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Abstract
We propose a representation scheme for the declarative formalization of heuristics based on the situation
calculus and circumscription. The formalism is applied to represent and reason about heuristics for the
blocks world. It is demonstrated that the particular use of circumscription proposed allows reasoning about
the behavior of declarative formalizations of heuristics of the sort described in this paper. Finally, an
advice taking scenario is presented to illustrate elaboration tolerance and potential applications to implement
interesting reflective behavior.

1 Introduction

Strategic knowledge has traditionally been specified using procedural programming languages or dynamic logic
[5] [8]. This paper proposes a representation scheme for the declarative formalization of heuristics based on the
situation calculus [22] and circumscription [14] [16].

The idea of representing heuristics as sets of action selection rules [4] is explored. An action selection rule
is an implication whose antecedent is a formula of the situation calculus, and whose consequent may take one
of the following forms: Good(a, s4,s), Bad(a, sy, s) or Better(a,as, s4,s). Action selection rules are interpreted
as follows: if the conditions of the antecedent hold, then performing action a at situation s is good, bad or better
than performing action ay for the purpose of achieving the goal described by situation s, .

The following action selection rules describe some heuristics for moving blocks in order to solve planning
problems in the blocks world: (1) If a block can be moved to final position, this should be done right away; (2)
If a block is not in final position and cannot be moved to final position, it is better to put it on the table than
anywhere else; (3) If a block is in final position?, do not move it; (4) If there is a block that is above a block it
ought to be above in the goal configuration but it is not in final position (tower-deadlock), put it on the table. A
consistent set of action selection rules defines a particular strategy.

(1) -—Holds(Final(x,S,),s) A Holds(Final(z,S,), Result(Move(z,y), s)) = Good(Move(z,y), Sy, s)

(2) —Holds(Final(z,Sy),s) AN -3zHolds(Final(z, Sy), Result(Move(z, z),s)) Ay # Table —

Better(Move(z, Table), Move(z,y), Sy, s)
(3) Holds(Final(z,S,),s) = Bad(Move(z,y), Sy, s)
(4) Holds(Tower-deadlock(x, Sy), s) = Good(Move(z, Table), Sy, s)

Axioms 5 and 6 specify how a set of action selection rules describing a particular strategy should be inter-
preted in terms of action selection. The predicate Better establishes a partial order among a set of actions with
respect to a given goal and a particular situation. In order to select always the best possible action, axiom 5
assumes that an action is bad for a given goal and a particular situation if there is a better action for the same
goal and situation.

(56) Better(ai,as,Sy,s) = Bad(az, Sy, s)

! The situational argument sg in the predicates Good, Bad and Better allows reasoning about multiple goals. For example, by
substituting the variable s, by two different constants Sy, and Sy, we can express the fact that performing action a at situation s
is good for the purpose of achieving the goal described by situation Sy, but bad for achieving the goal described by situation Sy, .
In the rest of the paper, we assume that there is a single goal situation represented by the constant Sg.

2The concepts of final position and tower-deadlock will be defined formally later on.



Axiom 6 characterizes the situations that can be selected according to a particular strategy (such as that
described by axioms 1 to 4). The extension of the fluent® selectable characterizes the behavior of a program

that uses such a strategy by describing the sequences of actions that can be taken by that program®.

(6) Selectable(s) <> s = So V Isya(Selectable(si) A —Achieved(Sy, s1) A Prec(a,s1) A s = Result(a, s1)A
(Good(a, Sg,81) V (-3bGood(b, Sy, s1) A —~Bad(a, Sq, $1))))

A situation is selectable iff: (1) it is the initial situation; or (2) it is the result of performing a good action in
a selectable situation at which the goal has not been achieved®; or (3) it is the result of performing a non-bad
action in a selectable situation at which the goal has not been achieved and for which there are no good actions.

The declarative formalization of a strategy as a set of action selection rules is interpreted non-monotonically.
Circumscription is applied to minimize the extensions of the predicates good and bad, i.e., to jump to the
conclusion that an action is “not good” or “not bad” unless it can be deduced from the set of axioms describing
the strategy that it is so. The extension of the fluent selectable (defined by axiom 6) depends on conclusions that
need® to be derived from such a minimization, namely the facts that an action can be proved to be “not good”
or “not bad” for a given goal and situation. Therefore, the projection of a strategy (i-e., the set of situations that
can be selected according to it) depends non-monotonically on the declarative formalization of such a strategy.

This particular use of circumscription has some representational advantages. It allows us to describe strate-
gies: (1) succinctly, since negative information (i.e., which actions are not good, not bad or not better than
others) need not be specified; (2) according to a least commitment strategy, in which it is not necessary to state
that an action is good, bad or better than another unless it is known for sure; and (3) incrementally, because
the application of circumscription is designed so in such a way that the conclusions about the selectability of
different situations adapt automatically to the addition of consistent heuristics that may become available later
on.

In the following sections, we show how the ideas outlined above can be applied to formalize and reason about
heuristics for the blocks world. The strategies formalized in the paper describe different algorithms for solving
planning problems in the elementary blocks world domain [3]. Section 2 summarizes a very elegant and simple
solution to the problem of reasoning about action described in [15]. Section 3 proposes a nested abnormality
theory [11] that characterizes the behavior of the strategy described by axioms 1 to 4. This theory is generalized
into a class of nested abnormality theories that apply circumscription in a particular way that allow reasoning
about the behavior of declarative formalizations of strategies of the sort described in this paper. Finally, an
advice taking [13] scenario is presented in order to illustrate potential applications.

2 A Simple Theory of Action

In [15], John McCarthy proposes a very simple formalization of STRIPS [2] in the situation calculus. The
formalization is as follows. STRIPS is a planning system that uses a database of logical formulas to represent
information about a state. Each action has a precondition, an add list, and a delete list. When an action
is considered, it is first determined whether its precondition is satisfied. If the precondition is met, then the
sentences on the delete list are deleted from the database, and the sentences on the add list are added to it.

We will use variables of the following sorts: for situations (s, s1, ...), for actions (a, a1, ...), and for
propositional fluents (p, p1, ...). Associated with each situation is a database of propositions’, and this gives
us the wif DB(p,s) asserting that p is in the database associated with s. The function Result maps a situation
s and an action a into the situation that results when action a is performed in situation s.

STRIPS is characterized by three predicates: (1) Prec(a,s) is true provided action a can be performed in
situation s; (2) Delete(p,a,s) is true if proposition p is to be deleted when action a is performed in situation s;

3A fluent is a function defined on situations [22]. Selectable(s) is a propositional fluent, that is, a fluent whose possible values
are true or false.

4If we assume the existence of an initial situation Sp, the problem of determining the sequences of actions that can be selected
according to a particular strategy is equivalent to the problem of determining the situations that are selectable for that strategy.

5We define Achieved(sg,s) and Prec(a,s) formally later on. A situation s achieves the goal described by another situation sg4
if all the conditions (propositional fluents) that hold at sy hold at s as well. Prec(a,s) is true if action a can be performed at
situation s.

SNotice that action selection rules do not allow negations of the predicates good, bad and better on their consequents. Therefore,
it is not possible to infer negative information about these predicates by classical deduction.

"In the paper, we use the expression “propositional fluent” and the word “proposition” in order to refer to the corresponding
reified formula.



(3) Add(p,a,s) is true if proposition p is to be added when action a is performed in situation s. STRIPS has the
single axiom

(7) DB(p, Result(a, s)) +» (Prec(a, s) A (Add(p,a,s) V (DB(p, s) A ~Delete(p, a, s))))V
(=Prec(a,s) AN DB(p, s))

The following example [15] illustrates how this formalization of STRIPS can be used to reason about action
in the blocks world. The variables z, y and z range over blocks. The constants for blocks are A, B, C, D, E, F,
and Table. The one kind of propositional fluent is On(z,y) describing the fact that block z is on block y. The
one kind of action is Move(z,y) denoting the act of moving block z on top of block y. We assume uniqueness
of names for every function symbol, and every pair of distinct function symbols®. The initial situation Sy is
described by axiom 9. The precondition, delete and add lists of Move(z,y) are characterized by axioms 10, 11
and 12, respectively.

(8) h(E) # g(§) A (h(Z) = h(§) = T =17)
9) DB(p, So) < Azy(p = On(z,y) A ((x = ANy =B)V (x = BAy=Table)V
(r=CAy=E)V(xz=DAy=Table)V(zx=EANy=D)V (x=FAy="Table)))

(10) Prec(a, s) + zy(a = Move(z,y) A~DB(On(z,y),s) A x # Table A & # yA
(y # Table » Vz—~DB(0n(z,y),s)) AVz~DB(0On(z,x), s))

(11) Delete(p,a, s) «+ zyz(p = On(z,2) Aa = Move(z,y) Nz # y)
(12) Add(p,a,s) < Jzy(p = On(z,y) A a = Move(z,y))

For example, using axioms 7 to 12 we can prove that?.

DB(p, Result({ Move(A, Table), Move(C, B), Move(A, C)}, So)) < Jzy(p = On(z,y)A
(z=AANy=C)V(z=BAy="Table)V(x=CAy=B)V
(t=DAy="Table)V(x=EANy=D)V(xz=FAy="Table)))

The atomic formula Holds(p, s) asserts that the value of p at situation s is true. The propositional fluents
that are included in the database of associated with a situation s (i.e., the fluents of the form On(z,y) for
z,y € {A,B,C,D, E, F,Table}) play the role of a coordinate frame, in the sense that specific configurations of
blocks!® can be described by combinations of values of these frame fluents [22] [9].

(13) Frame(p) + Jwz(p = On(w, z) A ( V (w=ec1 Az =1c)))
¢1,62€{A,B,C,D,E,F,Table}

In order to interpret action selection rules, such as axioms 1 to 4, in terms of the theory of action described
by axioms 7 to 13, we need to establish a connection between what holds at a situation, and what is in the
database associated with that situation. The following axiom does so by asserting that a frame fluent holds at
a particular situation, if and only if it is in the database associated with that situation.

(14) Frame(p) — (Holds(p,s) +» DB(p,s))

The expression s < s; means that s; can be reached [23] from s by executing a non-empty sequence of
actions (s < s1 is an abbreviation for s < s; Vs = s1) 1L Axiom 16 introduces domain closure assumptions for
blocks, actions and situations. It restricts the domain of situations to those that can be reached from the initial

8The symbols h and g are meta-variables ranging over distinct function symbols; the expressions # and # represent tuples of
variables.

9We use the following notation to abbreviate the description of situations Result({},s) = s, and Result({all},s) =
Result(l, Result(a, s)), where [ is a sequence of actions (i.e., sequences of actions are applied from left to right).

10The symbols ¢; and ¢y are meta-variables ranging over block constants.

1 The distinction between Achieved(Sy,s) (axiom 23) and reachable < (axiom 15) is crucial for understanding the role of the
goal situation Sy in the formalization. The fact that axiom 15 implies that the goal situation Sy is not reachable from the initial
situation So does not imply that the planning problem is not solvable. When the program selects an action (see axiom 6 defining
the fluent selectable), it tries to find a situation reachable from the initial situation at which the goal is achieved. That is, a situation
that satisfies the conditions imposed on the goal situation. In this sense, we could say that the role of the goal situation S, is
purely descriptive, as far as this paper is concerned.



situation Sp or from the goal situation S,. Finally, axiom 17 of induction allows us to prove that a property
holds for all the situations that can be reached from a given situation.

(15) Vs(—s < So A —s < Sy) AVassi(s < Result(a, s1) <> Prec(a,si) As < s1)
(16) Ve(t=AVz=BVzx=CVz=DVz=EVz=FVx=Table)A
Va( \/ a = Move(ci,c2)) AVs(So < sV .S, < s)

c1,c2€{A,B,C,D,E,F,Table}
(17) VP(P(s) AVsia(s < s1 A P(s1) A Prec(a,s1) — P(Result(a,s1))) = Vsa(s < sa = P(s2)))

We also use a number of derived fluents, such as clear, final, above, tower-deadlock, terminal, and achieved,
which are partially'? defined in terms of the frame fluents.
(18) Holds(Clear(z),s) +» ¢ = Table V ~JyHolds(On(y, x), s)
(19) Holds(Final(z,Sy),s) < (Holds(On(z,Table), s) A Holds(On(z,Table), S,))V
dy(Holds(Final(y, Sy),s) N Holds(On(z,y),s) A Holds(On(z,y),Sy))
(20) Holds(Above(z,y),s) + Holds(On(z,y),s) V 3z(Holds(On(z, z),s) A Holds(Above(z,y), s))

(21) Holds(T ower-deadlock(z, Sy), s) <+ ~Holds(Final(x,Sy), s)A

Jy(y # Table A Holds(Above(x,y), s) A Holds(Above(z,y), S;))
(22) Terminal(s) +» Selectable(s) A ~JaSelectable(Result(a, s))
(23) Achieved(S,, s) > Vp(DB(p,s) <+ DB(p,S,))

Axiom 24 describes the configuration of the goal situation S;. In general, a problem will be described by
a set of conditions on some initial and goal situations. The particular problem described by axioms 9 and 24
characterizes completely the state of the initial and goal situations, but this needs not be the case. Specifying a
set of constrains on initial and goal situations allows defining classes of problems, instead of particular instances.
Such constraints can be used then to reason about the behavior of different strategies on classes of problems.

(24) DB(p,S,) < Jzy(p = On(z,y) N((x =AANy=C)V (z = BAy = Table)V
(x=CAy=B)V(z=DAy=Table)V(x=EAy=D)V (z=F Ay =Table)))

3 Reasoning about Heuristics

The formulas presented so far allow us to prove that some actions are good, bad or better than others for a given
goal and a particular situation. But we aren’t still able to decide which situations are selectable according to a
particular strategy. Action selection rules do not give us complete information. They don’t tell us which actions
are “not good”, “not bad” or “not better” than others. In order to interpret them in terms of action selection
(using axiom 6), we need to be able to jump to the conclusion that an action is “not good” or “not bad” unless
the heuristics known so far (axioms 1 to 4) imply that it is so. This incompleteness of our formalization is also
one of its main advantages, because it allows us to refine the problem solving strategy of a program by simple
additions of better heuristics. We illustrate this idea with an advice taking scenario in section 4.

Formula 25 describes a nested abnormality theory that characterizes the behavior of the strategy described
by axioms 1 to 4 when it is applied to solve the problem described by axioms 9 and 24. That is, it allows us to
determine what situations can be selected according to the strategy. Let X be the conjunction of the universal
closures of the formulas 6 to 24.

(25) %, {Better, min Bad : 5, {min Good : 1,...,4}}

The expression 25 describes a nested abnormality theory in which circumscription is applied in the following
way. The predicate Good is circumscribed with respect to the universal closures of the axioms defining the
strategy of the program (axioms 1 to 4). The predicate Bad is circumscribed with respect to the result of the

12 Axioms 19 and 20 are not explicit definitions of final and above, because these symbols occur both on the left and right hand
sides. But these formulas are strong enough for deriving both positive and negative ground instances of Holds(Above(z,y),s) and
Holds(Final(r,Sy ),s) from the positive and negative ground instances of Holds(On(z,y),s) we can derive from axioms 7 to 17. [1]
points out that it is possible to define on in terms of beneath (beneath(y,z) = above(z,y)), but it is not possible to fully define
beneath in terms of on in a first order theory.



circumscription described above and the universal closure of axiom 5, which contributes to the definition of Bad
with positive instances of Better. We need to let Better vary, because minimizing the extension of Bad may
affect (through axiom 5) the extension of Better. The latter circumscription, which characterizes the extensions
of the predicates Good and Bad, is conjoined with X, which describes the theory of action (axioms 7 to 23), the
specific problem reasoned about (axioms 9 and 24), and the mechanism of action selection (axiom 6).

Mathematically, circumscription is defined as a syntactic transformation of logical formulas. It transforms
an axiom set A into a stronger axiom set A*, such that the models of A* are precisely the minimal models of
A. Circumscription is in fact a family of syntactic transformations, because several minimality conditions can
be used in conjunction with the same axiom set A. The expression CIRC(A; P; Z) is defined by the following
second order formula.

A(P,Z) A —3pz(A(p,z) Ap < P)

The models of CIRC(A; P; Z) are the models of A in which the extent of P cannot be made smaller at the
price of changing the interpretation of the constants Z. Nested abnormality theories (NAT’s) are theories in
which the circumscription operator can be applied to a subset of the axioms, and whose axioms may have a
nested structure with each level corresponding to a further application of the circumscription operator.

In general, it is difficult to use the definition of circumscription directly for proving properties about the
circumscribed predicates, because it requires theorem proving in second order logic. Sometimes, computational
methods can be applied to simplify circumscription formulas (see [10]). Theorem 1 demonstrates that this is
the case for the nested abnormality theory described by formula 25. In particular, it shows that we can rewrite
the result of the circumscription formulas in 25 as a conjunction of two first order logic formulas which have
a particularly simple structure, each of them is an explicit definition of the circumscribed predicates good and
bad.

Theorem 1 The nested abnormality theory described by 25 is equivalent to the second order logic theory
whose axioms are ¥, plus the universal closures of formulas 26 and 27.

(26) Good(Move(x,y),Sy,s) +» (Holds(Tower-deadlock(x, Sy),s) Ny = Table)V
(~Holds(Final(z,Sy),s) A Holds(Final(z, S,), Result(Move(z,y), s)))

(27) Bad(Move(z,y),Sy,s) ¢ Holds(Final(z,S,),s) V (y # TableA
—Holds(Final(z,Sy),s) AN ~3zHolds(Final(z, Sy), Result(Move(x, z), s)))

Proof The characterization of the semantics of NAT’s in terms of second order logic theories including cir-
cumscription formulas and proposition 1 in [11] allow us to prove the equivalence between the following axiom
sets!3.

¥, {Better, min Bad: 5, {min Good : 1,...,4}} =
Y, CIRC(5', CIRC(1',...,4"; Good); Bad; Better)

Now, we use several rules for computing circumscription described in [10]. The first equivalence below can be
proved using formula (19) and proposition 2 in [10]. The second equivalence uses formula (19) and proposition
3 in that paper.

Y, CIRC(5, CIRC(1',...,4"; Good); Bad; Better) =
¥, CIRC(5',3',2',26"; Bad; Better) =
¥, 26/, CIRC(3', Jbetter(5’' A2'); Bad)

Using the equivalence (27) in section 3.2 of [10], we can prove that Jbetter(5' A 2')(better) is equivalent to
the following formula, which does not depend on better.
(28) —Holds(Final(z,S,),s) AN -IzHolds(Final(z, S,), Result(Move(z, 2),s)) Ny # Table —
Bad(Move(z,y), S, s)

131n the following, we denote the universal closure of a formula A by A’.



Finally, predicate completion [10] give us the result of the theorem.
¥, 26', CIRC(3', 28'; Bad) = X%, 26', 27 o

Theorem 1 shows that the nested abnormality theory described by 25 is equivalent to the second order theory
whose axioms are 3, 26 and 27. This means that using theorem proving methods for first order logic!* we can
decide the selectability of any situation with respect to the strategy described by axioms 1 to 4. For example,
we can prove that action Move(A, Table) is selectable at Sy (i.e., Selectable(Result(Move(A, Table), Sp))), but
action Move(C,Table) is not (i.e., ~Selectable(Result(Move(C, Table), Sp))).

The nested abnormality theory described by 25 not only allow us to characterize the behavior of a specific
strategy, it also describes a particular use of circumscription that permits reasoning about declarative formaliza-
tions of heuristics of the sort proposed in this paper. The expression 25(strategy) denotes the nested abnormality
theory described by 25 parameterized for different strategy descriptions'®. The idea is to replace axioms 1 to
4 by other sets of axioms describing different strategies, so that we can reason about the behavior of different
strategies.

25(strategy) = X, {Better, min Bad: 5, {min Good : strategy}}

In particular, formula 25(strategy) allows us to analyze the following properties of a strategy.

Computability Formula 30 permits identifying cycles in the projections of state-based strategies'®. The
expression s < s; means that there is a non-empty sequence of selectable situations that leads from s to s;. A
state-based strategy contains a cycle (axiom 30) if there is a non-empty sequence of selectable situations that
leads from a situation s to a different situation s; with the same associated state (i.e., whose associated database
contains the same formulas as the database associated with s).

(29) Vs(—s < SoA—s < Sy) AVassi(s < Result(a,s1) +» Selectable(Result(a,s1)) As < s1)
(30) Cycle(s, s1) <> s < 51 AVp(DB(p, s) +» DB(p, s1))

A state-based strategy that contains a cycle (i.e., 25(strategy) b 3ss1Cycle(s, s1)) is not computable, because
the action selection mechanism may enter into that cycle and iterate indefinitely. On the other hand, a strategy

such that 25(strategy) allows us to prove that the set of selectable situations is finite (see examples later on) is
clearly computable.

Correctness A strategy is correct iff the goal is achieved in all its terminal situations.
25(strategy) - Vs(Terminal(s) — Achieved(Sy, s))
Quality of the Solutions The following formula allows us to compute the mazimum cost n associated with
a strategyl”.
(31) Maz-cost = n > Is(Terminal(s) A Length(s) = n) AVs(Terminal(s) — Length(s) <n)

Given two correct and computable strategies, we say that the first is better than the second if the maximum
cost of the first strategy is smaller than the maximum cost of the second. The intuition here is that the first
strategy always solves the problem performing a smaller or equal number of actions.

Redundancy Two strategies are redundant iff they produce the same behaviors. That is, the axiom sets
25(strategy-1) and 25(strategy-2) are logically equivalent'®.

MNotice that the only second order axiom in ¥ is an axiom of induction for situations, which we do not need to decide the
selectability of a single situation.

15The expression 25(strategy) can also be parameterized with respect to the problem description (axioms 9 and 24), the theory
of action (axioms 7 to 23), or the mechanism of action selection (axiom 6).

16 A strategy is state-based if whether an action is good or bad for a given goal at a particular situation —selectable— depends
only on what holds at that situation (i.e. the state associated with the situation), and not on what actions have been selected at
previous situations. All the strategies considered in the paper are state-based.

17The length of a situation that can be reached from the initial situation Sp is defined as follows. Length(Result({},So)) = 0
and Length(Result({a|l}, So)) = 1 + Length(Result({l}, So)), where [ is a sequence of actions.

18We apply this definition to compare a strategy with the strategy resulting of adding to it several heuristics. If both strategies
produce the same behaviors, we say that the heuristics added are redundant with respect to the original strategy.



Inconsistency Formula 32 can be used to detect inconsistencies in the projection of a strategy. The formulas
29 to 32 are examples of verification azioms that we add to X in order to reason about the behavior of different
strategies.

(32) Bad(a,Sy,s) & —Good(a, Sy, s)

A strategy is inconsistent iff there is a formula A such that 25(strategy) F A A —A.

4 Taking Advice

We describe a scenario in which a program uses circumscription as described in 25(strategy) to reason about
declarative formalizations of heuristics. The program starts with an empty strategy. As different heuristics are
suggested by the adviser, it considers how they may affect its problem solving behavior, and reacts accordingly.

The scenario tries to illustrate the idea that a program capable of reasoning non-monotonically about
declarative formalizations of heuristics can have interesting reflective behavior [18] [20] [25] [24]. For example,
it can save computational resources by detecting uncomputable or incorrect strategies. It can determine which
of the heuristics is told improve, are redundant, partially redundant, or inconsistent with its current strategy.
It can improve its problem solving strategy by adding action selection rules and axioms describing heuristics
that will improve its behavior, and ignore those that are redundant with its current strategy. It can avoid
inconsistencies, which may cause it to have an arbitrary behavior. It can learn by taking advice [13], and
reflecting on it.

Initially, the advisor suggests to use the following heuristic: If a block can be mowved to final position, this
should be done right away. The program constructs Strategy-1, which is described by axiom 1. It can prove that
the projection of Strategy-1 contains the cycle described in fig. 1. Therefore, it concludes that Strategy-1 is not
computable.

25(Strategy-1) F Cycle(Sy, Result({Move(C, Table), Move(C, E)}, Sp))

The program asks for more advice, instead of trying to apply Strategy-1 to solve the problem. The advisor
proposes a different heuristic: If a block is not in final position and cannot be moved to final position, it is better
to mowe it to the table than anywhere else. The program constructs Strategy-2, which is described by axiom 2
19 The projection of Strategy-2is shown in fig. 1. Strategy-2 is incorrect, because some of its terminal situations
do not satisfy the goal conditions.

25(Strategy-2) + Terminal(Result({Move(A, Table), Move(C, Table), Move(E,Table)}, So))A
- Achieved(Sy, Result({Move(A, Table), Move(C, Table), Move(E, Table)}, So))

The program still needs more advice. The advisor suggests now to consider both heuristics together. The
program constructs Strategy-3, which is described by axioms 1 and 2. The projection of Strategy-3 still contains
a cycle, described in fig. 1.

25(Strategy-3) F Cycle(Result(Move(C, Table), So),
Result({Move(C,Table), Move(E, Table), Move(E, D)}, Sy))

The advisor suggests a third heuristic: If a block is in final position, do not move it. The program constructs
Strategy-4 as the set of axioms 1 to 3. The set of situations that are selectable according to Strategy-4 is finite
(see fig. 1). The program knows the strategy is correct, since all its terminal situations happen to be solutions.
The second order axiom of induction for situations (17) is needed here in order to prove that —Terminal(s)
holds for all the situations not mentioned in the theorem below.

25(Strategy-4) b (Terminal(s) — Achieved(Sy, s)) A (Terminal(s) <>
s = Result({Move(A,Table), Move(C, B), Move(A,C)}, So)V
s = Result({Move(C,Table), Move(A,Table), Move(C, B), Move(A, C)}, So))

19Strategy-2 is defined, in fact, by two action selection rules. The first one is axiom 2, the second is as follows
Holds(Final(x,Sy),s) A Holds(On(xz,Table),s) — Bad(Move(x,y),Sq,s). This rule guarantees that Strategy-2 terminates as
shown in fig. 1. The rest of the strategies that terminate do not need this rule, because it is subsumed by axiom 3.



The advisor suggests a fourth heuristic: If there is a block that is above a block it ought to be above in the
goal configuration but it is not in final position (tower-deadlock), put it on the table. The program constructs
Strategy-5 as the set of axioms 1 to 4. The set of situations that are selectable according to Strategy-5 is finite
(see fig. 1). The program can prove that Strategy-5 is correct. It can also conclude that Strategy-5 is better than
Strategy-4, since it always solves the problem performing a smaller or equal number of actions2C.

25(Strategy-5) - (Terminal(s) — Achieved(Sy, s)) A (Terminal(s) <>

s = Result({Move(A,Table), Move(C, B), Move(A,C)}, So))

The advisor still suggests a fifth heuristic: If a block is on the table but not in final position, do not move
anything on that block.

(33) Holds(On(x,Table),s) AN ~Holds(Final(z,Sy),s) = Bad(Move(z,z), Sy, s)

The program constructs Strategy-6 as the set of axioms 1 to 4 and 33. It can check that the axiom sets
25(Strategy-5) and 25(Strategy-6) are logically equivalent. This means that suggestion 33 is redundant with its
current strategy. Therefore, including axiom 33 in its database will not improve its behavior.

The advisor finally suggests a sixth heuristic: If there is a block that is above a block it ought to be above
in the goal configuration but it is not in final position (tower-deadlock), it is better to move it on top of a clear
block that is in final position and should be clear on the goal configuration than anywhere else.

(34) Holds(Tower-deadlock(z,Sy), s) A Holds(Clear(z),s) AN Holds(Final(z,S,), s)A
Holds(Clear(z),Sy) A z # w — Better(Move(z, z), Move(z,w), Sy, s)

The program constructs Strategy-7 as the set of axioms 1 to 4 and 34. Although axiom 34 describes a
plausible heuristic, it is in contradiction with axiom 4. For example, axiom 4 implies that Move(A, Table) is
good in the initial situation, whereas axioms 5 and 34 imply that Move(A,Table) is bad?!. Using axiom 32,
the program can prove that Strategy-7 is inconsistent.

25(Strategy-7) - Good(Move(A, Table), Sy, So) A ~Good(Move(A,Table), Sy, So)

Therefore, it rejects suggestion 34, because it is inconsistent with its current strategy.

5 Conclusions

We have proposed a representation scheme for the declarative formalization of heuristics based on the situation
calculus and circumscription. The formalism has been applied to represent and reason about heuristics for the
blocks world. It has been demonstrated that the particular use of circumscription proposed allows reasoning
about the behavior of declarative formalizations of heuristics of the sort described in this paper. In particular,
we have seen that the techniques presented are useful to determine the computability and correctness of a
particular strategy (or a class of strategies) with respect to a given problem (or a class of problems). We have
also considered issues involved in updating and composing strategic knowledge from different sources, such as
determining whether a set of heuristics improve, are inconsistent or redundant with a particular strategy (or a
class of strategies). The possibility of reasoning about these issues together with the natural composition of the
declarative formalization of heuristics proposed allow a program to reflect on its own behavior and improve its
problem solving strategy by simple additions or substitutions of sentences, as it has been shown in the advice
taking scenario of section 4. This is, perhaps, the best feature of the language, its elaboration tolerance [17]. The
flexibility of adapting to conceptual changes in the specification of a problem or its solution is a very important
feature that procedural or dynamic logic languages do not have.

20The maximum cost of strategy-5 is smaller than the maximum cost of strategy-4 (i.e., 25(Strategyd) - Maxcost = 4 and
25(Strategy5) - Maxcost = 3).
21 Notice that axiom 34 implies Better(Move(A,F),Move(A,Table),Sg,50)-
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Figure 1: Behavior of different strategies for solving planning problems in the blocks world: (1) Strategy-1 and
Strategy-3 are both uncomputable, since they allow cyclic behaviors; (2) Strategy-2 describes a computable but
incorrect strategy, its unique terminal situation is not a solution; (3) Strategy-4 and Strategy-5 describe two
computable and correct strategies, together with their projections for a particular blocks world problem. It can
be easily observed that Strategy-5 is better than Strategy-4. Remember that the criterion for action selection is
that, in absence of good actions, any action that is not implied to be bad can be selected.
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