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Abstract. This paper describes UAIC1’s system built for participating in the 

Scalable Concept Image Annotation challenge 2016. We submitted runs for 

Subtask 1 (Image annotation and localisation), for Subtask 2 (Natural language 

caption generation) and for Subtask 3 (Content Selection). For the first subtask 

we used an ontology created last year with relations between concepts and their 

synonyms, hyponyms and hypernyms and also with relations between concepts 

and related words, but additional we used another resources and machine 

learning techniques. For the second subtask, we created a resource that contains 

triplets (concept1, verb, concept2), where concepts are from the list of concepts 

provided by the organizers and verb is a relation between concepts. With this 

resource we build sentences in which concept1 is subject, verb is predicate and 

concept2 is complement. For Subtask 3, we transform the input file in a form 

used by Subtask 2 and then we used the component developed by our team for 

Subtask 2.  

Keywords: Machine learning, Text processing, Visual Processing, Text 

Generation. 

1   Introduction 

In 2016, UAIC group participated again in CLEF labs in few ImageCLEF tasks [1] 

and in this way we continued our previous participation from 2013 when we 

participated in Plant Identification task [2] and from 2015 when we participated in 

Scalable Annotation task [3]. Like in the 2015 campaign, the Scalable Concept Image 

Annotation challenge (from Image CLEF 2016 - Image Annotation2) task in 2016 

aims to develop systems that receive as input an image and produce as output a 

prediction of which concepts are present in that image, selected from a predefined list 

of concepts. Similar to last year, the participants must describe images, localize the 

different concepts in the images and generate a description of the scene. This year the 

task was composed by two subtasks using a data source with 510,123 web page items 
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(Subtask 1 and Subtask 2) and a data source with 10,003 entries for Subtask 3. For 

each item we have a corresponding web page, an image and the keywords extracted 

from the web page. The participants must annotate and localize concepts and/or 

generate sentence descriptions for all 510,123 items. More details about challenge 

from 2016 are in [4] and details about challenge from 2015 are in [5].  

In 2014, three teams [6, 7 and 8] based their system on Convolutional Neural 

Networks (CNN) pre-trained using ImageNet [9]. Also, most of the teams proposed 

approaches based on classifiers that need to be learned [6] or based on classification 

with constructed ontologies [10]. In 2015, all top 4 groups used CNNs in their 

pipeline for the feature description [5]. 

The rest of the paper is structured as follows: Section 2 details the general 

architecture of our system, Section 3 presents the results and an error analysis, while 

the last Section discusses the conclusions. 

2   System components 

In 2016, UAIC submitted runs for image annotation and localisation (Subtask 1), for 

generation of a textual description of an image (Subtask 2) and for generation of a 

textual description avoiding processing of images (Subtask 3). For that, we built a 

system, consisting in modules specialized for text processing and visual processing. 

2.1   Subtask 1 - Textual processing 

2.1.1 Google Translate 

This module is used for translating non-English words from the initial file into 

English for the purpose of textual concept identification. The motivation for this 

component is related to our built resources, which are presented in the next sections: 

these resources are only for English. It is using the Google Translation API v2 

service3, a file with English words and a cache file. The file with English words 

contains 363,802 words and we use an AVL Tree for storing them in memory to have 

O(log n) access time thus not wasting time. The cache file contains pairs of words in a 

foreign language and their English translation, for loading it in memory we use a 

HashMap which has a theoretical access time of O(1). 

 

For translating a word from the initial file, we consider the following cases: 

• Case 1: If the current word is found in the AVL Tree with English words then 

the program uses the word as it is and seeks to the next one from the initial 

file. If the word is not found then it will search for it in the cache file (Case 2). 

• Case 2: If the current word is in the HashMap cache with translated words 

then the program uses the translated form and seeks to the next one from the 

initial file. If not it will call the Google Translate API (Case 3). 
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• Case 3: The program will request a translation from the Google Translate 

service with auto-detect as source language and English as target language and 

then it will use the returned result and it will also add it to the HashMap cache 

and file cache. 

 

Example for Case 3 (the detected language is Spanish): 
Other language: ... plataformas 116 plástico 116 preventivos 

116 programados 116 pública 116 tierra 116 tractores 116 técnica 

116 vías 116 españa 115 madrid 113 ... 

 

English: ... platforms 116 plastic 116 preventive 116 

scheduled 116 public 116 Earth 116 tractors 116 technique 116 

way 116 Spain 115 madrid 113 ... 

 

At the end of the translation process the cache file contained 935,827 pairs 

(initial_word, translated_word) and the entire process took around 19 hours to finish 

from an empty cache file. 

2.1.2 Stop-words Elimination 

This component receives a file with 510,123 lines and tries to remove every stop-

word from every line with its associated number which represents its frequency. We 

consider additional elimination of classical stop-words (the, from, it, he, be, is, has, 

…) and the elimination of all words with one or two characters. We consider for stop-

words a file with 667 entries. 

 

For example, for input line: 
000bRjJGbnndqJxV 100 timepiece 7988 the 4823 time 3252 or 3100 

of 2664 that 2169 thesaurus 1595 for 1578 device 1569 timepieces 

1513 its 1397 measuring 1286 instrument 1285 clock 1268 wheel 

1232 from 1230 noun 1170 balance 1162 and 1152... 

 

after using this component we obtained: 

 
000bRjJGbnndqJxV 75 timepiece 7988 time 3252 thesauru 1595 

device 1569 timepiece 1513 measuring 1286 instrument 1285 clock 

1268 wheel 1232 noun 1170 balance 1162 legend 1105 dictionary 

1095 horologe 1068 timekeeper 1063 hour 1010 keeping 978... 

 

In the end, from a total of 45,771,971 words in the input file, 17,613,121 stop 

words were eliminated. From 2 files summing up 480.7 Mb we obtained one file with 

339.6 Mb. 

  



2.1.3 Concept Identification 

Our ontology 

At this step, we start to build an ontology with relations between the initial 250 

concepts and related words to them (this file is based on similar file build by us in 

2015 [3]). For that, we used the WordNet4 [11] and we extracted in average around 

three synonyms and an average of five words that are somehow related to the 

concepts (automatically extracted from WordNet (hyponyms or hypernyms) and 

manually verified by human annotators or manually added by human annotators). 

 

For example, for the concept airplane we have the following information: 
Synonyms and lexical family: bombardier, landing, helicopter, 

jet, flight, aircraft, cabin, flying, airliner, pilot, gunner, 

blimp, airport, wing, fighter, terminal, hangar, cockpit, 

flotilla, maneuverable, passenger, alien, fly, overhead, 

airborne, carrier, albatross, tank, hijacking, aerospace, 

refuel, immigrate, aviator, fledged, airman, levitate, mobile, 

moth, gull, ballooning, hover, stewardess, spacecraft, 

butterfly, sortie, pterosaur, volant, submarine, footloose. 

 

DuckDuckGo Ontology 
Because, our ontology is still limited, in terms of concept, synonyms and relations 

between them (the ontology was built semi-manually, and it depends by the 

annotators experience and quality of work), we decided to build automatically another 

ontology. At this step, we start to build an ontology with related words to the initial 

250 concepts. For that we used www.DuckDuckGo.com. 

 

For example, for the concept apple we have the following information: 
Synonyms and lexical family: cider, russet, crab, pear, stayman, 
fruit, quince, banana, lemon, mango, melon, orange, peach, 

berry, cherry, grape, plum, strudel, blackberry, currant, 

pomegranate, pumpkin, raspberry, strawberry, apples, almond, 

blueberry, carrot, cocoanut, coconut, cranberry, glacier, 

lemons, malus pumila, oranges, orchard apple tree, peaches, 

pears, potato, potatoes, turnips, alar, core, tree, eve, mac, 

winesap, eris, mom, pie 

 

With this files we execute on the processed file with 510.123 lines (after steps 

2.1.1 and 2.1.2) a module which identifies related concepts for every line. For that, for 

each word from a line, we try to find a way to connect it to concepts. That implies 

searching for it in the list of concepts (case 1) or in our ontology (case 2) or in 

DuckDuckGo ontology (case 3). If a match is found, the word is replaced with its 

related concept and placed in the output file along with its initial number (case 1 and 

case 2) or with a lower value (case 3). All words that could not be associated with any 

concept have been eliminated along with their number. At the next step, we sum the 

frequencies for the same concept for current line. After that we put in output, for 
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current line, the initial ID and 251 bits corresponding to the list of concepts, where 

every bit 1 means that the corresponding concept is identified. 

 

For example, for the following input line: 
000bRjJGbnndqJxV 75 timepiece 7988 time 3252 thesauru 1595 

device 1569 timepiece 1513 measuring 1286 instrument 1285 clock 

1268 wheel 1232 noun 1170 balance 1162 legend 1105 ...  

  

The output looks like: 
000bRjJGbnndqJxV 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 ... 

Regarding the infrastructure used by our group, firstly, all programs were run on 2-

core i5 Intel processors and it’s took around 500 minutes. Secondly, all programs 

were run distributed on 5 different computers, all of them with a similar 

configurations, and the execution time was in average under 200 minutes. 

2.2   Subtask 1 - Visual Processing 

2.2.1 Face recognition 

On every computer used by our team, we downloaded the archived images indexed 

and hashed based on the source site. For the Face Recognition part we ran the old JJIL 

algorithm written in Java. The results of this algorithm were either merged with the 

results from the textual / translation processing module or used individually with the 

Machine Learning Object Recognition which we are going to talk about later. 

 

 

Fig. 1. An example of image that contains faces 



For example for image from Fig. 1, the output after we use the JJIL API is: 
 

n05600637 0.7:225x90+300+300, 0.7:855x420+300+300, 

0.7:960x120+240+240, 0.7:960x120+200+200 

 

We checked every image from the collection of 510,123 images downloaded from 

the input set. For every image, a concept ID and a position / size were generated, if 

the API found any faces in that image. Each couple images were structured based on 

the first 2 characters from their file’s name. 

For example, if the folder was “a5” then it contained images with file names that 

began with “a5 …”. Our main “work” output was the textual processing / translation 

output. In these output files, each line had the unique Image ID followed by 251 

characters of 1 and 0 (concepts). We parsed these files and for each image we easily 

obtained its location in the local file system through concatenation of the first 2 

characters of the ID, the ID itself and the .jpg extension. 

Example:    J41e3GF7p7rGdsj4 => J4 (folder) => .jpg (extension) => 
     Path: source_folder/J4/J41e3GF7p7rGdsj4.jpg 

 

After obtaining the path, we wrote the subtask ID (1), the ID of the Image and the 

result based on the Textual Processing / Translation combined (or not) with the Face 

Recognition API and the Machine Learning Object Recognition.  

 

Final output line example:  
1 J41e3GF7p7rGdsj4 n02709367 0.7:0x0+640+427 n05563770 

0.7:0x0+640+427 n02774152 0.7:0x0+640+427 ... 

 

Downloading the 510,123 images took 3-4 hours for each computer. Then, the face 

recognition algorithm was executed on 13 computers for sets of 30,000 - 40,000 

images to reduce the total duration. The face recognition API needs approximately 1 - 

2 seconds for each image to identificate faces and to write the result in the output file. 

2.2.2 Object recognition with Machine Learning 

Object Recognition with Machine Learning was achieved through the API 

TensorFlow5. It is an API written in Python for Linux based systems that has 1,000 

inner concepts created through Neural Network learning. We mapped semi-

automatically these 1,000 concepts by finding a logical “connection” between them 

and the ImageClef’s 251 concepts. The mapped file (JSON key:value) contained the 

TensorFlow’s concepts (string) and the ImageClef’s concepts ID represented by the 

“line position - 1” . (line position = the position of the ID in the official concepts list). 

 

Example:    "fireboat":30, "gondola":30, "speedboat":30, 

 

The “30” represents n02858304 boat.n.01. After the mapping part, we used a 

Virtual Machine with a Linux Based OS to run the API that had sets of 30,000 - 
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50,000 images and the mapped JSON as input. The algorithm analysed the Images 

and the JSON and generated an intermediate output file which contained on each line 

the Image ID followed by 251 characters of 1 or 0 separated by space. (if the API 

recognised any of its concepts in the Image, the character was 1; else, 0). 

The Python script could use from 1 to 10 threads for faster execution and it took 

about 50 hours for a set of 50,000 images. After obtaining and mixing/ordering the 

parts of the intermediate results, we combined the intermediate results (ours and the 

textual processing one) through logical OR (1 OR 0 = 1, 0 OR 0 = 0 …), using a fast 

C program written by us, and afterwards we generated the final output files by using 

the Java algorithm. 

2.3 Subtask 2 – Text Generation 

For subtask 2 we are given an input file containing 510,123 lines, each of them 

respecting the following pattern: The line begins with the image’s code, followed by a 

space character and after that by a list of 251 values of 0 or 1, separated by space. 

Each value of 0/1 from the list corresponds to a concept from the list of concepts 

given by the organizers: a value of 1 means that the concept belongs to appears in that 

image, while a value of 0 means that the concept is not in the photo.  

We grouped the 251 concepts into 43 categories. For these categories, we built 

manually, with human annotators, a matrix that gives us the most suitable verb for 

linking every possible pair of 2 categories (if a suitable verb exists for 2 given 

categories). With all these resources we built sentences with form: (concept1, verb, 

concept2), in which concept1 is subject, verb is predicate and concept2 is complement.  

For example, in our matrix are the following types of triplets: 

- Body_part – wearing – accessories; 

- Animal – drinking – drink; 

- insect – in on – land vehicle; ·  

- animal – near – man made object; 

- animal – playing – sport_item_or_toy. 

First of all, we read the entire input file and we map each line into an object 

containing the image’s code and an array with the concepts which are present in that 

image. Then for every line we consider the following cases: 

  

Case 1 - the matrix contains verbs that link the concepts in the image. In this case, a 

phrase that describes an image will contain maximum 3 sentences in form (concept1, 

verb, concept2).  

 
Case 2 - the matrix doesn’t contain verbs that link the concepts in the image. We will 

build sentences with the following format: 

“The image contains”/ “has”/ “includes” + concept”, so that a final output phrase for 

an image looks like: “The image contains an X, and has a Y and includes a Z.”, where 

X, Y and Z are concepts from that image. 

If there are duplicates among the concepts that will appear in the phrase describing 

the image, we will compress the phrase into: 

- The image contains 3 X’s. – if X = Y = Z 



- The image contains 2X’s and the image has a Z. – if X = Y ≠ Z. 

And so on. 

 

Case 3 - the image has not concepts. We return “Empty sentence”. 

 

Finally, the output for this subtask will look like: 
2 000qUQAfomr0QAm4 The ribbon is on a letter, the letter is near 

a bag and the house is near a garden. 

2 dZ29Q2T0HBwvNQIi The image contains a telephone, has a cap and 

includes a beach. 

2 00hMe3sGLZSXzJKH The image contains 1 temple and 1 fan. 

  

where 2 is the prefix identifying the current subtask, followed by image’s code and 

the phrase generated by the algorithm. In this way, we have improved the rate of 

success in creating sentences – only the images with no concepts will cause an 

“Empty sentence” description. 

The program used was single threaded and took about 11 hours to complete all 

510,123 input lines on a dual core processor. 

2.4 Subtask 3 – Content Selection 

The input for Subtask 3 consist of a file having 10,003 lines, with data for 450 

images. After parsing the input given, we obtained (as in the precedent subtask) a list 

of images, each image having a list of concepts that appears in that image. From this 

point on, we used the sentence generation algorithm from Subtask 2 to form phrases 

for each of 450 images. In order to select the triplets (concept1, verb, concept2), we 

consider the combination between concepts with highest frequency. Then, we 

consider maximum 4 triplets, in cases when we have a verb in our matrix, for 

considered concepts. The program used was single threaded and took about 15 

minutes to run on a dual core processor. 

3   Results and Evaluation 

For the 2016 task, our team submitted 7 runs for Subtask 1, 2 runs for Subtask 2 and 1 

run for Subtask 3 [4]. The description and duration for every run is presented in 

bellow Table. 

Table 1: Description of runs for Subtask 1 

 Description Duration 

Run 1 Based on visual processing using only the Face Recognition 

algorithm. 

1 hour 

Run 2 Based on the textual processing for the Ontology 1, 2 and the 

Translation. 

27 hours 

Run 3 Obtained through the Face Recognition and Machine 

Learning Object Recognition APIs. 

5 days 



 Description Duration 

Run 4 Mixed visual processing / textual processing output. The 

visual part has been made with the Face Recognition API, 

Machine Learning Obj. Rec. 

6 days 

Run 5 Textual processing output using our ontology. 7 hours 

Run 6 Textual processing output using our ontology and translation 27 hours 

Run 7 Textual processing output using DuckDuckGo ontology  7 hours 

 

The translation part of the project has been made possible by the Google 

Translation Service6. The Face Recognition algorithm we used is the old one revised / 

optimized to analyse the images faster and safer. TensorFlow Script7 was written so it 

can use multiple threads. It also had a “recheck and continue” option. This was useful 

in case that the Virtual Machine broke / didn’t respond well so the script checked the 

old result saved before being closed by force and continued it. 

The analysation took most of our time and computing power because it ran in a 

Virtual Machine. The fact that it is Python based made it even slower. Afterwards, 

mixing the results between Tensor Flow and Textual Processing took some more time 

because the lines in the intermediate output files were not in the same order so we 

used Linux’s bash commands for sets difference, sorting, cut-in etc. to fix the 

problem.  

Finally, the final output files were obtained running the Java algorithm with or 

without the Face Recognition option and later we validated them with the official 

bash script. 

Table 2: Description of runs for Subtask 2 

 Description Duration 

Run 8 Based on Cases 1, 2, 3 presented in 2.3, using like input file the Run 2 11 hours 

Run 9 Similar to Run 8, with input file Run 4 11 hours 

 

In the case of Subtask 2, we submitted two runs with different files like input from 

Subtask 1. We consider for input files two cases: Run 2 and Run 4 from Subtask 1. 

For Subtask 3 we submitted Run 10, which took around 15 minutes. 

3.1   Evaluation for Subtask 1 

Table 3 below gives the results for the runs from Subtask 1 described above. More 

details are in [4]. 

Table 3: Results of UAIC’s runs from Subtask 1 

% Overlap with GT labels R1 R3 R4 

50 % 0.001526 0.001526 0.001526 

0 % 0.00281 0.00281 0.00281 
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As we can see from Table 3, the R1, R3 and R4 have the same results. We didn’t 

add to this table the rest of runs, because the values for them are 0. 

3.2   Evaluation for Subtask 2 and Subtask 3 

Tables 4 and 5 from below give the results for the runs from Subtask 2noisy track and 

Subtask 2 clean track described above. 

Table 4: Results of UAIC’s runs from Subtask 2 

 R8 R9 

MEAN 0.0896 0.0934 
STDDEV 0.0297 0.0249 
MEDIAN 0.0870 0.0915 

MIN 0.0161 0.0194 
MAX 0.2230 0.2514 

Table 5: Results of UAIC’s runs from Subtask 3 

 R10 

Mean F 0.4982  +- 0.1782 
Mean P 0.4597  +- 0.1553 
Mean R 0.5951  +- 0.2592 

We can see how R9 is better than R8. For R10, we remark positive the good value for 

precision, but also we remark negative the lower value for recall. 

4   Conclusions 

This document details the system developed by the UAIC team for the 2016 edition of 

ImageClef’s contest on Image Annotation (Face Recognition). The entire system has 

modules for each of the 3 subtasks: Concepts Detection and Annotation (Subtask 1), 

Natural Language Generation (Subtask 2) and Bounding Boxes Concepts 

Identification (Subtask 3). 

The Subtask 1 is the main component of the system and consists in textual 

processing of each website’s content (which also means translating words that are not 

in English) and concept identification, and also visual processing. This one represents 

Face Recognition and Object Recognition through Machine Learning.  

For Subtask 2 and for Subtask 3, we used a matrix built by us, with relations 

between concepts in form (concept1, verb, concept2), in which concept1 is subject, 

verb is predicate and concept2 is complement. When concepts cannot be linked using 

this matrix, we use a generic phrase in which the concepts are enumerated. 

For further development of the system we think that finding APIs and adapting 

them in a more thoughtful and efficient manner to identify concepts is an important 

target. We should aim to have more concepts identified more precisely for each 



image. As for the translation part we think that the Google Translation Service works 

well enough for the moment, even though it takes some time to finish “its jobs”. 
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