
Hyper Contextual Software Security Management for

Open Source Software

Shao-Fang Wen

Norwegian Information Security Lab

Faculty of Computer Science and Media Technology

Norwegian University of Science and Technology, Norway

shao-fang.wen@ntnu.no

Abstract. Since the turn of the century, open source software (OSS) has

been an active and dynamic research area. OSS development and mainte-

nance are highly distributed processes that involve a multitude of sup-

porting tools and resources. OSS communities use numerous knowledge

sources while working on a certain task to help them secure the software

products. These not only include security incidents statistics and best

practice documents that are published in the open literatures or online

communities, but also social networking tools. This often results in addi-

tional challenges, as not every OSS project member can correlate partic-

ular learned security information with their working context. This posi-

tion paper outlines the security problems in OSS and describes the use of

socio-technical system theory and ontology technologies to capture and

model software security knowledge. Our research aims to develop and

test a hyper-contextual, knowledge-based environment that stores and

process security knowledge to facilitate retrieval in context, and thus al-

lows the non-linearly correlated knowledge between contexts to be iden-

tified and transferred between and among OSS developers and users.

1. Introduction

Open source software (OSS) has become increasingly important and has attracted

developers from both public and private sectors. Open source model, as a radically new

software development model, begins in the mid-90s. Since then, a good deal of software

created by open source model have been widely adopted and used by various industries.

The 2015 Future of Open Source Survey [11] reported that, 78% of companies run

operations on open source, and 55% of respondents said open source delivers superior

security [6]. This reputation can be contributed to community development model in

OSS development and the resulting purview by the “many eyes” of developers world-

wide. Yet, of the 8,000-13,000 vulnerabilities detected annually, about 40% impact

open source software [10]. These vulnerabilities open some of the most critical OSS

Proceedings of STPIS'16

Edited by S. Kowalski, P. Bednar and I. Bider 83

projects to potential exploit: Heartbleed and Logjam (in OpenSSL); Shellshock (in

bash); Venom (in QEMU and OSS hypervisors), and NetUSB (in the Linux kernel).

While both the quantity and severity of vulnerabilities are increasing in OSS, its devel-

opment and maintenance present a unique management and software security chal-

lenges.

OSS development and maintenance take place in a distributed environment, involv-

ing a multitude of supporting tools and resources, integrated in complex and often par-

tially defined workflows and processes [15]. OSS communities use numerous

knowledge sources while working on a certain task to help them secure the software

products. These not only include security incidents statistics and best practices docu-

ments published in the open literatures or online communities, such as Open Web Ap-

plication Security Project1 (OWASP), Build Security In2 (BSI) project and Open

Sourced Vulnerability Database3 (OSVDB), but also social networking tools, such as

group mails, dynamic blogs and wiki systems. Software engineers have these security

resources at their disposal, but this also results in a form of information overload. They

have difficulties correlating particular learned vulnerabilities or security information

with their working context [12]. Identifying security knowledge that are applicable in

a given context can become a major challenge for OSS. The implicit knowledge is often

lost, since it is not captured by today's security management environments. A similar

security case might have been successfully resolved by a different developer using a

solution that other members are unaware of, but if this knowledge is not captured,

stored, and delivered in a context-sensitive manner to the team even the whole commu-

nity, it cannot serve as a “cognitive map” for future problem-solving. If we can capture,

combine and apply this ‘ambient’ (contextual) knowledge into coherent chunks, prim-

ing it when software engineers need it, we can bring OSS security to a completely new

level: a hyper-contextual, active software security management environment that can

provide a collective memory for the communication within the communities. We pro-

pose the notion of Hyper Contextual Software Security Management that stores and

processes security knowledge to facilitate retrieval in context, and thus allows the non-

linearly correlated knowledge between contexts to be identified and transferred

between OSS developers and users.

On the conceptual side, this research is based on socio-technical system theory and

ontology technologies. Software engineering is a multifaceted domain, which stretches

from low-level technical aspects (e.g., source code, operating systems and tools such

as compilers and editors) to organizational and legal concerns (e.g., prescribed process,

1 Open Web Application Security Project (OWASP) is an online community which creates

freely-available articles, methodologies, documentation, tools, and technologies in the field

of web application security. https://www.owasp.org/
2 Build Security In (BSI) is a collaborative effort that provides practices, tools, guidelines, prin-

ciples, and other resources that software developers, architects, and security practitioners can

use to build security into software in every phase of its development.

 https://buildsecurityin.us-cert.gov/
3 Open Sourced Vulnerability Database (OSVDB) is an independent and open-sourced database

which aims to provide accurate, detailed, and unbiased technical information on security vul-

nerabilities. https://blog.osvdb.org/

Proceedings of STPIS'16

©Copyright held by the author(s) 84

https://www.owasp.org/
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Information_security

international standards) to social and cognitive aspects (e.g., communication behavior

and cognitive models) [5]. Providing adaptive support that addresses the security con-

cerns is difficult, due to the different representations and interrelationships that exist in

the context of software engineering and knowledge resources. As Scacchi [13] points

out, the meaning of open source in the socio-technical context is broader than its

technical definition, and includes communities of practice, social practices, technical

cultures, and uses. In this research, we will apply a socio-technical systems perspective

to address the security characteristics in open source phenomenon. Based on the ob-

served socio-technical context, we examine the main factors that were once dispropor-

tionately considered in software security knowledge. Ontology is then used in

knowledge modeling since it’s a good approach to systematically categorize various

concepts and describe their relationships [3]. By capturing knowledge from various

perspectives through ontology population, we can build an extensible, distributed secu-

rity knowledge base.

Our approach lies in explicitly describing and abstracting the security knowledge

that are needed by OSS developers and also other stakeholders in the communities to

successfully perform their particular tasks. This extensible knowledge model not only

includes existing security standards and guidelines, but also their relevance within a

certain development or maintenance context by using knowledge collection through

investigating the behavior of team members while solving similar security events. This

research strives not to propose the adaptation of a new tool or development process, but

rather examine how existing resources can be integrated to implement the next genera-

tion of software security management environments, which is an important contribution

neglected by current researches.

2. Research Goal and Research Questions

The goal of this research work is to develop and test a hyper-contextual, knowledge

–based system that would facilitate open source communities to effectively offer ap-

propriate secured software products. We seek to examine the hypothesis: Hyper Con-

textual Software Security Management can improve security quality of software prod-

uct that are developed, delivered and maintained by open source communities.

To better understand the scope and magnitude of the research goal, four research

studies along with their respective research questions were formulated as follows:

Study-1: Research question 1

At first it is important to identify and establish the magnitude of the real-world situ-

ation, including current practices (tools, knowledge and other resources) used in OSS

communities. When responding to these requirements, research question 1 is split into

two sub-research questions:

RQ1 (a): What are the current issues and challenges facing secure software products

that are developed, delivered and maintained by open source communities?

RQ1 (b): What are the strengths and weaknesses, technical and non-technical, of

software security practices used by open source communities?

Proceedings of STPIS'16

Edited by S. Kowalski, P. Bednar and I. Bider 85

Study-2: Research question 2

After study–1, it is imperative to investigate, identify, and develop software security

knowledge, technical and non-technical, that could appropriately be integrated into the

security knowledge management system. Therefore, the second research question is

formulated as:

RQ2: What contemporary software security information can be contextualized and

formalized into the proposed software security knowledge management system for se-

curing software products in OSS communities?

Study-3: Research question 3

After study-2, which identifies the security characteristics and factors that are appro-

priate, it is necessary to develop a system for formalizing and integrating this security

information into an ontological knowledge model. Therefore, the third research ques-

tion is formulated as:

RQ3: How can proposed software security information, technical and non-technical,

be contextualized and formalized into an integrated ontological model to form a

knowledge management system for securing software products in OSS communities?

Study-4: Research question 4

After study–3, it is necessary to evaluate the proposed system addresses in RQ 3, in

the studied environment. Therefore, the fourth research question is formulated as:

 RQ4: How can the proposed knowledge management system be evaluated to effec-

tively meet the demands for securing software products in OSS communities?

3. The Socio-Technical Framework

In this research, we will make an interpretive inquiry in the context of OSS evalua-

tion using a socio-technical framework provided by Stewart Kowalski [9]. The socio-

technical framework contains two basic models: a dynamic model of socio-technical

changes, called the socio-technical system (see Figure 3-1), and a static one, called the

security-by-consensus (SBC) model or stack (see Figure 3-2). At the abstract level, the

socio-technical system is divided into two subsystems, social and technical. Within a

given sub-system there are further sub-systems. The former (social) has culture and

structures, and the latter (technical) has methods and machines. From the system the-

ory/s point of view, inter-dependencies between system levels make a system adjust for

attaining equilibrium. The process is referred to as homeostasis state. For instance, if

new hardware is introduced into one of the technical sub-systems, for instance, the ma-

chine sub-system; the whole system will strive to achieve homeostasis. This suggests

that changes in one sub-system may cause disturbances in other sub-systems and con-

sequently to the entire system.

Reflecting the static nature of the socio-technical systems, the SBC stack is a multi-

level structure that divides security measures into hierarchical levels of control. The

Proceedings of STPIS'16

©Copyright held by the author(s) 86

social sub-system include following security measures: ethical and cultural norms, legal

and contractual documents, administrational and managerial policies, and operational

and procedural guidelines. Similarly, the technical sub-system consists mechanical and

electronic, hardware, operating systems, application systems, and data. Other aspects

are: store, process, collect, and communication.

In the socio-technical framework, each system interacts with other systems rather

than being an isolated system. Internal and external changes—both social and tech-

nical—will affect system security. Therefore, systematic deployment of security

measures is required. In particular, this framework has been applied to evaluate threat

modeling in software supply chain [1], business process re-engineering [4], and an in-

formation security maturity model [7]. The application of the socio-technical frame-

work to software analysis is an appropriate and legitimate way of understanding the

intrinsic context in open source phenomenon. It provides a way to perform system anal-

ysis through a systemic–holistic perspective [8].

Figure 3-1: Socio-technical model

(Kowalski [9], page 10)

Figure 3-2: The SBC model

(Kowalski [9], page19)

4. Methodology

Since the main goal of this research is to produce an artifact, the design science

appears as an appropriate methodology of our research. Design science research (DSR)

methodology can be conducted when creating innovations and ideas that define tech-

nical capabilities and products through which the development process of artifacts can

be effectively and efficiently accomplished [2, 14]. The design science approach ap-

plied for this study is based on work presented by Vaishnavi and Kuechler [14]. Figure

4-1 represents design science research process model.

Proceedings of STPIS'16

Edited by S. Kowalski, P. Bednar and I. Bider 87

Figure 4-1: Design science research process model

(Vaishnavi and Kuechler [14])

Consequently, research studies and their corresponding research questions that are

linked to the DSR process (steps), are connected to research activities as follows:

 Study–1, RQ 1 (a) (b) links to awareness of the real-world problem step in DSR.

Research activities involves conducting extensive literature review and case-

studies (questionnaires) in the selected OSS communities on various issues re-

lated to software security management for OSS, as well as issues related to se-

curity knowledge learning in the real-world environment.

 Study–2, RQ 2 links to suggestions for a tentative design step in DSR. The study

involved conducting an extensive literature review on various ontological mod-

els, security standards, and best practices. Questionnaires will be prepared,

aimed at gathering OSS stakeholders’ views on proposed security knowledge

model and their respective security requirements control areas, technical and

non-technical.

 Study–3, RQ 3 links to developing the artifact step in DSR. This study will apply

action research strategy to continuously build the artifact and improve its quality

in the context of focused efforts. We repeat the process as a spiral of cycles of

action and research in four main phases: planning, acting, observing and reflect-

ing.

 Study–4, RQ 4 links to evaluating the proposed system step in DSR. This study

will be conducted in the selected OSS communities. Evaluation methods could

be either practical, theoretical or both. Practical evaluation methods include

tests, experiments and analysis. Theoretical evaluation methods include obser-

vations and descriptions. They involve use of qualitative techniques such as

case-study, field-study, informed argumentation and scenario analyses.

Proceedings of STPIS'16

©Copyright held by the author(s) 88

Table 4-1 summarizes the presentation of this section. In the table, the linkage be-

tween research studies, research questions, and corresponding DSR steps and research

activities is given.

Table 4-1: Summary of the research studies, questions and corresponding DSR steps

and research activities

Research

Study

Research

Question
DSR Step Research Activity

Study-1 RQ1 (a) (b)
Awareness of the real-

world problem

Literature review, questionnaires,

physical observation, interview

Study-2 RQ2
Suggestion for tenta-

tive design

Literature review, questionnaires,

physical observation, interview

Study-3 RQ3 Developing the artifact
Action(development), observation,

reflection

Study-4 RQ4 Evaluating the artifact

Practical evaluation: testing, experi-

mental and analytical

Theoretical evaluation: case-study,

field-study, and scenario analyses

5. Conclusions

Given the increased complexity and importance of open source software in today’s

society and an increased knowledge gap between security information available and

security information used and practiced, our position is that new socio-technical tools

and approaches are needed. My position is that hyper contextual software security

management is a means to help fill this gap by bringing the ability to place information

in an appropriate context and to use knowledge in an ever changing global security

environment.

Acknowledgement

The author would like to thank Professor Dr. Stewart Kowalski and Professor Dr.

Rune Hjelsvold of Faculty of Computer Science and Media Technology at Norwegian

University of Science and Technology, who have made contributions to the ideas de-

scribed in this paper.

Reference

[1] Al Sabbagh, B. and S. Kowalski (2013). "A socio-technical framework for threat

modeling a software supply chain". The 2013 Dewald Roode Workshop on Information

Systems Security Research, October 4-5, 2013, Niagara Falls, New York, USA,

International Federation for Information Processing.

Proceedings of STPIS'16

Edited by S. Kowalski, P. Bednar and I. Bider 89

[2] Alan, R. H., S. T. March, J. Park and S. Ram (2004). "Design science in information

systems research." MIS quarterly. volume 28, issue 1, pages 75-105.

[3] Bäck, A., S. Vainikainen, C. Södergård and H. Juhola (2003). "Semantic Web

Technologies in Knowledge Management". ELPUB.

[4] Bider, I. and S. Kowalski (2014). A framework for synchronizing human behavior,

processes and support systems using a socio-technical approach. Enterprise, Business-

Process and Information Systems Modeling, Springer: 109-123.

[5] Brooks, R. (1983). "Towards a theory of the comprehension of computer programs."

International journal of man-machine studies. volume 18, issue 6, pages 543-554.

[6] Hoepman, J.-H. and B. Jacobs (2007). "Increased security through open source."

Communications of the ACM. volume 50, issue 1, pages 79-83.

[7] Karokola, G., S. Kowalski and L. Yngström (2011). "Towards An Information

Security Maturity Model for Secure e-Government Services: A Stakeholders View".

HAISA.

[8] Karokola, G. R., S. Kowalski, G. J. Mwakalinga and V. Rukiza (2011). "Secure e-

Government Adoption: A Case Study of Tanzania". European Security Conference.

[9] Kowalski, S. (1994). "IT insecurity: a multi-discipline inquiry." PhD Thesis,

Department of Computer and System Sciences, University of Stockholm and Royal

Institute of Technology, Sweden. ISBN: 91-7153-207-2.

[10] Martin, B., C. Sullo and J. Kouns. (2015). "OSVDB: open source vulnerability

database." Electronic document. https://blog.osvdb.org/category/vulnerability-

statistics/.

[11] NorthBridge (2015). "2015 Future of Open Source Survey." Electronic document.

http://www.northbridge.com/open-source

[12] Oliveira, D., M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos and Y. Zhuang (2014).

"It's the psychology stupid: how heuristics explain software vulnerabilities and how

priming can illuminate developer's blind spots". Proceedings of the 30th Annual

Computer Security Applications Conference, ACM.

[13] Scacchi, W. (2002). "Understanding the requirements for developing open source

software systems". IEE Proceedings--Software, IET.

[14] Vaishnavi, V. and W. Kuechler (2004). "Design research in information systems."

Electronic document. http://desrist.org/design-research-in-information-systems/.

[15] Von KROGh, G. and S. Spaeth (2007). "The open source software phenomenon:

Characteristics that promote research." The Journal of Strategic Information Systems.

volume 16, issue 3, pages 236-253.

Proceedings of STPIS'16

©Copyright held by the author(s) 90

https://blog.osvdb.org/category/vulnerability-statistics/
https://blog.osvdb.org/category/vulnerability-statistics/
http://www.northbridge.com/open-source
http://desrist.org/design-research-in-information-systems/

