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Abstract. A large number of compositional deadlock checking techniques have 
been proposed in order to overcome the state-explosion-problem. These ap-
proaches require all components in a composition to be fully bound. This re-
striction conflicts with the underlying reusability paradigm of component-based 
software engineering, which often requires only parts of components to be re-
used and allows component compositions to be realized by a large set of similar 
component configurations. Accordingly, compositional deadlock checking ap-
proaches are not applicable to component compositions, which can be realized 
with partial bindings. We propose to overcome this problem by i) restricting the 
number of realizations, which have to be verified and ii) removing behavior that 
is not executed due to partial bindings. 

1   Introduction 

Component-based software engineering (CBSE) is a well-established paradigm in 
information system development (especially for distributed information systems), 
which advocates the reuse of components in order to build a set of large and complex 
systems from existing components [21]. However, ensuring that components compo-
sitions are deadlock free is challenging. Deadlocks are a common source of errors in 
systems of concurrent processes as they are common in component-based systems 
[10] because components usually make implicit assumptions about the behavior of 
their environment. When connecting components, their interaction might give rise to 
unexpected deviations and inconsistencies w.r.t. the intended behavior of the system. 
Early verification approaches, like deadlock checking techniques, which are based on 
the specification of components, have become an important tool in CBSE in order to 
detect errors in the interaction of components. Unfortunately, deadlock checking of 
component compositions is subject to the state-explosion-problem, as the concurrent 
nature of component-based system requires the computation of the global behavior. A 
large number of compositional deadlock checking techniques have been proposed in 
CBSE in order to address this challenge. Semmelrock and Majster-Cederbaum [20] 
were able to prove that compositional deadlock checking is within PSPACE for acy-
clic component topologies. 



1.1   Compositional Deadlock Checking Approaches  

Compositional verification generally allows breaking down a verification problem 
into smaller problems. Under certain conditions, a global property is proven by de-
duction from local properties of the components in a composition (cf. [4]). Composi-
tional deadlock checking approaches usually concludes the global deadlock freedom 
of a composition from the local deadlock-freedom of its components. The conditions 
of most compositional verification approaches require very restrictive composition 
principles to allow analyzing the smaller verification problems independently from 
each other. In the case of compositional deadlock checking approaches, these restric-
tive assumptions require all components to be fully bound, i.e. not to have any partial-
ly (cf. for example [1,12]) or unbound ports (c.f. for example [11]). 

Two components are bound if there exists a connection between their ports. The 
components can interact via those connections. If a component has partially bound 
ports, the interaction of these components within a composition cannot include the 
unbound functionalities. Thus, the execution of a component within a specific compo-
sition might only comprise a subset of the full behavior that has been specified for this 
component. However, as compositional deadlock checking approaches only analyze 
small parts of the component’s behavior within a composition, they assume that the 
rest of the composition’s behavior adheres to the specified (full) behavior. 

1.2   Problem: Unrealistic Assumptions 

As the conditions, under which compositional deadlock checking approaches are 
applicable, are based on unrealistic assumptions, the number of component-based 
systems, to which compositional deadlock checking approaches are applicable, is 
limited significantly. Requiring fully bound components conflicts with the underlying 
reusability paradigm of CBSE, which often requires only parts of components or 
component compositions to be reused when defining new systems [1].  

A component composition can for example be instantiated differently. That is, the 
set of components of the composition are configured slightly differently to be used in 
different contexts. The different configurations can for example differ w.r.t. the extent 
to which functionalities of the component composition are needed in a specific con-
text but share a common topology. Usually different component implementations are 
used in different configurations. On the left hand side, Fig. 1 shows an excerpt from 
the CoCoME example [12], which describes the component-based design of a set of 
different trading systems. In the middle and on the right hand side Fig. 1 shows two 
possible configurations of the component composition. While e1 includes only one 
store and therefore does not make use of the functionality to dispatch products be-
tween stores or report on an enterprise level, e2 includes two stores, which are con-
nected to the product dispatcher. In e2 reporting is performed on store and enterprise 
level.  

Consequently, it is desirable to reuse only parts of a component by connecting only 
the relevant functionalities. This, however, will likely lead to unbound or partially 
bound ports, which in turn will cause only a subset of some of the components’ be-
havior to be executed. Currently, compositional deadlock checking approaches are not 
applicable to compositions with partially bound ports, as their restrictive assumptions 
are violated. From this the following problem can be concluded:  

How can a component composition be checked for deadlock freedom, if instanc-
es of the composition can contain partial bindings? 
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Fig. 1. Java/A-CoCoME enterprise composition specification (cf. [12]). 
The remainder of this paper is structured as follows: Section 2 describes the solu-

tion idea in more detail. Section 3 presents related work. Section 4 describes the status 
of the current work and section 5 gives a short summary and outlook. 

2   Solution Idea 

An obvious solution to the described problem is to follow a brute force approach, in 
which all possible configurations with all possible combinations of partial bindings 
are instantiated and checked individually with traditional deadlock checking ap-
proaches. This solution has two problems: 
1. Combinatorial complexity: The possible combinations of partial bindings in a 

composition result in a large space of configurations. Instantiating and verifying 
all possible configurations is not possible due to this combinatorial complexity.  

2. State explosion problem: Each of the instantiated configurations has to be veri-
fied with traditional deadlock checking approaches due to the partial bindings. 
This implies computing the global composition behavior of each configuration 
and then performing the deadlock check on the global state behavior – both, 
which are subject to the state explosion problem.  

So in conclusion, a brute force approach is not a viable option for verifying a com-
ponent composition if configurations with partially bound components can be derived. 
Our solution idea intends to mitigate both problems and is therefore twofold. 



2.1.   Checking Desired Configurations 

The first part of the solution idea intends to restrict the number of all possible con-
figurations to a subset, which actually should be verified. Some functionalities might 
be core to a component composition, and thus it is unreasonable to exclude these 
functionalities in instantiations. In the eShop example depicted in figure 1, a store 
should for example always be connected to a database to allow goods to be purchased. 
Furthermore, there some functionalities can depend on each other in a composition. If 
the product-dispatching component (cf. Fig. 1) is for example not connected, related 
functionalities, like the reporting of statistics on product dispatches will not be rele-
vant for the configuration, either. Thus, on a conceptual level there are dependencies 
between functionalities, which cause some combinations of partial bindings to be 
unreasonable. We propose to constrain the deadlock checking effort to a subset of 
configurations, which respects these dependencies and, is thus most likely to be used. 
All other configurations will be excluded from the deadlock check. 

In software product line engineering (SPLE) variability modeling is a well-
established technique to specify varying properties and qualities of a system (cf. [19]). 
We propose to explicitly model the subset of configurations to be verified by using 
modeling techniques from SPLE. A variability model restricts the variation of a prod-
uct line by defining variation points, variants, and how the variants can be chosen and 
combined. We use the concepts of variability models to specify valid combinations of 
functionalities (and thus partial bindings) of compositions on a conceptual level. The 
main rational for constraining the configuration space of component compositions 
with variability models is that the number of options modelled in a variability model 
will be smaller than the theoretically possible space of possible configurations.  

Limitations of this idea: A limitation of this solution is that it possible combina-
tions of functionality to be anticipated. Thus, it still contradicts the reusability para-
digm to some extend. However, we find that this is a reasonable trade-off, since i) it is 
a step towards relaxing the strict assumptions of compositional deadlock checking and 
ii) we are not focusing on anticipating all combinations by explicitly enumerating 
them but by explicitly stating dependencies and excluding unreasonable (and maybe 
erroneous) combinations. 

2.2   Removing Superfluous Behavior 

The second part of the solution idea intends to make partial bindings in a configu-
ration explicit and remove the behavior, which is not executed because of those par-
tial bindings. If this superfluous behavior is removed from the behavior specifications, 
compositional deadlock checking approaches are applicable to the reduced specifica-
tions. Using the variability model, it can be determined which functionalities have 
been excluded from an instance. Thus, it will be possible to identify partial bindings. 
In order to be able to derive behavior specifications for this configuration, which are 
reduced to the actual executable behavior, the effect of partial bindings and the com-
bination of partial bindings onto the composition’s behavior has to be analyzed.  

We propose to identify and explicit specify these dependencies between partial 
bindings and the behavior of components in a behavior reduction model. Such a mod-
el can then be used to reduce the behavior specifications using existing model slicing 
techniques, where the partial bindings can be used as slicing criteria. Accordingly, 
such a model needs to provide means to relate the absence of functionality in a con-
figuration (using the variability model and structural specification) to parts of the 
behavior specification. Furthermore, the notation needs to be compatible with existing 



slicing techniques. The resulting behavior specifications can then be used as input to 
existing compositional deadlock techniques. Thus, the state explosion problem is 
mitigated for the set of configurations, which is supposed to be verified.  

Limitations of this idea: A risk to the proposed solution is that additional effort will 
be needed to generate the behavior reduction model and compute the reduced specifi-
cations. However, since the reduction model only has to be created once, we work 
under the hypothesis that the high number of derivable instances, in which the reduc-
tion model can be reused and for which the computation and analysis of the global 
state space can be avoided, will outweigh the extra effort. However, an experiment 
will be conducted in order to determine whether this hypothesis holds. 

Fig. 2 shows an abstract sketch of the solution idea. It can be seen that the variabil-
ity model will solely be related to the structural specification of the composition. The 
behavior reduction model is based on the behavior of the individual components and 
uses information from the structural specification as well as the variability model to 
enrich the behavior information. 

 
Fig. 2. Abstract solution sketch. 

3   State-of-the-Art: Compositional Deadlock Checking 

Deadlock-freedom is generally non-compositional: if components are deadlock free in 
isolation, they still might deadlock in a composition due to interactions making it 
challenging to find a sufficient condition to relate global and local deadlock-freedom. 
Existing compositional deadlock checking approaches can be differentiated into de-
ductive and assume-guarantee reasoning approaches as described in the following. 

3.1 Deductive Deadlock Checking  

In summary, most deductive approaches focus on the pairwise behavioral equivalence 
between the behavior of connected components. Under the assumption that the com-
ponents are deadlock free and that the interaction behavior is deadlock free, the analy-
sis of the behavioral equivalence is a sufficient property to guarantee the local dead-
lock freedom of components and thus also the global deadlock freedom. Martens and 
Majster-Cederbaum’s approach [10, 13, 14, 15] checks connected components for 
example pairwise for potential deadlocks. The reachability of those potential dead-
locks is analyzed compositionally. The approach can only deal with tree like topolo-
gies. Although the approach theoretically allows for partial bindings, it is not e able to 
detect deadlocks that occur due to dependencies between several partial bindings.  

In contrast, the approach presented by Aldini and Bernardo [2, 3, 7] also can also 
deal with cycles in arbitrary topologies. It is assumed that every topology can be re-



duced to an acyclic topology by reducing cycles into a new component. While the 
connections between the components are verified compositionally for the non-cyclic 
part, for the cyclic part they have to perform more extensive checks to assure that 
there are no cyclic dependencies between the components causing a deadlock. How-
ever, they avoid computing the “global” behavior of the components involved in the 
cycle by instead analyzing the communications paths within the cycle using a weak 
bisimulation equivalence relation. In contrast to Martens and Majster-Cederbaum 
their approach requires full bindings within a composition. 

Choi and Kim’s approach also assumes full binding of components in a composi-
tion [9]. It is based on controlled composition and abstraction. The approach provides 
a smaller behavior specification of a composite component by removing synchronized 
interaction in a parallel composition and removing the internal behavior of composite 
components via projection abstraction. The verification is performed compositionally 
for each component, whereas the dependencies towards the environment are consid-
ered by explicitly considering/providing drivers that can generate events and stubs 
that consume events. If each component behaves correctly under the assumption of a 
correct environment, the composition is be deadlock free. 

Zeng and Miao [22] also propose an approach that is based on abstraction and 
compositional reasoning. As abstraction and compositional reasoning do not preserve 
deadlock freedom, the authors extend the notion of transitions in LTSs by classifying 
transitions into certain and uncertain transitions. The deadlock detection considers this 
differentiation and is performed using the CEGAR (counterexample guided abstrac-
tion refinement) framework. Even though the approach claims that it is compositional, 
their verification is not as it is based on the parallel composition of the abstractions. 

Hennicker et al. [11, 12] propose an approach, which can compositionally assure 
deadlock freedom of a central component in a star topologies if at most one port of 
that component is behavioral restricted (partially bound). The approach is based on 
I/O transition systems and checks pairwise the behavior at connected ports fro dead-
lock freedom assuming that each component is deadlock free in isolation. The pre-
sented approach explicitly takes into account that components do not necessarily have 
to be fully bound, i.e. that expected behavior is not provided by the connected com-
ponent. Hennicker et al. compute the parallel composition when more than one behav-
ioral restriction is found. However, they only use the central component of the star 
topology and the ports at which behavioral restrictions occurred in the composition. 
Thus, they use the interaction behavior specification to detect behavioral restrictions 
and then directly check for deadlocks in the reduced global state space. 

3.2 Assume-Guarantee Reasoning (AGR).  

The idea of AGR [18] is to verify a component using an artificial environment that is 
based on the assumptions the component has about its environment. Using such an 
artificial environment reflecting the assumptions of a component, allows for an early 
verification of the component. Approaches focusing on how to use AGR for deadlock 
detection assume the parallel composition of two components to be deadlock free if 
the parallel composition of a component and its artificial environment is deadlock free 
and the other component “adheres” to the environment specification [8].  

Chaki and Shina [8] for example propose a compositional deadlock detection algo-
rithm that uses learning-based automated AGR. Their formalism is based on an au-
tomata-theoretic representation of failure traces. The deadlock detection is performed 
pairwise on failure automata and checks for inclusion in the specification language. 
They use an AGR rule, which uses the composition of a failure automaton with its 



assumption specification and then checks that a second automaton is included in the 
language of the assumptions. 

Parizek and Plasil [16] propose several options to generate an artificial environ-
ment using AGR. The possibility to use only a subset of the functionality in the as-
sumption specification enables the partial binding of components but all partial bind-
ings have to be anticipated when specifying the assumptions. 

Bensalem et al. [4, 5, 6] propose an approach for the compositional verification of 
components, which uses inductive reasoning as well as AGR. The approach is based 
on i) component invariants, which are an over-approximation of components’ reacha-
bility sets and ii) interaction invariants, which are global constraints over the states of 
components involved in interactions. The overall algorithm sequentially computes a 
system invariant using the interaction and component invariants. If it cannot be shown 
that the desired invariant holds, a stronger invariant is computed or the calculation is 
stopped with inconclusive output. Like in the approach of Martens and Majster-
Cederbaum, components can be partially reused. However, they do not discuss the 
problems, which could occur due to partial bindings nor is it obvious how the algo-
rithm would be affected. 

Generally, AGR approaches do not make any assumptions about the topology of a 
composition as long as the specified assumptions are satisfied. They allow the as-
sumption specifications to be only a subset of the offered functionalities and thus 
allow partial bindings. However, any partial binding has to be anticipated and existing 
verification approaches do not explicitly check for deadlocks due to missing bindings. 

4   Work in Progress 

The research methodology we use, follows the idea of the design science research 
methodolgy and follows the six-step process model proposed by Peffers et al. [17]. 
The work currently in progress focuses on step 3 „Design and Development“, i.e. on 
developing an approach according to the two solution ideas. The work, which has to 
be performed as part of step 3 can be grouped according to the two core ideas of the 
solution idea as described in the following.  

4.1   Part 1: Restricting the Combination Space  

Step 1.1 Identification of appropiate means to restrict the configuration space. In 
order to restrict the configuration space of a component configuration which can be 
realized with partial bindings, an appropiate modeling notation has to be selected. As 
described in sect. 2, variability modeling as it is used in SPLE shows similarities with 
this objective and has therefore been selected as appropiate modeling means. Due to 
existing reasearch performed in our research group, the proposed approach is based 
on the Orthogonal Variability Model [19]. 
Step 1.2 Identification of variation in component compositions. In order to restrict 
the configuration space, it needs to be understood how configurations can vary and 
which elements of a composition are affected by unused functionality. Furthermore, 
the conceptual dependencies between functionalities need to be taken into account in 
this analysis. Different cases of variation have been identified in this step. 
Step 1.3 Definition of artifact dependencies between the variability model and 
the composition. In SPLE, artifact dependencies describe the relation between devel-
opment artifacts and the variability model and, therefore, determine, which develop-
ment artifacts become part of a derived product [19]. The approach presented here 
also has to define artifact dependencies between the variability model and the compo-



nent composition covering the cases identified in step 1.2. In SPLE a large number of 
approaches exist, which model variability in component compositions. These ap-
proaches distinguish between coarse grained variability (i.e. only the complete 
component can vary) and fine grained varaibility (i.e. single functionalities of a 
component can vary) in the component compositions. The approach proposed by this 
paper adopts a fine grained solution. The artifact dependencies have been specified 
formally extending the formal component model underlying the approach. 

4.2   Part 2: Removing Superfluous Behavior  

Step 2.1 Identification of the affect of partial bindings on behavior specifications. 
In order to remove superfluous behavior it has to be analysed how partial bindings 
can affect the behavior of a component. In this step, different cases have been 
identified, which differentiate between the partial binding of provided and required 
functionalities and which also consider the combination of several partial bindings 
and the implicit propagation of superfluous behavior onto other components. 
Step 2.2 Identification of an appropiate modeling notation for the behavior 
reduction model. In order to allow superfluous behavior to be removed from 
behavior specifciations, an appropriate notation needs to be found for the behavior 
reduction model. Such a notation needs to meet the following requirements: i) it 
should be usable as input to existing model slicing techniques, ii) a relation between 
the variability model and the behavior reduction model needs to be defined in order to 
use the information of the variability model about the absence of functionalities and 
iii) the behavior reduction model also needs to use information from the structural 
specification about ports affected by the absence of functionalities. 
Step 2.3 Definition of an algorithm to identify and remove superfluous behavior. 
Finally an algorithm needs to be defined, which allows an efficient identification of 
all cases defined in step 2.1 while considering the propagation between components 
and which also allows to remove superfluous behavior for a concrete composition. 

5   Summary and Outlook 

The paper motivates and describes a solution idea for allowing compositional 
deadlock checking approaches to be applied to compositions, which can be realized 
with partial bindings. The proposed approach is based on two core ideas: i) restrict 
the number of configurations that can be derived and have to be verified and ii) re-
move behavior that is not executed due to partial bindings.  

The resulting behavior specifications can be used as input to existing composition-
al deadlock techniques. While first results have been achieved in defining the ap-
proach, the next step has to focus on defining the behavior reduction model and defin-
ing the algorithm for identifying and removing superfluous behavior before the ap-
plicability of the approach as well as the runtime experiments can be conducted.  

The applicability of the approach will be illustrated with the CoCoME case study. 
Potential partial bindings will be analyzed for CoCoME and restricted with a variabil-
ity model. An analysis of the number of all possible configurations in comparison to 
the number of restricted configurations will be conducted to demonstrate the useful-
ness of restricting the configuration space. In addition, the performance of the ap-
proach will be evaluated with experiments. These experiments will focus on analyz-
ing the efficiency of the behavior reduction algorithm and compare the performance 
of compositional deadlock checking on reduced behavior specifications to the compu-
tation and analysis of the global state space for each possible configuration. A random 



subset of the derivable configurations of the CoCoME case study will be used as input 
to those experiments. The runtime will be compared to the runtime of traditional 
deadlock checking approaches, which compute the global system behavior using the 
same subset of configurations. 
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