortion of the knowl-
edge supplied by the experts and/or a lack of precision in the knowledge expressed by the experts. In other
words, they facilitate the evaluation and the refinement of the content of the Task/Method knowledge-base
(evaluation that is made in collaboration with the domain-experts which play an introspective role in order to
validate the PSM underlying the knowledge-base). For instance, in the context of the Emma project, the results
produced by our explanation modules have pointed out several deficiencies in the problem-solving behaviour

10

nitially described (in an intormal way) Dy the teachers, and tnus nave nelped the teachers to progressively
refine the PSM they would like to explicit and transmit.

2 o parison ith kno ledge ac isition tools

Knowledge-acquisition tools have been studied in different works such as Omos [11], Salt [13], Expect [7] or
MetaKit [6].

Omos, Salt or Expect essentially aim at supporting the instantiation of the problem-solving model with
expert-knowledge. In works such as Omos or Salt, the system can analyse the knowledge-base according to how
knowledge is used in the strategy, the “role” of knowledge in a PSM [15]. Such tools can provide help such as
“there is a lack of knowledge concerning this aspect of the PSM”. Expect goes a step further in this way by
allowing an automatic derivation of such knowledge-acquisition tools by a reflective analysis of its knowledge-
base. Expect can consider any strategy defined in the representation formalism it proposes, when Omos or Salt
only accept modifications of the knowledge-base. MetaKit essentially aims at verification issues. A dissociation
is introduced between macro verification and micro verification. Macro verification is used to check the overall
structure of a project, for example that a leaf task of the decomposition tree is not performed by a decomposition
method. Micro verification is used to check details, for example that each method is typed.

Our verification tools essentially address the phase where the knowledge-base is constructed in a process
guided by the adopted KRL. They aim at discovering errors in the knowledge-base. The tools that check
explicit constraints can be compared to MetaKit verification tools. The advantage of our approach is that
the constraints to be checked are explicitly defined (using the graphical Entity-Relationship language) by the
modeling-team, and not predefined and hard-encoded. The tools that analyse implicit constraints are based
on an analysis of the source-code, in a similar way to Expect. In a system such as Salt, the PSM and what
knowledge is supposed to be acquired is known. Knowledge-acquisition tools can therefore be constructed
according to these specifications. In DSTM, how knowledge is manipulated can be modified and therefore the
knowledge-acquisition tools (related to the role that plays knowledge in the PSM) must be based on a reflective
analysis of the source-code.

Our explanations address both phases of the elaboration of the problem-solving model. They do not aim at
stating “there is a problem in the knowledge-base”, but “here is some information on how the current R and
the current knowledge-base interact”’. In other terms, they are not automatic debugging tools, but tools that
provide the modeling-team with information that is susceptible to highlight a problem with the current KRL
(the definition adopted for the modeling primitives and/or the selection mechanisms are not satisfactory) or
with the current knowledge-base (errors when filling the slots of one or several tasks or methods).

rrent direction o the ork

First, as presented in section 3, our verification tools are essentially based on constraints defined by the modeling-
team in an explicit way (by the use of the Entity/Relationship representation language) or an implicit way (by
the definition of the selection mechanisms which necessary imply some constraints for the tasks and the methods
of the knowledge-base). As pointed out by several works, one can state some predefined constraints according
to the representation formalism used for implementing the KBS [12]. For instance, in the context of a rule-
based representation formalism, one can define (a priori) a set of structural properties that would be part of
the structural verification such as redundant rules, conflicting rules or circular rule chains. We are currently
studying such structural properties in the context of the Task/Method modeling paradigm. A first study seems
to indicate that the constraints generally used in a rule-based formalism can be reused and reformulated in a
Task/Method formalism. For instance, it would be interesting to check if the knowledge-base does not contain
conflicting methods (two methods are in conflict when they have been defined as achieving a same task T; but
produce conflicting results for T;) or circular tasks (a task T; is a circular task when it belongs to the sub-tasks
decomposition performed by one of its associated methods).

Second, as said before, the DSTM framework can recommend the modeling-team to use a specific validation
tool. This advice is based on the different modeling actions that have been done previously. However, when
constructing the explanations, our system does not take the background of the DSTM session into account.
Therefore, if the same explanation module is launched twice, the same final explanation will be produced. We
are currently studying (and modeling via the explanatory tasks and methods) the adaptation of the explanations
to how the modeling-team is secured with the knowledge it is managing. Such a model of the modeling-team
(which would be constructed dynamically during a DSTM session) could be used to select new explanatory
methods which, for instance, would allow shortcuts in the final explanation when the modeling-team would be
supposed to master a particular modeling notion (e.g., the candidate Method abstract notion).

11

€11 eciites

[1]

[2]

o =

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

R. Benjamins. Problem-solving methods for diagnosis and their role in knowledge acquisition. International
ournal of Expert Systems Research and Applications, 8(2):93 120, 1995.

B. Chandrasekaran and T.R. ohnson. Generic tasks and task structures: History, critique and new
directions. In .M. David, .P. Krivine, and R. Simmons, editors, Second eneration Ezpert Systems,
pages 232 272, Berlin, Germany, 1993. Springer- erlag.

C. Choquet, P. Tchounikine, and F. Trichet. La modelisation de la methode de resolution de problemes
dans le systeme Emma. In Actes des ournees francophones EIAO de Cachan In french , pages 263 275.
Hermes, 1997.

.M. David, .P. Krivine, and R. Simmons. Second eneration Ezpert Systems. Springer- erlag, 1993.
H. Eriksson and M. Musen. Metatools for knowledge acquisition. IEEE Software, 10(3):23 29, 1993.

S. Geldof, A. Slodzian, and W. an de elde. From verification to life cycle support. IEEE Ezxpert,
11(2):67 73, 1996.

. Gil and C. Paris. Towards method-independent knowledge acquisition. nowledge Ac wisition, 6(2),
1996.

U. Gupta. alidating and erifying nowledge-Based Systems. IEEE Computer Society Press, 1991.

I. Istenes and P. Tchounikine. Zola: a Language to Operationalise Conceptual Models of Reasoning.
International ournal of Computing and Information, 2(1):689 706, 1997.

. uristo. A common framework for conventional and knowledge based software validation and verification.
In th International Conference on Software Engineering and nowledge Engineering SE E | pages
287 294, Madrid, Spain, 1997.

M. Linster. Integrating conceptual and operational modelling: a case study. nowledge Ac uisition, 5:143
171, 1993.

B. Lopez, P. Meseguer, and E. Plaza. Knowledge based systems validation: A state of the art. Artificial
Intelligence, 3(2):58 72, 1990.

S. Marcus and . McDermott. Salt: A knowledge acquisition language for propose-and-revise systems.
Artificial Intelligence, 39(1):1 37, 1989.

C. Pierret-Golbreich. TAS un environnement pour le developpement de systemes a base de connaissances
flexibles. Habilitation a diriger des recherches, Rapport de Recherche LRI-1056, (In french), 1996.

C. Reynaud, . Aussenac-Gilles, P. Tchounikine, and F. Trichet. The notion of role in conceptual modeling.
In th European orkshop on nowledge Ac uisition Modeling and Management E A , number
1319 in Lectures otes in Artificial Intelligence, pages 221 236. Springer- erlag, 1997.

L. Steels. Components of Expertise. Artificial Intelligence, 11(2):29 49, 1995.

F. Trichet and P. Tchounikine. Reusing a Flexible Task-Method Framework to Prototype a Knowledge-
Based System. In th International Conference on Software Engineering and nowledge Engineering
SE E , pages 192 199, Madrid, Spain, 1997.

F. Trichet and P. Tchounikine. Structured explanations as a support to model problem-solving in a
Task-Method paradigm. In G. Grahne, editor, Sizth Scandinavian Conference on Artificial Intelligence
SCAI , number 40 in Frontiers in Artificial Intelligence and Applications, pages 131 142, Amsterdam,
Holland, 1997. IOS Press.

12

