# ECNU at 2016 eHealth Task 1: Handover Information Extraction

Yang Song<sup>1,2</sup>, Yun He<sup>1,2</sup>, Hongyu Liu<sup>1,2</sup>, Yueyao Wang<sup>1,2</sup>, Qinmin Hu<sup>1,2</sup>, Liang He<sup>1,2</sup>, and Guihua Luo<sup>3,4</sup>

<sup>1</sup> Shanghai Key Laboratory of Multidimensional Information Processing
<sup>2</sup> Department of Computer Science & Technology, East China Normal University, Shanghai, 200241, China
{ysong,yhe,liuhy,yywang}@ica.stc.sh.cn, {qmhu,lhe}@cs.ecnu.edu.cn
<sup>3</sup> Science and Technology Commission of Shanghai Municipality
<sup>4</sup> Shanghai Digital Trade Co. Ltd, Shanghai, 200241,China
ghluo@metinform.cn

Abstract. The CLEF eHealth 2016 Task 1 is set to automatically assign pre-defined medical tag to each word in the patient case records. The difficulty of the task is that many classes have little training data. This paper presents our work on the 2016 CLEF eHealth Task 1. In particular, we propose an optimized Conditional Random Field algorithm to better fulfill the task. We also utilize the information extracted through association rules and MetaMap to boost the performance of our results. The evaluation results show our runs outperform the four official baselines in this difficulty task.

**Keywords:** Conditional Random Field, Association Rule, MetaMap, Information Extraction

## 1 Introduction

CLEF eHealth 2016 Task 1 addresses clinical information extraction, related to Australian nursing shift change[1][2]. This extends the 2015 task 1a of converting verbal nursing handover to written free-text records. In 2016, our participants are challenged to maximize the correctness in structuring these written freetext records by pre-filling a handover form by automatically identifying relevant text-snippets for each slot of the form.

The data set utilized in this task is called NICTA Synthetic Nursing Handover Data [3][4]. It has been developed for clinical speech recognition and information extraction related to nursing shift-change handover at NICTA from 2012. This data set contains 200 synthetic patient cases which can be used for training and validation. The patient cases record the patient's profile and health information.

In this task, the organizers provide us with 36 tags which are related to the categories of Patient Introduction, My Shift, Appointments, Medication and Future Case in the handover form. We are asked to assign one of the 36 tags to each word in the patient case records. The 36 tags are summarized in table 1.

| Patient Introduction                               | Medication               |
|----------------------------------------------------|--------------------------|
| PatientIntroduction_AdmissionReason/Diagnosis      | Medication_Dosage        |
| PatientIntroduction_Ageinyears                     | Medication_Medicine      |
| PatientIntroduction_Allergy                        | Medication_Status        |
| PatientIntroduction_CarePlan                       |                          |
| PatientIntroduction_ChronicCondition               |                          |
| PatientIntroduction_CurrentBed                     |                          |
| PatientIntroduction_CurrentRoom                    |                          |
| PatientIntroduction_Disease/ProblemHistory         |                          |
| PatientIntroduction_Gender                         |                          |
| PatientIntroduction_GivenNames/Initials            |                          |
| PatientIntroduction_Lastname                       |                          |
| PatientIntroduction_UnderDr_GivenNames/Initials    |                          |
| PatientIntroduction_UnderDr_Lastname               |                          |
| Appointment/procedure                              | My Shift                 |
| Appointment/Procedure_City                         | MyShift_RiskManagement   |
| Appointment/Procedure_ClinicianGivenNames/Initials | MyShift_Contraption      |
| Appointment/Procedure_ClinicianLastname            | MyShift_Input/Diet       |
| Appointment/Procedure_Day                          | MyShift_OtherObservation |
| Appointment/Procedure_Description                  | MyShift_Status           |
| Appointment/Procedure_Status                       | MyShift_Wounds/Skin      |
| Appointment/Procedure_Time                         | MyShift_Output/Diuresis  |
| rippointment/110ccdure_11me                        | /BowelMovement           |
| Appointment/Procedure_Ward                         | MyShift_Activities       |
| Appointment/110cedure_ward                         | OfDailyLiving            |
| Future Care                                        | NA                       |
| Future_Alert/Warning/AbnormalResult                | NA                       |
| Future_Discharge/TransferPlan                      |                          |
| Future_Goal/TaskToBeCompleted/ExpectedOutcome      |                          |

 Table 1. Summarization of the Tags

Our system architecture is proposed in Figure 1. We mainly utilize the Conditional Random Field (CRF) model to achieve the results [6][7]. To better satisfy the assignment, we design strategy to automatically select features to train different tags. Furthermore, we use association rules [8][9] to extract information of patient name, age, gender, room number, bed number and doctor name to enhance our outputs. At last, we apply MetaMap to recognize the Unified Medical Language System (UMLS) concepts in the patient case records. The MetaMap tags are utilized as the supplement to decide which word should have the tag of Medication\_Medicine.

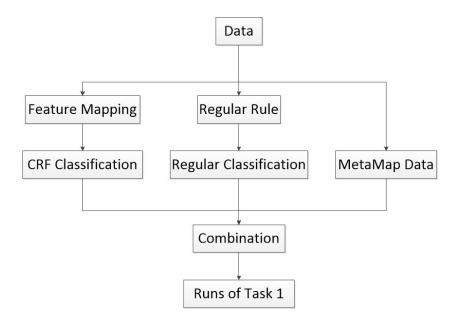


Fig. 1. System Architecture

## 2 Methodology

## 2.1 CRF Model Training

The organizers provide us with 17 features for each word in the health care records, which are listed in table 2 [5]. All of these features are relevant to the 36 health care information tags. We intent to utilize CRF model to implement the labeling task. However, different feature set have different precision and recall rate. We are motivated to solve this problem by select the proper feature set for each tag to train the CRF model.

Suppose  $A = \{f_i\}, i = 1, 2, ..., 17$  is the feature set which contains the whole 17 features, and B is the feature set which contains features should be removed from A. For a tag, such as PatientIntroduction\_CarePlan, we utilize the following method to discover its suitable feature set for the CRF model training. Denote C as the suitable feature set for the PatientIntroduction\_CarePlan tag.

- Utilizing feature set A to train CRF model in data set 1, and using data set 2 to test the model. denote the precision of PatientIntroduction\_CarePlan as p.
- $\forall f_i \in A, i = 1, 2, ..., 17$ , remove  $f_i$  from A. Train the CRF model by utilizing the data set 1 based on the feature set A without  $f_i$ . Test the learned CRF model on data set 2. Denote the precision on the PatientIntroduction\_CarePlan tag as  $p_{f_i}$ .
- Calculate the mean value of  $p_{f_i}$ , i = 1, 2, ..., 17 and denote it as  $p_m$ . If  $p_{f_i} > p$  and  $p_{f_i} p_m > 10\%$ , then put the feature  $f_i$  into set B.

| ID | Name                                 | Definition                                                                                                                                                          | Example                                                                                                                                                     | Software |
|----|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1  | Word                                 | Word itself                                                                                                                                                         | "Patients" or "had"                                                                                                                                         | None     |
| 2  | Lemma                                | Lemma of the word                                                                                                                                                   | "patients" or "have"                                                                                                                                        | CoreNLP  |
| 3  | NER<br>(named entity<br>recognition) | NER tag of the word for<br>named entities(ie, person,<br>location, organization,<br>other proper name) and<br>numerical entities (ie.<br>date, time, money, number) | "number" for "5"                                                                                                                                            | CoreNLP  |
| 4  | POS<br>(part of speech)              | POS tag of the word                                                                                                                                                 | "IN" (ie, perposition)<br>for "in", "NN" (ir, c-<br>ommon noun as opp-<br>osed to Proper Name,<br>"PN") for "bed",<br>"CN" (ie, cardinal<br>number) for "5" | CoreNLP  |
| 5  | Parse tree                           | Parse tree of the sentence<br>from the root to the<br>current word                                                                                                  | "ROOT-NP-NN" (ie,<br>root-noun phrase-<br>common noun). For "5"<br>in "In bed 5 we have"                                                                    | CoreNLP  |
| 6  | Basic dependents                     | Basic dependents of the<br>word                                                                                                                                     | "Cardinal number 5"<br>that refers to the bed<br>ID for "bed" in "In<br>the bed 5 we have"                                                                  | CoreNLP  |
| 7  | Basic governors                      | Basic governors of the<br>word                                                                                                                                      | Preposition "in" and<br>subject "we" for "have"<br>in "In bed 5 we have"                                                                                    | CoreNLP  |
| 8  | Phrase                               | Phrase that contains this<br>word                                                                                                                                   | "In bed 5" for "bed"<br>in "In bed 5 we have"                                                                                                               | MetaMap  |
| 9  | Top 5 candidates                     | Top 5 candidates retrie-<br>ved from UMLS                                                                                                                           | "BP" may refer to, for<br>example, "Bachelor of<br>Pharmacy", "bed-pan",<br>"before present",<br>"birth-place", or<br>"blood pressure"                      | MetaMap  |
| 10 | Top mapping                          | Top UMLS mapping for<br>the concept that is the<br>best match with a given<br>text snippet                                                                          | "pneumonia" is a type<br>"respiratory tract<br>infection"                                                                                                   | MetaMap  |

## Table 2. Experimented Syntactic Features

| ID | Name                         | Definition                                                                                                                                    | Example                                                 | Software  |
|----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|
| 11 | Medication score             | 1 if the word is a full term<br>in ATCL (Anatomical The-<br>rapeutic Chemical List);<br>else 0.5 if it can be found<br>in ATCL; 0 otherwise   | 1 for "acetylsalicylic<br>acid"                         | NICTA     |
| 12 | Location                     | Location of the word on a<br>tenpoint scale from the<br>beginning of the document<br>to its end                                               | "1" for the first word<br>and "10" for the last<br>word |           |
| 13 | Normalized term<br>frequency | Number of times a given<br>term occurs in a document<br>divided by the maximum<br>of this term frequency over<br>all terms in the<br>document |                                                         | NICTA     |
| 14 | Top 5 candidates             | As 9 using SNOMED-CT-<br>AU (Systematized<br>Nomenclature of Medicine-<br>Clinical Terms-Australian<br>Release)                               |                                                         | Ontoserve |
| 15 | Top mapping                  | As 1using SNOMED-CT-<br>AU                                                                                                                    |                                                         | Ontoserve |
| 16 | Top 5 candidates             | As 9 using $AMT^5$                                                                                                                            |                                                         | Ontoserve |
| 17 | Tom mapping                  | As 10 using AMT                                                                                                                               |                                                         | Ontoserve |

- The suitable set C = A - B. This means that the features in the set B will decrease the precision and ought to be removed from the features collection.

Thus, we obtain a suitable feature set for each tag. The suitable feature sets are noted as  $C_i$ , i = 1, 2, ..., 36, corresponding to the 36 medical tags. Next step, we utilize  $C_i$ , i = 1, 2, ..., 36, to train CRF model respectively, and we obtain 36 results by using those learned CRF model to perform labelling task in a patient case record. Then, we combine these results through the method of voting. Note the 36 medical tags as  $t_i$ , i = 1, 2, ..., 36. For a word w in the patient case record, suppose the tag  $t_i$  appears  $n_i$  times. We select the tag which have the highest voting count as the final tag of the word w. Suppose  $t_A$  is the label of w obtained by the CRF model which is trained by utilizing the feature set A. If two or more tags which share the same highest appear time we select  $t_A$  as the final tag of w.

#### 2.2 Utilizing Association Rules to Extract Information

We analyze the test and training set and discover that information about patient name, room, bed, gender, age and doctor name have the same expressing format. Thus, we utilize association rules to extract relevant information and assign them with the relevant tags automatically. The association rules are listed in table 3

#### 2.3 MetaMap Application

We use  $MetaMap^6$  to obtain the Unified Medical Language System (UMLS) concepts in the patient case records. Meanwhile, we identify the words with MetaMap tag "phsu" and assign them with the tag "Medication\_Medicine".

#### 2.4 Combination

We combine our results achieved from the CRF model, association rules and MetaMap in order to get a better performance. Runs obtained by CRF models are utilized as our basic runs. We use the results achieved by using rules and MetaMap to modify the tags in CRF runs.

Suppose  $S_C, S_R, S_M$  are the results achieved by CRF, association rules and MetaMap respectively. For a word in a patient case record, if its tag in CRF run is different from its tag in rule and MetaMap runs, we utilize the tag in association rules and MetaMap runs to replace the tag in CRF run. Note that, there is no conflict between the tags resulted from the association rules and the MetaMap, since the two methods extract information for different tags.

<sup>&</sup>lt;sup>6</sup> https://mmtx.nlm.nih.gov/

### Table 3. Association Rules

| Tag                                                 | Rule                                                                                                                                                                    |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PatientIntroduction_CurrentBed                      | "bed" + No.                                                                                                                                                             |
| $PatientIntroduction\_CurrentRoom$                  | "room" + NO.                                                                                                                                                            |
| PatientIntroduction_Gender                          | <pre>word in {male,him,his,he,gentleman,<br/>gentlemen, man,men,boy,boys,himself }<br/>or {female,her,she, hers,lady,ladies,<br/>woman,women,girl,girls,herself }</pre> |
| PatientIntroduction_GivenNames/Initials             | without the word "under" + words<br>capitalized the first letter                                                                                                        |
| PatientIntroduction_Lastname                        | without the word "under" + words<br>capitalized<br>the first letter                                                                                                     |
| PatientIntroduction_UnderDr<br>_GivenNames/Initials | "under" + ("Dr") + name                                                                                                                                                 |
| $Patient Introduction\_Under Dr\_Lastname$          | "under" $+$ ("Dr") $+$ name                                                                                                                                             |
| PatientIntroduction_Ageinyears                      | NO. + "years old" / "yrs old" / "yr old"                                                                                                                                |

## **3** Experiments and Evaluation

We utilize the features in the file "CRF\_Matrix\_noLabel.data" provided by organizers to train our CRF model. We implement the training and tagging process of CRF by a open-source toolkit named "CRF++-0.58". Data set 1 and data set 2 are all used for training a CRF model to tag each word in the data set 3. Specifically, we submit six runs based on two methods, where the description for each method is as follows.

- Method A: We use rules mainly based on regular expressions to extract information of bed number, room number age and doctor's name. Then, we use all features provided to run CRF model and obtain label for each word. Finally, we combine the result achieved by CRF model with result obtained by the association rules.
- Method B: We use the method, which is detailed in section 2.1, to select the best suitable feature set for different label among the features provided by the organizers. Then, we train the CRF model based on those feature sets. At last, we use the method of voting to determine the label for each word. We also use association rules to extract information of bed number, room number, age and doctor's name. The final submission is the combination of results obtained by the association rules and the voting methods.

The primary evaluation measure of this year is the macro-precision(MaAPrec), macro- recall(MaARec), macro-F1(MaAF1), micro-precision(MiAPrec), microrecall(MiARec), micro-F1(MiAF1), precision of NA tag(NA-Prec), recall of NA tag(NA-Recall), F1 value of NA tag(NA-F1). Data set 1 is used for training. Data set 2 is used for validation and data set 3 is designed for test. Evaluation of our methods over the data set 1, 2 and 3 is summarized in Table 3, where A and B imply our method A and method B respectively.

## 4 Conclusions and Future Work

In 2016 CLEF eHealth task 1, we propose an optimized CRF model and utilize the association rules and MetaMap tag to achieve the better performance for the handover form automatically filling. All of our submissions outperform the four baseline methods. In the future, we will continue on the research of handover form automatically filling methods.

## 5 Acknowledgement

This research is funded by National Key Technology Support Program (No. 2015BAH12F01-04) and Science and Technology Commission of Shanghai Municipality (No.14DZ1101700). We also thank anonymous reviewers for their review comments on this paper.

| Classifier | Set        | MaAPrec | MaARec | MaAF1 |
|------------|------------|---------|--------|-------|
| NA         | Training   | 0       | 0      | 0     |
| NA         | Validation | 0       | 0      | 0     |
| NA         | Test       | 0       | 0      | 0     |
| Majority   | Training   | 0.002   | 0.029  | 0.003 |
| Majority   | Validation | 0.001   | 0.029  | 0.003 |
| Majority   | Test       | 0       | 0.029  | 0.001 |
| Random     | Training   | 0.017   | 0.027  | 0.017 |
| Random     | Validation | 0.018   | 0.025  | 0.018 |
| Random     | Test       | 0.018   | 0.028  | 0.019 |
| NICTA      | Training   | 1       | 0.976  | 0.98  |
| NICTA      | Validation | 0.485   | 0.297  | 0.324 |
| NICTA      | Test       | 0.435   | 0.233  | 0.246 |
| А          | Training   | 0.995   | 0.992  | 0.994 |
| А          | Validation | 0.467   | 0.329  | 0.345 |
| А          | Test       | 0.493   | 0.406  | 0.374 |
| В          | Training   | 0.454   | 0.328  | 0.344 |
| В          | Validation | 0.483   | 0.313  | 0.331 |
| В          | Test       | 0.428   | 0.292  | 0.297 |

 Table 4. Evaluation of our submissions

| Classifier | Set        | MiAPrec | MiARec | MiAF1 |
|------------|------------|---------|--------|-------|
| NA         | Training   | 0       | 0      | 0     |
| NA         | Validation | 0       | 0      | 0     |
| NA         | Test       | 0       | 0      | 0     |
| Majority   | Training   | 0.058   | 0.105  | 0.075 |
| Majority   | Validation | 0.05    | 0.085  | 0.063 |
| Majority   | Test       | 0.016   | 0.027  | 0.02  |
| Random     | Training   | 0.017   | 0.03   | 0.022 |
| Random     | Validation | 0.018   | 0.03   | 0.022 |
| Random     | Test       | 0.018   | 0.03   | 0.022 |
| NICTA      | Training   | 1       | 0.914  | 0.955 |
| NICTA      | Validation | 0.649   | 0.398  | 0.493 |
| NICTA      | Test       | 0.433   | 0.368  | 0.398 |
| А          | Training   | 0.995   | 0.991  | 0.993 |
| А          | Validation | 0.655   | 0.478  | 0.553 |
| А          | Test       | 0.51    | 0.522  | 0.516 |
| В          | Training   | 0.461   | 0.528  | 0.492 |
| В          | Validation | 0.603   | 0.454  | 0.518 |
| В          | Test       | 0.581   | 0.459  | 0.513 |

| Classifier | Set        | NA-Prec | NA-Recall | NA-F1 |
|------------|------------|---------|-----------|-------|
| NA         | Training   | 0.444   | 1         | 0.615 |
| NA         | Validation | 0.409   | 1         | 0.58  |
| NA         | Test       | 0.407   | 1         | 0.579 |
| Majority   | Training   | 0       | 0         | 0     |
| Majority   | Validation | 0       | 0         | 0     |
| Majority   | Test       | 0       | 0         | 0     |
| Random     | Training   | 0.49    | 0.032     | 0.06  |
| Random     | Validation | 0.437   | 0.031     | 0.057 |
| Random     | Test       | 0.405   | 0.03      | 0.055 |
| NICTA      | Training   | 0.903   | 1         | 0.949 |
| NICTA      | Validation | 0.597   | 0.931     | 0.727 |
| NICTA      | Test       | 0.682   | 0.831     | 0.749 |
| А          | Training   | 0.993   | 0.998     | 0.995 |
| А          | Validation | 0.667   | 0.927     | 0.775 |
| А          | Test       | 0.816   | 0.788     | 0.802 |
| В          | Training   | 0.864   | 0.706     | 0.777 |
| В          | Validation | 0.677   | 0.92      | 0.78  |
| В          | Test       | 0.675   | 0.881     | 0.764 |

## References

- Kelly, L., Goeuriot, L., Suominen, H., Nvol, A., Palotti, J., Zuccon, G.: Overview of the CLEF eHealth Evaluation Lab 2016. CLEF 2016 - 7th Conference and Labs of the Evaluation Forum, Lecture Notes in Computer Science (LNCS), Springer, September, 2016.
- Suominen, H., Zhou, L.Y., Goeuriot, L., Kelly, L.: Task 1 of the CLEF eHealth evaluation lab 2016: Handover information extraction. CLEF 2016 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, September, 2016.
- 3. http://www.nicta.com.au/nicta-synthetic-nursing-handover-open-software/
- 4. http://www.nicta.com.au/open-data/
- Suominen, H., Zhou, L.Y., Hanlen, L., Ferraro, G.: Benchmarking Clinical Speech Recognition and Information Extraction: New Data, Methods, and Evaluations." JMIR Medical Informatics 3.2 (2015).
- 6. Lafferty, J., Andrew M., and Fernando C.P.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence data. (2001).
- Sha, F., Pereira, F.: Shallow Parsing with Conditional Random Fields. In: Proceedings of the 2003 Conference of the North American Chapter of Association for Computational Linguistics on Human Language Technology, Vol.1 (2003).
- 8. Bing, L., Wynne H., Yiming, M.: Integrating classification and association rule mining. Proceedings of the fourth international conference on knowledge discovery and data mining. (1998).
- 9. Vaidya, J., Chris C.: Privacy preserving association rule mining in vertically partitioned data. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, (2002).