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Abstract. We introduce our participation at the ImageCLEF 2016 scal-
able concept detection and localization task. As in ImageCLEF 2015, this
edition focuses on generating not only annotations (concept detection)
but also localizing concepts into a large image collection. In our runs,
we focus mainly on concept detection; our solution is purely visual and
based on deep features combined with standard linear support vector
machines (SVMs) built on top of well enriched training sets. Starting
from loosely labeled training sets, we propose an algorithm that learns
the statistical dependencies between concepts and allows us to enrich the
labels of these training sets, resulting into more effective SVMs for image
annotation.
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1 Introduction

Automatic image annotation is one of the major challenges in computer vision
and machine learning. It consists in learning intricate relationships between key-
words (a.k.a concepts/labels/categories) and training images, in order to assign
list of keywords to newly observed visual contents (see for instance [1–5]). These
concepts may either correspond to well defined physical entities (pedestrians,
cars, etc.) or to high level, fine-grained notions resulting from the interaction of
many entities into scenes (parties, fights, etc.). In both cases, image annotation
is challenging due to the perplexity when assigning concepts to scenes especially
when the number of possible concepts is taken from a large vocabulary, when
training data are scarce and also when analyzing highly semantic and variable
content.

Early image annotation techniques are content-based (e.g. [6–9]). They model
straightforward “concept-image” relationships and learn how to assign concepts
to new images; they first describe image observations using visual features1,
treat each concept as an independent class, and then train the corresponding

1 either handcrafted such as color, texture, etc. or learned such as deep features [10]



concept-specific classifier to identify (separately) images belonging to that con-
cept using a variety of machine learning and inference techniques, either gener-
ative or discriminative [11–16, 9, 17–24, 10, 25–36]. Extensions of these methods
achieve structured output predictions [37, 38] by modeling not only “concept-
image” relationships, but also “concept-concept” dependencies [39–42]. Indeed,
concepts in image annotation are usually interdependent, i.e., the presence of
one concept may tell us something about the presence of another one; for in-
stance the presence of the concept “sea” usually implies the presence of other
concepts such as “sky” or “sand”. Hence modeling the statistical dependencies
between concepts (both for training and inference) is crucial and this is usually
achieved with graphical models and markov/conditional random fields [16]. Re-
lationships between concepts can also be modeled by extracting (hand-crafted
or learned) mid-level characteristics which are common to different concepts.
This has recently received a particular attention in the context of deep networks
and transfer learning [43, 10, 44]. However, the lack of labeled data may severely
limit the usability of these methods and requires solutions in order to learn from
few shots. Hence, learning from common data and characteristics is valuable in
order to overcome the scarcity of training data especially when handling image
annotation problems with a large number of concepts.

In this paper, we describe the participation of “CNRS-TELECOM Paris-
Tech” at the ImageCLEF 2016 Scalable Concept Image Annotation Task [45,
46]. Our solution focuses mainly on concept detection; it combines effective deep
features with SVM classifiers. As training data are scarce, we propose a solution
that enriches the labels of these training data. This solution is based on measur-
ing the statistical correlation between concepts in the training set and makes it
possible to propagate labels to larger training sets. Note that our solution does
not require the use of the meta-data associated to training and test data; indeed
it is purely visual. In spite of this, the proposed runs are competitive.

2 Our Concept Prediction and Localization at a Glance

Our concept detection and localization results are obtained according to the two
following steps:

i) Holistic concept detection: this step is achieved using global (holistic) vi-
sual features. For that purpose, we train “one versus all” SVMs for each concept,
in order to detect whether that concept exists in a given test image (see extra
details in Section 4.2).

ii) Blind concept localization: concept localization is achieved blindly, i.e.,
without observing the content of a given test image. In contrast to our last year
participation [47], we did not investigate heuristics for concept localization and
we use the whole image dimensions as bounding boxes; this turns out to be
sufficient for many concepts as discussed in Section 4.2. So in this participation,



Fig. 1. (Top) Sample of pictures taken from the ImageCLEF2016 database (dev set).
(Bottom) Sample of external pictures collected from the web; the leftmost picture be-
longs to the category “beach”, while the middle and rightmost pictures belong to the
categories “anchor” and “apple” respectively. It is clear that these pictures can also
be assigned to categories (“sea”, “sand”, “cloud”), (“boat”), (“tree”), etc. as these
concepts are highly correlated with the concepts “beach”, “anchor” and “apple” re-
spectively. So these pictures can be reused to train the classifiers of these concepts.

we focus on the first step only (i.e., Holistic concept detection) and mainly issues
about enriching training datasets.

3 Training Datasets and Label Enrichment

Besides training data provided in ImageCLEF 2016, we collected automatically
an external training set using the “googlebot-image” crawler. This external set
consists in 42,272 images belonging to the 251 concepts of ImageCLEF. No post
processing of these images was achieved (the whole content is used in order to
train our SVM models and without localizing the concepts in images). Figs. 1, 2
show a sample of those images as well as the distribution of the number of images
per concept. We also use the 2,000 images of the dev set provided by the Image-
CLEF 2016 organizers as an internal training set in order to train and tune the
parameters of our SVM models. All images are described using the coefficients
of the FC7 layer of the pre-trained VGG network in [48].

Label enrichment As some concepts are rare, we use the 2,000 images of the
dev set in order to enrich the labels of all the training set. The idea is to transfer
the knowledge about the co-occurrence of some labels using a simple principle:
given two concepts c and c′, if c, c′ are highly correlated, then the presence of
one of these two concepts in a given training image implies the presence of the
other concept.
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Fig. 2. Number of images per concept on the external training set (left) and on the
ImageCLEF16 dev set (right).

In order to implement this principle, we define the asymmetric co-occurrence
between two concepts as follows

C(c′|c) =

∑N
i=1 YicYic′∑N

i=1 Yic

, c, c′ = 1 . . .K, (1)

here N is the size of the dev set and K is the number of concepts (N = 2, 000,
K = 251 in practice) and Y ∈ RN×K is a matrix whose entry Yic = 1 iff
the concept c is present into image Ii and Yic = 0 otherwise. As external
images are collected using “individual keywords” as queries, they have a single
label per image and cannot be used to learn these co-occurrences. In contrast,
dev set images have multiple labels and are used instead. Hence, labels in the
external set are enriched as follows ∀c, c′ ∈ {1, . . . ,K}, ∀i ∈ {N+1, . . . , N+N ′}
(N ′ = 42, 272), if Yic = 1 and C(c′|c) ≥ σ then Yic′ ← 1 (see Section 4 about
the tuning of σ).
Fig (1, bottom) shows an example of this label enrichment process, where the
presence of concept “apple” implies the presence of the concept “tree”. Note
that this enrichment process could also be achieved as a post processing step
(i.e., after image annotation), however due to shortage of time, this issue has
not been investigated.

4 ImageCLEF 2016 Evaluation

The targeted task is, again, concept detection and localization: given a picture,
the goal is to predict which concepts (classes) are present into that picture and
the coordinates of the bounding boxes surrounding these concepts.

4.1 ImageCLEF 2016 Collection

A very large amount of images was gathered by the organizers, and using associ-
ated web pages, tags and meta-data were also provided. This set includes more



than 500k images with only 2k images with known ground truth (i.e., labels and
bounding boxes are given). These images belong to 251 concepts (see example
in Fig. 1). In our runs, each image is again described with a visual feature vector
corresponding to the FC7 layer of the VGG pretrained network. Note that the
parameters of this network are not fine-tuned on training data and concepts.

4.2 Submitted Runs

All our submitted runs (discussed below) are based on SVM training. For each
concept, we trained “one-versus-all” SVM classifiers; we use many random folds
(taken from training data) for multiple SVM training and we use these SVMs in
order to predict the concepts on the test set. We repeat this training process, for
each concept, through different random folds from the training set and we take
the average scores of the underlying SVM classifiers. This makes classification
results less sensitive to the sampling of the training set. Given a test image x,
a concept c is declared as present into x iff fc(x) > τ , here fc(x) = 1

L1{g`(x)>0}
and g`() is an SVM classifier trained on a random fold of positive and negative
data (in practice L = 10; see also Tab. 1 for the setting of τ).

Our ten submitted runs correspond to the combination of five dataset enrich-
ment strategies (see columns of Tab. 1 and section 3) and two datasets used for
SVM training (external and ImageCLEF16/dev set). For all the submitted runs,
performances are evaluated, by the organizers, using a variant of the Jaccard
measure; the latter is defined as the intersection over union of bounding boxes
provided in the submitted runs and those in the ground truth. Mean average
precision (MAP) measures – based on different percentages of bounding box
overlaps – are given for each concept and also averaged through different con-
cepts (see our results in Tables 2, 3, 4, 5, 6). Details about these measures can be
found in the ImageCLEF 2016 website2. In contrast to our last year participa-
tion, we do not address the issue of bounding box (BB) generation; our bounding
boxes cover the whole areas of the test images. We expect further improvement
of performances if we consider the BB generation heuristics used last year (as
already shown in [47]).

From all these tables, we observe the following issues:

– For all the runs shown in table 2, we observe that combining external data
with the ImageCLEF16 dev set provides a clear gain compared to the use of
external data only; this may be explained by the fact that the ImageCLEF16
dev set has (possibly) a similar distribution compared to ImageCLEF16 test
set, and this makes it possible to adapt training parameters (mainly the SVM
weights) to the conditions of the test data. In contrast, the use of external
data only does not allow to adapt these SVM parameters appropriately.

2 http://www.imageclef.org/2016/annotation#Results



Table 1. Different runs as submitted to the ImageCLEF 2016 Challenge. RA stands
for row adaptive, i.e., the threshold is set for each test image in order to guarantee that
the maximum number of detections per image is ≤ 100.

XXXXXXXXXDatasets
Enrichment

No Yes Yes Yes Yes

σ = 0.01 σ = 0.01 σ = 0.1 σ = 0.75
τ = 0.00 τ (RA) τ = 8.00 τ = 0.00 τ = 0.00

External TAB.0.1.res TAB.0.4.res TAB.0.4.1.res TAB.0.3.res TAB.0.5.res

External
+ImageCLEF16 (dev) TAB.1.1.res TAB.1.4.res TAB.1.4.1.res TAB.1.3.res TAB.1.5.res

– Tables 3-6 show a subset of concepts whose performances improve after the
enrichment process w.r.t the baseline (i.e., “TAB.1.1.res” vs. “TAB.1.3.res”
in table 3 and “TAB.1.1.res” vs. “TAB.1.5.res” in table 4); again, and as
already described in table 1, “TAB.1.1.res” is a baseline run that uses exter-
nal and ImageCLEF16 data without enrichment while runs “TAB.1.3.res”
and “TAB.1.5.res” rely on the enrichment process. From all these tables we
observe a clear gain in performance especially for concepts with a high cor-
relation factor3. This is predictable as concepts with high correlation factors
(such as “arm”, “shirt”, “shoe” in tables 3, 4) co-occur with many other
concepts and hence inherit larger training subsets. Some concepts even with
small correlation factors (such as “apron”, “cup”) also benefit from the en-
richment process, with a relatively smaller gain.

– The same behavior also occurs when considering the performance with 50%
overlap (see tables 5, 6). We also notice that concepts which are usually cen-
tered in pictures (such as “motorcycle”, “kitchen”, “shirt”) are relatively well
localized using our simple blind localization. Other difficult concepts (such
as “cat” in table 6) get substantial improvement. It is also clear that better
concept detection implies better localization results (see again tables 3, 4 vs.
tables 5, 6).

– From all these results it is clear that the run “TAB.1.5.res” is better than
the run “TAB.1.3.res” as the former is more conservative (i.e., threshold σ is
relatively high) while the latter is less conservative and benefits from larger
training sets. Finally, figures 3, 4 show the concepts for which we obtained
the best results among different participants in ImageCLEF16.

5 Conclusion

We discussed in this paper, our participation at the ImageCLEF 2016 Scalable
Concept Image Annotation Task. In our runs, concept detection is based on deep

3 The correlation factor of a concept is defined as Fσ(c) =
∑K
c′=1 1{C(c′|c)≥σ}.
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Our best run

Other best run

Fig. 3. This figure shows the concepts for which we outperform other participants’
runs (blue bars: our best performances, red bars: other participants’ best performances
on these concepts). These performances correspond to 0 % overlap.
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Our best run

Other best run

Fig. 4. This figure shows the concepts for which we outperform other participants’
runs (blue bars: our best performances, red bars: other participants’ best performances
on these concepts). These performances correspond to 50 % overlap.



Table 2. Performances (in %) of our different concept detection and localization results
(taken from ImageCLEF 2016 results).

PPPPPPPRuns
Overlap

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100 %

External Only
CNRS/TAB.0.1.res 19.62 15.67 12.01 9.78 8.13 6.73 5.77 4.83 3.86 2.81 1.65
CNRS/TAB.0.5.res 19.39 15.89 12.38 10.08 8.39 6.88 5.90 4.95 3.90 2.75 1.64
CNRS/TAB.0.3.res 17.31 14.27 11.53 9.53 8.00 6.77 5.89 4.93 3.97 2.84 1.81
CNRS/TAB.0.4.res 10.59 7.43 5.71 4.64 3.73 3.05 2.67 2.25 1.87 1.37 0.91

CNRS/TAB.0.4.1.res 10.25 7.12 5.41 4.33 3.48 2.85 2.49 2.10 1.72 1.25 0.82

External + CLEF16 dev
CNRS/TAB.1.1.res 24.75 21.89 18.32 15.14 12.83 11.11 9.62 7.71 6.13 4.13 2.42
CNRS/TAB.1.5.res 21.53 19.44 16.48 13.66 11.56 9.96 8.66 6.85 5.41 3.38 2.06
CNRS/TAB.1.3.res 16.85 13.72 10.98 9.06 7.58 6.36 5.63 4.74 3.79 2.67 1.64
CNRS/TAB.1.4.res 10.29 7.03 5.06 3.99 3.30 2.70 2.35 2.01 1.67 1.29 0.83

CNRS/TAB.1.4.1.res 9.79 6.55 4.80 3.74 3.09 2.53 2.17 1.91 1.57 1.19 0.74

features combined with linear SVMs trained on well enriched datasets. The en-
richment process is based on measuring the co-occurrence of concepts and this
makes it possible to reuse training images across correlated concepts. Observed
results show that i) the enrichment process has a positive impact on perfor-
mances especially for concepts with high correlations with others, and ii) the
use of both external and provided ImageCLEF16 dev set enhances performances
compared to the use of external data only; indeed, in spite of being relatively
small, the provided dev set makes it possible to adapt the parameters of our
SVM models to the distribution of dev and test data.

A future possible extension, of this work, is to make the enrichment process
label dependent, i.e., how to mix and select different enrichment strategies for
different concepts. Another possible extension is to achieve late label enrichment,
as a post processing step, by augmenting annotation results on the test set using
the same label enrichment strategy.

Acknowledgments. This work was supported in part by a grant from the
Research Agency ANR (Agence Nationale de la Recherche) under the MLVIS
project ANR-11-BS02-0017.



Table 3. This table shows for each concept, its correlation factor, the size of the
initial training set, the size of the enriched set, the performance before enrichment
(i.e., run “TAB.1.1.res”) and after enrichment (i.e., run “TAB.1.3.res”). Again, for run
“TAB.1.3.res”, σ = 0.1 (see table 1). All these performances correspond to 0% overlap.

concepts Fσ(.) # initial set # enriched set perfs % (before enrichment) perfs % (after enrichment)

butterfly 50 51 7398 0 2.17
barn 78 180 13007 0 0.18
bullet 19 112 2180 0 0.26
cup 6 80 306 0 0.33
fork 1 150 150 0 0.36

hospital 57 178 10894 0.43 0.57
keyboard 25 177 3515 3.70 3.82

mat 1 79 79 0 1.64
mirror 70 304 20072 2.04 6.67
pencil 4 194 519 0 1.79
shirt 36 188 5939 48.98 58.97
shoe 76 356 20377 20.00 23.40
sock 3 357 357 13.33 14.00
vase 22 171 3624 0 8.57
vest 1 75 75 3.70 6.06

tongue 43 181 6265 0 1.06
mouth 1 227 227 50.00 73.91
neck 1 72 72 64.29 72.16
foot 11 302 1541 12.50 18.69
arm 44 159 7199 61.11 81.94

magazine 19 184 2598 1.06 8.33
apple 16 246 2138 0 1.06

orange 95 379 17030 0 0.38
salad 64 199 11531 10.00 10.53
canal 50 125 7492 0.40 1.43
nut 30 85 4318 3.57 6.67



Table 4. This table shows for each concept, its correlation factor, the size of the
initial training set, the size of the enriched set, the performance before enrichment
(i.e., run “TAB.1.1.res”) and after enrichment (i.e., run “TAB.1.5.res”). Again, for
run “TAB.1.5.res”, σ = 0.75 (see table 1). All these performances correspond to 0%
overlap.

concepts Fσ(.) # initial set # enriched set perfs % (before enrichment) perfs % (after enrichment)

wolf 8 103 1325 2.08 4.55
deer 3 149 149 47.27 50.00

airplane 8 413 644 47.22 48.89
apron 9 173 318 8.00 12.50
basket 1 310 310 2.63 4.17

bathtub 13 172 2794 8.33 14.29
cabinet 9 463 7042 25.93 26.47

cap 9 251 9625 8.14 8.33
computer 1 142 142 14.63 17.65

cup 6 80 80 0 13.04
drum 7 369 1405 8.51 16.28
farm 15 244 6557 0.57 0.74
flag 7 155 391 8.70 9.86
fork 1 150 150 0 4.17

helmet 32 176 1156 11.11 18.80
keyboard 25 177 770 3.70 6.67
kitchen 8 174 433 10.71 17.65

mask 6 214 939 1.75 1.82
mat 1 79 79 0 0.80

microphone 8 187 769 10.00 21.43
mirror 12 304 8928 2.04 3.39

motorcycle 8 170 340 43.33 75.00
painting 10 121 121 10.53 16.67

pencil 4 194 194 0 2.00
piano 7 70 469 7.41 14.29
ramp 17 308 4143 0.82 1.18
shirt 10 188 1098 48.98 58.77

stadium 1 68 68 28.00 35.29
sword 14 106 705 3.23 3.70
toilet 1 152 152 25.00 27.27
towel 19 148 148 9.09 13.64

tractor 13 280 2219 12.90 15.38
tray 18 91 650 0 10.00
vase 22 171 1134 0 3.03
vest 1 75 75 3.70 7.09
wall 2 79 248 66.67 95.00

mouth 1 227 227 50.00 75.36
foot 11 302 550 12.50 32.76
arm 18 159 2361 61.11 77.94

newspaper 1 163 163 6.67 9.09
book 8 126 126 10.00 12.50
salad 16 199 2586 10.00 10.53
beer 19 141 195 9.09 16.67

beach 17 70 239 4.00 4.17
ribbon 6 331 331 3.23 10.00
valley 2 313 313 17.74 21.43

male child 26 75 1152 11.78 20.00



Table 5. This table shows for each concept, its correlation factor, the size of the
initial training set, the size of the enriched set, the performance before enrichment
(i.e., run “TAB.1.1.res”) and after enrichment (i.e., run “TAB.1.3.res”). Again, for
run “TAB.1.3.res”, σ = 0.1 (see table 1). All these performances correspond to 50%
overlap.

concepts Fσ(.) # initial set # enriched set perfs % (before enrichment) perfs % (after enrichment)

ball 56 241 9539 0 0.13
barn 78 180 13007 0 0.18

basket 1 310 310 0 0.40
bottle 76 115 12848 0 0.45
box 30 90 3371 0 0.68

bullet 19 112 2180 0 0.26
cap 82 251 22114 0 0.08
flag 27 155 4162 0 0.10

helmet 32 176 4923 0 0.28
ladder 4 330 786 0 0.19
mat 1 79 79 0 0.14

microphone 36 187 6117 0 0.24
necktie 94 485 24349 0 0.13
pillow 53 297 9049 0 2.38
scarf 16 151 2087 0.61 0.87
shirt 36 188 5939 12.24 16.24
shoe 76 356 20377 0 1.42
stick 122 232 21878 0 0.28
toilet 1 152 152 0 0.70
towel 39 148 6440 0 0.29
vest 1 75 75 0 0.76

wheel 45 169 8093 0 0.33
eye 33 192 4424 0 0.12
face 32 238 4769 2.78 3.95
radio 39 202 6649 0 0.20
book 8 126 742 0 0.12
letter 71 271 12167 0 3.23
wine 29 256 4209 0 0.35
canal 50 125 7492 0.40 1.43

femalechild 12 79 1232 2.30 2.48



Table 6. This table shows for each concept, its correlation factor, the size of the
initial training set, the size of the enriched set, the performance before enrichment
(i.e., run “TAB.1.1.res”) and after enrichment (i.e., run “TAB.1.5.res”). Again, for
run “TAB.1.5.res”, σ = 0.75 (see table 1). All these performances correspond to 50%
overlap.

concepts Fσ(.) # initial set # enriched set perfs % (before enrichment) perfs % (after enrichment)

cat 8 173 679 13.64 22.22
deer 3 149 149 21.82 22.92
fish 10 148 1562 6.25 18.18

airplane 8 413 644 40.28 46.67
apron 9 173 318 4.00 12.50
basket 1 310 310 0 0.51

bathtub 13 172 2794 8.33 14.29
bottle 28 115 5489 0 0.45
box 30 90 338 0 3.12

computer 1 142 142 3.66 3.92
cup 6 80 80 0 0.39

drum 7 369 1405 4.26 6.98
farm 15 244 6557 0.57 0.74
flag 7 155 391 0 1.41

helmet 32 176 1156 0 0.85
kitchen 8 174 433 10.71 17.65

motorcycle 8 170 340 43.33 75.00
necktie 9 485 15719 0 0.31
picture 6 236 319 2.17 2.70
pillow 8 297 2023 0 0.90
ramp 17 308 4143 0.82 1.18
scarf 16 151 1018 0.61 1.32
shirt 10 188 1098 12.24 20.18
shoe 8 356 6901 0 0.40

stadium 1 68 68 26.00 35.29
stick 9 232 6042 0 0.27
sword 14 106 705 3.23 3.70
toilet 1 152 152 0 9.09

tractor 13 280 2219 3.23 3.85
train 3 102 102 9.09 9.30
tray 18 91 650 0 10.00
vest 1 75 75 0 1.57

wheel 9 169 753 0 0.56
ear 23 58 593 0 0.38

head 10 378 378 4.94 8.06
book 8 126 126 0 0.51
letter 20 271 4560 0 0.28
beach 17 70 239 4.00 4.17
valley 2 313 313 9.68 14.29

femalechild 12 79 79 2.30 3.85
male child 26 75 1152 2.17 5.00
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