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Abstract. In this papercompositional verification of agentsin dynamic environmentsis studied. Dynamic
properties of an example agent in a dynamic environment are identified in retatibe different abstractionlevels
of the compositional structureof the system. The propertiesare formalisedusing temporal models. Mathematical
proofs relate the properties at the different process abstraction |&helslynamicsof the environmenthas several
consequencefor the verification process.Propertiesoften have to contain conditions concerning the dynamic
behaviour of the world. Ithe proofs, the partly unpredictablebehaviourof the word hasto be takeninto account.
This complicatesthe verification process.A numberof aspectsof proof pragmatics(i.e., heuristics for finding
proofs) identified during this analysis and aimed at controlling the proof complexity, are discussed.

1 Introduction process abstractidevels. This mathematicaktyle is used
because its the most generalway to formaliseand verify
With the increaseof the complexity of systemsand the ~ SYStém behaviour; it provides maxinelpressivereedom.
sensitivity of those systemswith respectto security, ~ USing aformallogic, with alimited numberof operators,
safety,andcosts, the needfor verification becomesmore ~ could be too constrainingin the presentphase of the
important every day. The purpose of verification is to prove®S€arch. Butin the future, a formal logic will eosento
that, undera certainset of assumptions,a system will conduct the v_er|f|cat|on. To _explodemandsnn this _Ioglc,
adhere to a certain set pfopertiesfor examplethe design ~ the mathematicaproof style is useful. The propertiesare
requirements:see also, e.g., (Fensel, 1995; Fensel and formalisedusing temporalmodelswith incompletestates
Benjamins, 1996: Fensel, Schonegge,Groenboom, and (to express ignoranceJhe dynamicsof the externalworld
Wielinga, 1996; Harmelen and Teije, 1997). In our proved to make verification more complex; meféort was
approacf;a matr;ematicabroof (.e., a p;roof in the form needed to create comprehensible proofs. Valuable experien
mathematiciansre accustomedo do) is given that the ~ Was gained during this analysis that resulted mumberof
(detailed) specification of the system together with the basic assumptionsand workable heuristics for finding
assumptions implies the properties that it needs to fulfil. InPTOOfS: _ o o
this sense verification leads to a formal analysis of relations 1 NiS case studis usedto identify possibilitiesas well
between properties and assumptions. as problemsthat are encounteredn the verification of
Given the increasing complexity of systemsto be  Multi-agent systems in  dynamic environments. The
verified, the needfor a systematicapproactto verification ~ Properties verified in this paparerelevantfor multi-agent

that leads to a comprehensible proof is paramount. The firstyStems in dynamic environments, although  their
experienceswith the compositional verification method ~ formalization is domain-dependent. For other aggstems

introducedin (Cornelissen,Jonker,and Treur, 1997) for N dynamic worldsthe propertiesonly haveto be adjusted
knowledge-basedystemswith a casestudy in diagnostic to the partlcqlarappllcatlor_1d0ma|n.A generalstrateg_y!s
reasoning, and in (Jonker and Trel®@98a)for multi-agent ~ US€d to obtain the properties adprove them. Genericity
systemsappliedto a casestudy in reactivenesand pro- and reus_ab|I|ty_are of major importance.The aim pf the
activenessof agentsacquiring information abouta static ~ '€Searchis to find a general approachof verification of
world, werevery promising. The proofs are structuredin ~ Multi-agentsystemsthat are developedn a compositional
comprehensiblenannerand constructecby making useof ~ &nd conceptual manner. To obtain this approaseyi@sof
the compositionalstructureof the systembeing verified. ~ €2S€ studies is being performed, including one described
Although the systemsverified in thesefirst attemptsare 1" thiS paper. The approachshould identify common
reasonably complex, the material (or external) world aspects of verificatioof all kinds of mqu-agentsystems.
consideredis static. In this paper the compositional ~Or example therearetypesof propertiesthat play a role

verification method is applietb formally analyseanagent N Many multi-agent systems. Also, general applicable
system with a dynamic world. heuristicsto reducethe searchspaceof the proofs to a

In the verification process again tHiferent abstraction ~ Manageable size have been found (and morenaseto be
levels of the compositionalstructureof the systemwere ~ [ound). Using this approach of multi-agent system
usedto identify dynamic propertiesof the agent, of the verification, the verification processwill become more
external world and of the interaction between them.  Structuredand algorithmic in nature. Tools to execute
Mathematicalproofs relate the propertiesat the different ~ and/or aid with the verification could then be created.
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Section2 containsan overview of the compositional
verification approachwhich constitutesthe foundation of
the sought-for verification approach.In Section 3 a
problemdescription(a descriptionof a pseudo-experiment)
of animal behaviour is presented, the basguirementsare
formulated, and the model is presented, that is teehifed
in the subsequent sections. Section 4 conthiasop-level
propertiesof the system,that are proven in Section 5,
using assumptions on the behaviafirthe dynamicworld.
Some of these assumptions appeaBection4. Section6
discussedasic assumptionghat play a central role. In
Section 7 proof heuristicsthat (may) play a role in the
verification of dynamic systemsare identified. Section 8
discussesthe interaction between design processesand
verification processes. Conclusions dncher perspectives
are discussed in Section 9.

2 Compositional Verification of Dynamic
Properties

The complexity of the verification processis one of the
major concernsin verification of non-trivial systems.In

particular, for verification of dynamic properties of a
system, a huge search space has to be f&medpositional
verification is an approach meant to handle this
complexity, by structuring proofs accordingto different
processabstractionlevels; e.g., (Cornelissen Jonker and
Treur, 1997; Jonker and Treur998a);seealso (Abadi and
Lamport, 1993; Hooman, 1994; Dams, Gerth and Kelb,

1996). A compositionainulti-agentsystemcan be viewed
at different levels of processabstractionViewed from the
top level, the complete system is gm@cesgmodelledby

a component s), with interfaces, whereas internal
information and processesare hidden (information and
process hiding). At theext lower level of abstractionthe
systemcomponents can be viewed as a composition of

agents and the worléndinformation links betweenthem.
Each agent is composedit§ sub-componentsndso on.

Compositional verification takes this compositional
structureinto account:it playsa heuristicrole in finding

the properties and proofs.

2.1 Verification and Levels of Process
Abstraction

Often the properties that need to be verified areghan at

i+1 can bereusedonly the proof from level i-1 to level i
hasto be adapted.n this sensethe verification method
supports reuse of verification proofs.

2.2 The Temporal Semantics Used

In principle, verificationis alwaysrelativeto semanticsof
the system descriptions that are verified. For our
CompositionalVerification approachthesesemanticsare
basedon compositionalinformation stateswhich evolve
over time. In this subsectiona brief overview of these
assumed semantics is given.

An information state M of a componentd is an
assignment of truth valuesde, false, unknown} to the set of
ground atoms that play a role within The compositional
structure ob is reflected in the structure of tleformation
state.A formal definition canbe foundin (Brazier, Treur,
Wijngaardsand Willems, 1996). The set of all possible
information states ab is denoted bys(D).

A trace M of a component D is a collection of
information stategvl);c T in I1S(D) overatime structure

T. For this paperT will be chosenas a denseordering,
e.g., the non-negative real numbers. Theo$etll tracesis

denotedby IS(D)T, or Traces(D). If C is a sub-component
(or sub-sub-componentr ...) of D, by Traces(D)|C the

restriction of the traces 1© is meant, that is, only that part
of eachinformation statethat pertainsto C is considered.
Given a tracéM_of componentc, the information stateof

the input interface of componentc' at time point t is

denotedby state(OM_, t, input(C")), WhereC' is eitherc or a
sub-componenbf c, a sub-sub-componenbf c, etc.

Analogously state(OM, t, output(C')), denoteghe information
state of the output interfacd componentc' at time point

t.

3 Problem Description

One of the most important aspects of agents (cf.
(Wooldridge and Jennings, 1995)) is thieghaviour.In the
past, behaviour haseenstudiedin different disciplines.In
Cognitive Psychologyhe analysisof humanbehaviouris
a major topic. In Biology, animal behaviourhasbeenand
is being studied extensively. In one approach animal
behaviour is explained only in terms of a black box fbat
eachpatternof stimuli (input of the black box) from the

the start of the verification process. Actually, the process ofhvironment generates esponse (output of the black box),

verification has two main aims:

« to find the properties
« given the properties, to prove the properties

The verification proofs that connect opmcessabstraction
level with the other are compositionalin the following

manner:any proof relating level i to level i+1 can be
combinedwith any proof relating level i-1 to level i, as
long asthe samepropertiesat level i are involved. This

means, for example, that the whole compositiatalcture
beneathevel i can be replacedby a completely different

that functionally dependson the input patternof stimuli;

i.e., if two patternsof stimuli are offered, then the same
behaviour occurs if the two patterns of stimuli agual.In

this sectiona genericmodelof a purely reactive agent is

briefly presentedwhich is an adequateagent model to

describethe (immediate)functional characterof stimulus-
responséehaviour(Jonkerand Treur, 1998b). The black
box is representedy the agentcomponent.The stimuli

form the input (observationresults), and the responseds

formed bythe actionsto be performedwhich are generated
as output.

design as long as the same properties at level i are achieved.

After sucha modificationthe proof from level i to level



In this article a concreteexampledomainis considered
that is taken from the discipline that studies animal
behaviour; see e.g., (Vauclair, 1996).

3.1 The Domain

One typeof experimentreportedin (Vauclair, 1996)is set

up as follows (seeFigure 1). Separatecby a transparent
screen (a window, at positiqin), at eachof two positions
p1 andp2 a cup (upside down) and/armieceof food canbe

placed. At some moment (with variable del#y® screenis

raised, and the animal is free to go to any position.

Consider the following three possible situations:

Situation 1 At both positiong1 andp2 an empty cup
is placed.

Situation 2 At position p2 a pieceof food is placed,
which is (and remains)visible for the
animal. At positiorp1 there is nothing

Situation 3 At positionp1 an empty cup is placeahd

at position p2 a piece of food is placed,
afterwhich a cup is placedat the same
position, covering the food. After the
food disappears under the cug@nnotbe
sensed anymore by the animal.

In situation1 the animal will not show a preferencefor
either position p1 or p2; it may evengo elsewhereor stay
whereit is. In situation2 the animalwill go to position
p2, which can be explained as pure stimulus-response
behaviour.In situation 3 the immediate stimuli are the
sameas in situation 1. Animals that reactin a strictly
functional stimulus-responsenannerwill respondto this
situationasin situation1. Models of animalsthat show
delayedresponséehaviour(andwill go to p2, where food
canbe found) or othertypesof behaviourcanbe foundin
(Jonker and Treur, 1998b).

p0

Fig. 1. Situation 3 of the experiment

3.2 The Requirements

In this papera purely reactiveagentmodelis describedor
the experiment. The following requirements on its
behaviour are formulated: The agent should behave the
samefor the situations 1 and 3 describedabove: doing
nothing, as if no food is present.Only in situation 2
should it go to the position of the food and eat it.

3.3 An Agent Model for Purely Reactive
Behaviour

For the designandimplementationof the different models
the compositional developmentmethod for multi-agent
systems DESIRE has been used; see (Brazier, Dunin-

Keplicz, Jennings,and Treur, 1997) for more details. A

generic agent model for purely reactivehaviourdeveloped
earlier within the DESIRE environment(and applied in

chemical process control) was reused.

3.3.1 Process Composition

The (rather simple) agent system (denote@hgonsistsof
two components, one for thegent(denotedby M) andone
for the externalworld (denotedby EW) with which it
interacts (see Figure 2).

In the currentdomain, the observationinformation that
plays a role describeghat certainobjects (cup1, cup2, food,
screen, mouse, self) areat certainpositions (i.e., po, p1, p2).
This is modelled bywo sorts OBJECT and POSITION anda
relationat_position betweenthesetwo sorts. Moreover,two
types of actions can be distinguished:eat and goto some
position. The latter type of actionsis parameterizechy
positions; this can be modelledby a function goto from
POSITION to ACTION. E.g., goto(pl) is the actionto go to
positionp1l. The actioneat that is specifiedassumeghat if
the animalis at the position of the food, it can havethe
food: if a cup is covering the foods part of the action eat
the animal can throw the cup aside to get the food.
Variablesover a sort, e.g., POSITION, are denotedby a
string, e.g.p, followed by: POSITION, i.e.,P : POSITION is
a variable over the sort POSITION. The unary relation
to_be_performed IS usedto expresghe information that the
agent has decidedto perform an action; for example,
to_be_performed(goto(p1)) expresseshat the agenthasdecided
to go to positiorp1. The relatiorobservation_result is used to
expresghe meta-informationthat certain information has
been acquired by observation; for example,
observation_result(at_position(food, p1), pos) expresseghat the
agent has observed that there is food at positipwhereas
the statement observation_result(at_position(food, pl1), neg)
expresses thdahe agenthasobservedhat thereis no food
at positionp1.

top level

agent [| actions and observations external
1 1 1 1
1 world 1

observation results

Fig. 2. A generic agent model for purely reactive behaviour



Within the processcompositionso far, the externalworld
has been treated as a black box. Thisthasdvantagehat
the systemcan easily be adaptedo function eitherwith a
simulatedworld or with the real world. This approachis
valuable for verification as the system carvidfied up to
the externalworld; leaving the externalworld as a black
box assumedo satisfy certainproperties.For a simulated
externalworld the verification processcan continueto be
certain that the simulation has the required properties.

3.3.2 The Domain Knowledge

Assuming that food is offered at most one position (for
example,position p2), the stimulus-responsbehaviourof
agentmodel A expresseghat if the agent observesthat
there is food at anposition andthat no screenat position
po separateshe agentfrom this position, then it goesto
this position. Also, if the agentobserveghatit is at the
position of the food, the agent decidestithe food. This
knowledge has been modelled in the following form:

if observation_result(at_position(food, P:POSITION), pos)
and observation_result(at_position(screen, p0), neg)

and observation_result(at_position(self, P:POSITION), neg)
then to_be_performed(goto(P:POSITION))

if observation_result(at_position(self, P:POSITION), pos)
and observation_result(at_position(food, P:POSITION), pos)
then to_be_performed(eat)

4 Different Types of Properties

As an example of our verification method for dynamic
systems the behaviour of the system present&ation3
is to be verifiedfor situationsin which the food is visible

decisions.BecauseS0 dependson correct agentbehaviour
and not just on correatorld behaviour,it is a propertyof

the entire systemS. The correctreasoningof the agentis

described with four properties.

M 1. Effective moving decision making of M: decisions of
M to move are made if the circumstances are observed to be

appropriate.
VO e Traces(M) Vpe {pl,p2} Vt:
state( M, t, input(M)) =
observation_result(at_position(screen,p0), neg) A
observation_result(at_position(food, p), pos) A
observation_result(at_position(self, p), neg)

=
3t >t state(M, t', output(M)) E to_be_performed(goto(p))

This property statesthat the agentdecidesto perform a
goto-actionwhenit observesthat the screenis gone and
that there is food at a position different from its own.

M 2. Justified moving decisions of M: decisions of M to
move are only made if the circumstances are observed to be

appropriate.
VO e Traces(M) Vpe {pl,p2} Vt:
state(OM, t , output(M)) E to_be_performed(goto(p))

=

Jt'<t: state(M, t', input(M)) =
observation_result(at_position(screen, p0), neg) A
observation_result(at_position(food, p), pos) A
observation_result(at_position(self, p), neg)

This propertystatesthat the agentonly decidesto move
when there are good reasons, these beinglikencef the
screen and the presence of the food somewhere else.

M 3. Effective eating decision making of M: decisions of
M to eat are made if the circumstances are observed to be

appropriate.

at one of the positions; the proof obligation is that the food"Me TracesM) ¥ p < {pl, p2} Vi:

will disappearafter the screenis gone (called screenrise).
This is formalised in the following property:

S0. The food has disappeared some time after screenrise:
VM e Traces(S)IEW Vpe {pl,p2} Vt:
state( M, t, output(EW)) E —at_position(screen, p0) A
at_position(food, p) A

Vi'<t: state(OM, t", output(EW)) = at_position(screen, p0)

=
Ft>t:  state(M t', output(EW)) E —at_position(food, p)

A heuristic to prove properties like this oneagsmakeuse
of a combinationof top-down and bottom-up approaches.
Top-down: With this property in mintbrmulate properties
for the sub-components (behavioural propertas)for the
co-operatiorbetweenthose sub-componentgenvironment
and interactiorproperties)that might be useful. Formalise
them, and then usebottom-upstrategyto seewhetheror
not these properties are enough to proventlaé property.
In this case, properties of the agent, of the world, otthe
operation between agent and world are in order.

4.1 Agent Properties

Property SO is phrased in terms of the component tB&t,
is responsible for the maintenance of the correct stateeof
world. Therefore,the property describescorrect behaviour
purely in terms of world situations. But to obtain this
behaviour,the agent componenthas to make the right

state( M, t, input(M)) =
observation_result(at_position(food, p), pos) A
observation_result(at_pos ition(self, p), pos)

=
Fe>t:  state(M, t', output(M)) E to_be_performed(eat)

The above property formaliséisat the agentdecidesto eat
when it observes that it is with the food.

M 4. Justified eating decisions of M: decisions of M to eat
are only made if the circumstances are observed to be
appropriate.
VM e TracesM) V't Ip e {pl, p2}:

state( M, t, output(M)) E to_be_performed(eat)

=

Jt<t: state(M, t', input(M))
observation_result(at_position(food, p), pos) A
observation_result(at_position(self, p), pos)

This last agent-property states that the agent only decides

eat when it observes that it is with the food.

The agent componentM is a primitive component;
these properties can Ipeovendirectly from the knowledge
baseof the agentcomponent(seeSection 3.3.2), without
using other properties.Such propertiesare called basic
properties. As can be seenby comparingthe knowledge
base of the agent with the properties, the properties
formalise the correct functioning of the rules of the
knowledgebasein the reasoningprocess.For eachrule,
there is a property stating that the conclusion wilblkaevn



if the premiseshold, and one property stating that the
conclusion will be drawnly if the premises hold.

In general, properties formalising the correct
functioning of primitive componentsof arbitrary systems
are very similar to the above properties.

4.2 Interaction Properties

The agent and the external world aomnectedhroughtwo
information links, that transfer observation results friw
world and actiongor the world, respectively Propertiesof
information exchange have a general format, vialidevery
system containing links. There are tkinds of properties.
Interaction effectivenessstatesthat information from the
sourceof a link is correctly deliveredat the destinationof
the link some time later, and interaction groundedness
statesthat when particular information is presentin an
interface, corresponding information must have been
presentin the source of one or more links some time
earlier. One example of information exchangewill be
described,namely the information flow to the external
world, with its two properties.Otherinteractionproperties
are analogous.

| 1. Interaction effectiveness from M to EW.

VO e Traces(S) V L e groundliterals(action_info) V't :
state( M, t, output(M)) E L =

Jt>t:  state(M, ', input(EW)) = L

I2. Interaction groundedness of input information of EW:
VO e Traces(S) V L € groundliterals(action_info) V't :

state(OM, t , input(EW)) = L =
It <t: state(OM t', outputM)) = L

Interaction properties are also basic properties.

4.3 System Properties

Some propertiesare neededthat seem to concern one
component,however,in reality dependnot only of the
behaviour of that component, batiso on the behaviourof
the links and components that interact with it (thisaled
its environment). These propertiesare propertiesof the
whole system S.

S9. When the environment of EW is provided with the
necessary observation results, it provides a goto-action:
VO e Traces(S)EW Vpe {pl,p2} Vt:
state( M, t, output(EW)) =
observation_result(at_position(screen, p0), neg) A
observation_result(at_position(food, p), pos) A
observation_result(at_position(mouse, p), neg)

=
3t >t: state(OM, t', input(EW)) = to_be_performed(goto(p))

S10. The environment of EW only provides a goto-action
when the necessary observation results were present:
VO e Traces(S)EW Vpe {pl,p2} Vt:

state(OM, t , input(EW)) = to_be_performed(goto(p))

=

Jt<t: state(M, t', output(EW)) &
observation_result(at_position(screen, p0), neg) A
observation_result(at_position(food, p), pos) A
observation_result(at_position(mouse, p), neg)

S11. When the environment of EW is provided with the

necessary observation results, it provides an eat-action:
VO e Traces(S)EW Vpe {pl,p2} Vt:

state( M, t, output(EW)) =
observation_result(at_position(food, p), pos) A
observation_result(at_position(mouse, p), pos)

=
F'>t:  state(M, t', input(EW)) E to_be_performed(eat)

S12. The environment of EW only provides an eat-action

when the necessary observation results were present:
VO e Traces(S)EW V't dpe {pl,p2}:
state( M, t, input(EW)) E to_be_performed(eat)

=

3t <t:  state(M, t', output(EW)) =
observation_result(at_position(food, p), pos) A
observation_result(at_position(mouse, p), pos)

4.4 Properties of the External World

Even thoughthe world is dynamic,this doesn’tmeanthat
everything is possible. Strange events should not ofaur:
example, the agent never ever disappears anageaetonly
moves accordingo the actionsdecidedupon by the agent.
These properties are formalised as follows:

W17. The mouse is always somewhere:
VO e Traces(EW) Vt 3 pe POSITION:
state( M, t, output(EW)) = at_position(mouse, p)

W26. When the mouse changes position, there must have

been a goto-action on the input of EW:

VO e Traces(EW) V p e POSITION V q#p e POSITION V't :
state( M, t, output(EW)) E at_position(mouse, q) A

Jt'<t: state(M, t', output(EW)) = at_position(mouse, p) =

"<t state(M, t", input(EW)) = to_be_performed(goto(q))

Furthermore, the observation results provided by the
external world should correspond to the current world state.

W21. Observations from EW were facts:
VYO e Traces(EW) ¥V A e groundatoms(world_info) V' t :
(state(OM, t, output(EW)) = observation_result(A, pos)

=
Jt'<t: state(M, t', output(EW)) E A) A
(state(OM, t, output(EW)) = observation_result(A, neg)

=
Jt'<t: state(M t', output(EW)) E —A)

Finally, some assumptions on the behaviour of the externe
world are necessary. Since, the gisalo provethe system
correctfor situation 2, the externalworld is assumedto
behaveaccordingto situation2, i.e., food doesnot move
around,food doesnot disappeamunlessit is eaten,food
remainsvisible at all times and the mouseis initially at

p0. This last property is given:

W 18. Initially, the mouse is at pO:
VM e Traces(EW) :
state( M, 0, output(EW)) E at_position(mouse, p0) A
—at_position(mouse, p1) A
—at_position(mouse, p2)

Propertiesof the externalworld are not influencedby the
agent. In the verification process they are used as
assumptionsto prove the system properties. If in the
system design the external world is tieal physicalworld,
the propertieshaveto be obeyedby the world in order to
obtain the desired system behaviduarcaseof a simulated
external world, containing several sub-componentsthe
properties can be proven from properties at a deeperdével
abstraction.



4.5 Phase Properties

The properties in Section 4.1 through 4.4 are usgufove
the main property SO. Howevehe proof still needsmore
structure in ordeto be easily comprehensibleln this case
phasing is used?ropertyS0 spansall of the executionof
the agentsystem,from time 0 when the screenwas still
down, until the disappearancef the food. A number of
milestonescan be distinguishedin the behaviour of the
system,suchas screenrisethe arrival of the agentat the
position of the food, and the disappearancef the food.
Thesemilestonesdivide the processingof the systemin
three phases.Each phaseis formalised by one or two
properties that eachcanbe proven from other properties,
like those in Sections 4.1 through 4.4. The phase
properties together are sufficient to prove the neioperty
SO0 of the system.

The first phaseof the processis the phase before
screenrise. In this phase, the agent is at p0, as S1 states:

S1. The mouse is at pO until screenrise:

VM e Traces(S)EW V t:

state( M, t, output(EW)) = —at_position(screen, p0)
state( M, t", output(EW)) = at_position(screen, p0)

A
Vi'<t:

=
Vi <t: state(OM, t', output(EW)) = at_position(mouse, p0)

The next phaseis the phasebetweenscreenriseand the
arrival of the agenat the position of the food. This phase
is described by properties S2 and S3. Property S2
formalisesthat the agentactually will arrive at the spot
where the food was some time before ands8esthat the
food is still there when the agent arrives.

S2. After screenrise, the mouse will eventually arrive at
the position of the food some time:
VM e Traces(S)IEW Vpe {pl,p2} Vt:
state( M, t, output(EW)) E —at_position(screen, p0) A
at_position(mouse, p0) A
at_position(food, p) A
Vi'<t: state(OM, t", output(EW))  at_position(screen, p0)

=
Jt>t:  state(OM, t', output(EW)) E at_position(mouse, p)

S3. When at time ¢’ the mouse has just arrived at the
location where the food was at some time t before ¢, then
the food has stayed at thislocation fromt to t"
VO e Traces(S)IEW Vpe {pl,p2} vVt , Vi<t :

state( M, t, output(EW)) = at_position(food, p) A

state( M, t', output(EW)) E at_position(mouse, p) A
Vi [t<t"<t' = state(OM, t", output(EW)) B at_position(mouse, p) |

=
V[ t<t" <t = state(O t" , output(EW)) E at_position(food, p) ]

The last phase is the periafter the arrival of the agentat
the location of the food; S4 statesthat the food will be
eaten at some time in this phase.

4. The food disappears some time after both the mouse
and the food are at the same position:
VM e Traces(S)IEW Vpe {pl,p2}Vt Vt <t:
state( M, t, output(EW)) = at_position(mouse, p) A
at_position(food,p) A
Vi [t St"<t = state(OM, t", output(EW)) ¥ at_position(mouse, p) A
at_position(food, p) ]

=
J" >t state(M t" , output(EW)) F —at_position(food, p)

5 Verification of Top Level Properties

Verification of the propertiesin Section 4 follows the
structureof Section4. The propertiesof Sections4.1 and
4.2 are basic properties. Their prooktsaightforwardfrom
the knowledge bases and information links in the
specification of the system arfisbm the semanticof such
a specification.

5.1 Verification of the System Properties

The proof trees of théour propertiesof Section4.3 areas
follows:

S9: For EW, prope
observations cau
a goto-action

13: Interaction effectivene: M1: Correct moving I1: Interaction effectivenes
fromEWto M deciding of M from M to EW

S10: For EW, a goto-action

is caused by proper
observations

12: Interactiongroundedne M2: Justified moving 14: Interaction groundedne
of input info of EW deciding of M of input info of M

S11: For EW, propel
observations cause
an eat-action

13: Interaction effectivene: M3: Correct eating I1: Interaction effectivenes
fromEWto M deciding of M from M to EW

v

S12: For EW, an eat-action
is caused by proper
observations

/

12: Interaction groundednes M4: Justified eating 14: Interaction groundedne
of input info of EW deciding of M of input info of M

Every node in these trees can be proven frorohiigirenin

a straightforward manner.

A line under a leaf property means that this property is
basic. The roman numbers of the trees will be used to refel
to them from other trees.

5.2 Verification of the External World

The propertieof Section4.4 areassumptionn the first
abstraction level. In case afsimulatedworld, they canbe
proven from properties of the next abstraction lelrethis
way, the verification othe externalworld canbe separated
from the verificationof the other partsof the system.The
compositionalityof the systemis exploitedto reducethe
complexity of the verification process.



5.3 Verification of the Main Property and of
the Phase Properties

The proof tree of SO usesthe aboveproperties.The proof
comes down to chaining the phases.A roman number
underneatha leaf in a proof tree meansthat this leaf
property is proven in the tree with that number.

\
S0: The food has disappearer
some time after screenrisi

S1: The mouse is at S2: After screenrise, t
pO before screenri mouse will reach tt
Vil position of the fooc

Vi

53: When the mouse S4: The food disappear
reaches the postition whe  some time after the
the food was earlier, the mouse reaches it
food is still there X

IX

In this sectionthe proof tree of propertyS1 is given and
discussed. The other trees are not given.

VIl

S1: The mouse is at
pO before screenrise

Wi18: Initially, ~ W17: The mous W26: A change in S10: For EW, a W21: Observatior

the mouse is is always position is caused . goto-action were facts
at p0 somewhere by a goto-action in E\ is caused by prop
observations

The proof is dondy induction. The baseis W18. For the

step, assume the agent was at pO before amak isnymore
now. Thenthe agentmust be somewhereelse (W17), so

there has beena goto-action(W26) and thus there must

havebeencertainobservationsarlier (S10). One of these
observations is that the screisngone, andthis must have

been a fact earlier (W21). Contradiction, for screenrise
hasn’t happened yet.

6 Basic Assumptions

In this section somef the more fundamentakssumptions
are discussed. These assumptions are basic settsethat
they haveconsequencesat many placesin the verification
process.The first set of basicassumptionds about the
time structure, discussed Section6.1. The secondset of
basic assumptionsis about the co-ordination of the
generation and execution of successive actidissussedn
Section 6.2.

6.1 The Time Structure

Different variants can be considered for tisteuctures.The
first choiceis that we useincomplete(three-valued)states
(instead of the more commonlisedcomplete(two-valued)
states)to be ableto modelthe absencef information in
an agent. The second choice we midfor linear temporal
models and not for branchingtime models. The main
reasonfor this choiceis that linear structuresare easierto
handle,from a technicalperspective However, it is quite
well possible that ouapproachin principle canbe worked
out for branching time models as well. Ttinird choicewe
made isfor a variantof densetime temporalmodels(e.g.,
based on the non-negative rational or reahbers)and not
for discrete time models (e.g., based on the natural
numbers). Discrete time structures would have the
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advantagehat all processesanbe modelledfrom step to
step, using the next operator, and induction awvee steps
can be performedin proofs. An important disadvantage,
however,is that all eventshaveto be projectedonto the
discrete time scale, which would entaiirere synchronous
approach than desired, and/or a rather elabbraikkeeping
of all eventsat the specific discrete time points. An
advantageof a densetime approachis that asynchronous
events can be modelledin a more natural manner. A
disadvantagenay be that the possibility to use the next
operatoris lost, and induction over time stepscannotbe
used. Because the domain in our case sidgyrinciple has
asynchronougvents,we madethe choice for densetime.
However, we impose an additional constraint on the
temporal models that allow us to do some forms of
induction over courses of events.The constraintimposed
is meantto exclude pathologicalmodelsin which on a
finite time interval, an infinite number of changesis
possible.Roughly spoken,at eachtime point we require

that the state of a component X is always persistent over ¢

interval, in the following sense:

VM e Traces(S) Vi, t'>t:
state(MG, t, X) E ¢ A state(M, 1, X) # ¢
=

Ftl,2,3: t<tl <2< t3<t A

Vi [tl<t"<t2 = state(M, ", X)E O A
22<t"<t3 = state(M, t", X)# ¢ ]

This assumption states that if a chaogeurs,thena time
point exists such that before this time point thereis an
interval in which the situation beforethe changepersists,
and an interval after this time point in which the new
situation persistsfor a while. In (Barringer, Kuiper, and
Pnueli, 1985), for the caseof temporallogic with two-
valued states, the assumptisncalledfinite variability. In
our case,dueto the incompletestatesa variant of this
assumption has to be imposed as well:

VM e Traces(S) Vi, t'>t:
state( M, t, X) = ¢ A state(M, 1, X) E ¢

=

I 2B t<t<2<B<t A

i [11<t"<2 = state(QG ", X) & § A
R<'<B = state(M ", X)E ¢ ]

Thesebasicassumptiondook rathernatural; they exclude
processesn which changescan occur in successionin
arbitrarily small intervals. Moreover, continuouschanges,

such as, for example, in Newtonian mechanics, are exclude

as well. For the casestudy in this paper,whereonly a
small numberof discreteeventscan changethe world, the
assumptionsare reasonable.An advantageis that the
assumptions implythat induction can be performedover a
course of events:in a countablenumber of successive
events the whole dense time frame is covered.

6.2 Co-ordination of Successive Actions

For a human agent interacting with a systeometimest
is not clear whether an action that wakiated alreadywas
performed(invisible effectsor invisible action initiation),
or is still underexecution;especiallyvisitors of Web-sites



experience this often. As long as initiated actionis still
underexecution,initiating a next action may disturb the
processo such an extentthat nothing reasonableesults
(e.g., due tanterferenceof the two actions).Moreover,as

long as the effects of the previous action are not clear to th

agent, itis doubtful whetheran actionthatis chosennext
is justified. In additionto the basicassumptiongliscussed
in Section6.1, a basic assumptionis madeto guarantee
that the interaction betweenagent and external world is

transparent. The agent is assumed to refrain from generati

a new action as long as it has moticedthat the previous
action hasled to the expectedobservable)changesin the
world. Also, until the result of the action is observedby
the agent,thereis no changein the observationswhich
meansthat no eventshappenin the externalworld while
the action is still being executed.In this system, the
assumptiornpertainsto two kinds of actions, namely eat-
and goto-actions.Thesedifferent actionslead to different
observableoutcomes.So, the assumptioris formalisedin
two parts:

VO € Traces(S) V p, q € POSITION V o € OBJECT
Vse SIGNV A #goto(p) VtVL">t:
state( M, t, output(M))  to_be_performed(goto(p)) A
dt <tV [t'<t"<t =
state(OM, "', output(M)) ¥ to_be_performed(goto(p))] A
state( M, " , input(M)) =
observation_result(at_position(self, p), pos) A
V" [t<t" < t" = state(M, t", input(M)) &
observation_result(at_position(self, p), pos)]
=
Vi:[t<t <t"= state(, t', output(M)) F to_be_performed(goto(p)) A
state( M, t', output(M)) ¥ to_be_performed(A)] A
[Ft": <" <t" A state(M, t", input(M)) =
observation_result(at_position(o, q), s) =
Vi:(t<t<t"= state(M, t', input(M)) =
observation_result(at_position(o, q), s))]

VO € Traces(S) V p, q € POSITION V o € OBJECT
Vse SIGNVAzeat VtVL"'>t:
state( M, t, output(M)) = to_be_performed(eat) A
dt <tV [t'<t"<t =

state( M, t"', output(M)) ¥ to_be_performed(eat)] A
state( M, t", input(M)) =
observation_result(at_position(food, p), neg) A

V" [t <" = state(OM, t", input(M))
observation_result(at_position(food, p), neg)]

=

Vi [t<t <t"= state(M, t', output(M)) F to_be_performed(eat) A
state( M, t', output(M)) ¥ to_be_performed(A)] A

[Ft":t<t" < t" A state(OM, ", input(M)) =
observation_result(at_position(o, q), s) =

Vi:(t<t<t"= state(M ', input(M)) =
observation_result(at_position(o, q), s))]

Whether or not this assumptionholds, dependson the
behaviourof the externalworld. Only if actions can be
executedwithout being interrupted by events, it can be
guaranteed that the system behaviour is as desired.

7 Proof Pragmatics

First, in Section7.1, some specific issuesare identified
that resultfrom the dynamicsof the world, and make the
verification processdifficult. Later on, in Section 7.2
heuristics will be discussed that were identifiedvercome
these difficulties.

7.1 Aspects Entailed by Dynamic Worlds

A systemwith a dynamic world has far more possible
behaviours (formalised by traces) thancemparablesystem
with a static world. In the dynamic world, eventshappen
that do not lieinside the rangeof influenceof the system.
The systemcanregistertheseevents,but it doesn’tknow
what to expect. When the wonldould be static, all events
happening were caused bydrestrictedto the system,and
r%his would reduce the complexity of the verification
p%cess.SystemsinteractingWith a dynamic world need
more flexible knowledge that candealwith any situation
arising in the world. The behaviourof thesesystemsis
more diverse, anthereforeharderto describein properties.
The system is reacting to situations occurringhi@world.
So, in propertiestherewill often be conditions describing
the situations for which the properties hold. This
considerablycomplicatesthe formalization of the system
behaviour.

As a natural consequencethe proving processalso
becomes mor@ntricate. Using a propertyis only possible
when its conditions are fulfilled. When proving that
somethingholds at sometime t, it is very well possible
that the conditions of the property yawantto usereferto
a time point earlierthant. You arethen forcedto “prove
backwardsthat thoseconditionsheld earlier,and this can
be a lot of work. Especiallywhen the basic assumptions
introduced in Section 6.2boutco-ordinationof successive
actions are not fulfilled, a lot of actions mhbg initiated in
the pastandstill aredueto have their effects. Thereis a
dangerthat you are regularly doing retrospectionin a
branchingtime past, to see whether all possible pasts
satisfy some conditions, which may lead tcoanbinatorial
explosion of histories. This may seem strange,because
usually the future idranching,uncertainand unpredictable
asit is. But in a dynamic system, there can be many
scenarioghat have causedhe currentsituationas well as
many scenariosto follow the currentpoint. One of the
reasondo introducethe basicassumptionof Section 6.2
was this problem of exploding histories.

7.2 The Proof Heuristics Identified

During the verification processthe following heuristics
were identified:

e identify a number of phases of the processand
milestones reached after these phases

For the examplesystem phasesare identified in Section
4.5.

» ddfine each of the milestones by pinpointing the
moment of the essential change

This means identification of the statement that holds for the
milestoneand the moment that it startedto hold (i.e.,
before which in a time interval it does not hold).

» designa form of causal chains from one milestoneto
another



It seemsnaturalto reasonin terms of causesand effects.
Something(X) happensbecauseof some reason,and the

designed and futureork involving maintenancendreuse.
In previousexperiencesin compositionalverification of
diagnostic reasoning,information gathering agents, and

reason induces the effect. When there is nothing to cause Xegotiatingagents(describedrespectivelyin (Cornelissen,

then X won’t happen.To find proofs, frequently, causal
chainsweretracedback. Although in our currentway of

formalising using temporal modelsausalrelationscannot
be expressedlirectly, it can be expressedhat something
(X) always happensbefore somethingelse (Y), but this
may not be the sameas sayingthat X is the causeof Y.

Neverthelessthe notion of causality can serve as a
heuristicto find proofs that are expressedising temporal
models.Whetheror not an appropriatenotion of causality
could be formalised by other means remains open.

» useforward or backward induction over chains of events

A numberof times inductionturned out a valuable proof
technique,not induction over time points, but induction
over chainsof events.Both induction to the future and
induction to the past may be useful.

» abgtract fromthe history by assuming all effectsf past
actions have been obtained

This canbe doneusing the basic assumptionsof Section
6.2.

 distinguish differentypes of properties accordingto the
compositional structure

For example,propertieswere distinguishedin (combined)
system properties, (material) world properties, (mental)
agent properties and interaction properties.

» distinguisha separate initial phase, and let time start
after initialisation of the system

Initialisation of the systemis a rather deviant type of
process.f it is not separatecthen many propertiesget
additional conditions that make them less transparent.

8 Interaction between Design and
Verification Processes

A central aim of verification iso explicit the assumptions
under which a system design is appropriat¢h respecto
the requirementsimposed. Another aim is to discover
flaws, in orderto improve the design:the designprocess
and theverification processmay go handin hand.A more
specific interaction between design and verification
processe®ccurswhen a designis improved in order to
supportthe verification process;e.g., to make it more
transparenand more structured and increaseflexibility in
the context of maintenanceand reuse. A gain that is
achievedon theseaspectshowever,may entail a loss on

Jonkerand Treur, 1997; Jonkerand Treur, 1998a; Brazier,
Cornelissen,Gustavsson,Jonker, Lindeberg, Polak, and
Treur, 1998))at somepoints designshavebeenadaptedo
support transparency and reusability of verification.

In this respect, in the example discussed in paiser,a
point of discussionis whetherthe interface of Ew should
represent thevorld state(choicel), or shouldbe restricted
to actionsand observatiorresultsonly, therebyhiding the
world statewithin Ew (choice2). For the exampledesign
as such, the direct informati@boutthe world stateis not
used (only in thdorm of observatiorresults),so choice?2
would be possible.However,then the verification process
would haveto take into accountthe internal structure of
Ew. Choice 1 has been made, because therpitgsibleto
abstractfrom the internal structure of Ew, and thus it
supports reuse of the verification proof, for different fillings
of Ew, either as the real world or as a simulated world.

9 Discussion

One of the centraldifficulties in verification of real world
systems is the complexity dlie verification processboth
for humans and automated verifiers. Especially, for
verification of dynamicpropertiesof a system, the search
spacefor propertiesand proofs is often enormous.Some
approaches have been put forward to handle this
complexity, one of which, compositional verification,
structuregproofsaccordingto different processabstraction
levels; cf. (Cornelissen, Jonker and Treur, 1997; Joaher
Treur, 1998a). Using this method, the compositional
system structure plays a heuristic role in finding the
properties and proofs; actually the search spacerngposed
of a numberof smaller subspacesThis casestudy of an
agentactingin a dynamicworld, describedin this paper,
aims at identification of more detailedproof structuresand
heuristics for multi-agent systems withéndynamicworld.
However, at least some of these structures and heuristics &
expectedo be more generallyapplicable which will be a
topic of future research.

The properties proven for this system clearly are
domain-dependent. This ®th a strengthanda weakness:
though the desired system behaviour can be precisely
expressedising thesepropertiesthey are not immediately
reusable foother systems.But for otheragentsystemsin
dynamic domains, many properties (for example, those
relatedto actionsandtheir effects) will be similar. These
properties only need to be adjusteda new domain.Also,
there are classes of properties thtessentiain verifying
every multi-agent system. For example, the basic
properties of primitive components and links have a genere
format. Also, by identifying heuristics to find and
formulate the appropriate properties, gystem-dependency

other aspects; e.g., the proofs may become larger if they amanbe alleviated.As an instanceof this, the heuristic of

made morecompositional,dueto the explicit treatmentof
the interaction stepetweencomponentsA trade-off may
occur betweenaspectgelatedto the currentsystemthat is

causal chaining cabe usedto semi-automaticallygenerate
properties. Future researchwill take these issues into
further consideration.



The results obtained in this castidy canbe a starting
point for the development of an interactive verifienvaify
dynamic propertiesin which it is possible to explicitly
express proof heuristics of the type as identified.
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