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Abstract. In this paper, we propose an automatic approach for plant image 

identification. We enhanced the well-known VGG 16-layers Convolutional 

Neural Network model [1] by replacing the last pooling layer with a Spatial 

Pyramid Pooling layer [2]. Rectified Linear Units (ReLU) are also replaced 

with Parametric ReLUs [3]. The enhanced model is trained without external da-

taset. A post processing method is also proposed to reject irrelevant samples. 

We further improved identification performance using observation identity 

(ObservationId) provided in the dataset. Our methods showed outstanding per-

formance in official evaluation results of the LifeCLEF 2016 Plant Identifica-

tion Task.  

Keywords: LifeCLEF, plant identification, deep learning, sample rejection.   

1 Introduction 

Nowadays, conservation of biodiversity is becoming an important duty for us. To 

achieve this, accurate knowledge is essential. However, even for professionals, identi-

fying a species can be a very difficult task. Convolutional Neural Networks (CNNs) 

are leading the best performance in various image retrieval tasks such as the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [4] [5] [1] [6]. CNNs 

learn filters of filters through multiple convolution layers, enabling higher level of 

abstraction than hand crafted features such as Scale Invariant Feature Transform 

(SIFT).  

In recent years, CNN has gained popularity in various image retrieval tasks includ-

ing the LifeCLEF Plant Identification Task (PlantCLEF). Over the past years, partici-

pants of PlantCLEF have adopted to use CNN in their works [7]. In PlantCLEF 2016 

[8] [9], in addition to the 1000 class identification task, a new problem is introduced. 

The evaluation set consists of not only native plant images but also images of poten-

tially invasive plants or irrelevant objects such as a table or a computer keyboard.  

Considering the new setting, we propose a post processing method to reject these 

samples. In the next section we propose to enhance the VGG 16-layers model with 

Spatial Pyramid Pooling and Parametric Rectified Linear Units. We detail our model 
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training strategy in Section 3, followed by irrelevant sample rejection algorithm in 

Section 4. Section 5 shows evaluation results and Section 6 concludes this paper.  

2 Model Enhancement 

In the following sections, a few enhancements to the VGG 16-layers model will be 

described.  

2.1 Spatial Pyramid Pooling 

The original VGG 16-layers model requires input image of spatial size 224 × 224. 

On the other hand, the images in the PlantCLEF 2016 dataset are arbitrarily sized, as 

shown in Figure 1. Following the spatial size restriction in VGG 16-layers model, 

input images has to be either cropped or warped. Both of these methods may lead to 

information loss.  

 

Fig. 1. Aspect ratio of images in the PlantCLEF 2016 dataset 

To circumvent such restriction, we have replaced the last pooling layer (pool5) with a 

Spatial Pyramid Pooling (SPP) layer [2]. The last convolution layer (conv5_3) pro-

duces feature map of 512 channels. With SPP, the feature map is spatially divided 

into 1 × 1, 2 × 2, 4 × 4, a total of 21 regions. Each region is then average pooled, 

producing a vector of fixed size 21 × 512 = 10752. Such conversion of arbitrarily 

sized feature map into a fixed size vector allows the model to accept input image of 

any size. Meanwhile, with such layer replacement, the number of parameters in the 

model is reduced from 138 million to 80 million.  

2.2 Parametric Rectified Linear Unit 

We have also replaced all of the Rectified Linear Unit (ReLU) activations with a 

learnable version known as Parametric ReLU [3], which consistently outperforms 

ReLU in empirical experiments by Bing et al. [10].  Before training, we initialize the 
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learnable parameters with 0.05. Weight decay of the learnable parameters is disabled 

throughout the training process.  

3 Model Training 

The following strategies are used to train the enhanced model.  

3.1 Data preparation 

The PlantCLEF 2016 dataset consists of 113204 images. 2048 images are used for 

validation purpose, while the remaining 111156 images are used to train the model.  

We have augmented the training images as follows: while preserving aspect ratio, 

images are resized such that the shorter side becomes 224 and 336. Random cropping 

to 224 × 224 and random flipping by y-axis are also applied to the resized images. 

For evaluation process, images are resized such that the shorter side becomes 224, and 

no cropping or flipping is applied. Cropping is not required during evaluation as the 

enhanced model accepts image of any size.  

3.2 Image Mean 

As the enhanced model is trained from scratch i.e. without external resources, image 

mean is computed from the training set. Excluding LeafScan images (with high RGB 

values due to bright background), the computed mean values of red, green and blue 

channels are 105, 111, and 79 respectively. Images augmented in Section 3.1 are sub-

tracted with these mean values before being used for training.  

3.3 Training 

We use the Caffe framework to train the enhanced model. To train such a deep model, 

we use Xavier’s method [11] to initialize the weights of the convolution and fully 

connected layers. We train the model using Stochastic Gradient Descent with momen-

tum 0.9, learning rate 0.01 through 0.0001, and batch size 50. The learning rate is 

multiplied by 0.1 when the validation accuracy stops improving. As the result, we 

have trained with learning rate 0.01 for 30 epochs, 0.001 for 15 epochs and finally 

0.0001 for 8 epochs. Figure 2 shows the normalized softmax loss of both training and 

validation. Figure 3 shows the validation accuracy of the first prediction.  



 

Fig. 2. Training and validation loss  

 

Fig. 3. Validation accuracy 

4 Irrelevant Sample Rejection 

The next section discusses the One-Versus-All method’s limitation to reject irrelevant 

samples in multiclass classification. To overcome such problem, an algorithm is pro-

posed in Section 4.2.  

4.1 Multiclass Classification with One Versus All Method 

Assume a binary classifier 𝐹 of class 𝐶 mapping an input 𝑥 into a score 𝐹(𝑥). 𝐹 can 

be optimized such that 𝐹(𝑥) > 0 when 𝑥 ∈ 𝐶, and 𝐹(𝑥) < 0 when 𝑥 ∉ 𝐶.  

In the case of multiclass classification, the One-Versus-All method can be used to 

classify 𝑁 classes 𝑪 = [𝐶1, … , 𝐶𝑁] using 𝑁 binary classifiers 𝑭 = [𝐹1, … , 𝐹𝑁]. As 

shown in (1), 𝑥 ∈ 𝐶𝑖 when 𝐹𝑖(𝑥) is the highest among all of the binary classifiers.  

 𝑥 ∈ 𝐶𝑖 where 𝑖 = arg max
𝑘∈𝑁

𝐹𝑘(𝑥) (1) 

With (1), it is guaranteed a class will be assigned to 𝑥, regardless how high or low the 

scores produced by each classifier. Figure 4’s first example (from left) is ideal, as 

there is only one strong positive score, thus we can confidently predict that input 𝛼 in 
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Figure 4 belongs to the first class. Meanwhile, second and third examples have either 

weak or no positive score. With (1), input 𝛽 is classified to the third class, while in-

put 𝛾 is classified to the first class, despite that all of the scores are rather low or even 

negative.  

   

Fig. 4. An example of class scores (𝑁 = 4) based on three inputs 𝛼, 𝛽, 𝛾 

Based on the scenario above, we realized that there are cases that a sample should be 

rejected by all of the binary classifiers. To identify such irrelevant sample, an algo-

rithm is elaborated in the next section.  

4.2 Irrelevant Sample Rejection Algorithm 

After training the enhanced model as mentioned in Section 3, a matrix of raw (i.e. 

before softmax normalization) scores 𝑺𝑀×𝑁 of 𝑁 classes and 𝑀 training samples are 

extracted from the classifier layer (fc8). Incorrect predictions are omitted. With only 

correctly predicted class scores 𝑺𝑀′×𝑁(𝑀′ ≤ 𝑀), rejection threshold 𝒕 = [𝑡1, … , 𝑡𝑁] 
of each class is computed from the class wise minima, as shown in (2).  

 𝑡𝑖 = min
𝑘𝜖𝑀′

𝑆𝑘,𝑖 (2) 

Figure 5 shows the threshold 𝒕 of each class based on the PlantCLEF 2016 training set 

(𝑁 = 1000), sorted in ascending order.  

 

Fig. 5. Rejection threshold 𝒕 of the training set, sorted in ascending order 
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During evaluation, any sample with score lower than 𝒕 for all of the classes will be 

rejected as irrelevant. With the evaluation set, 195 out of 8000 images are rejected. 

Some of the images are shown in Figure 6.  

     

     

Fig. 6. Subset of rejected samples with threshold 𝒕 

4.3 Taking Validation Set into Account 

The threshold 𝒕 obtained in Section 4.2 is solely based on the training set. Due to 

factors such as overfitting, there is a possibility that lower threshold can be acquired 

from the validation set. Figure 7 shows threshold obtained from the validation set, 

corresponding to the sorted classes shown in Figure 5.   

 

Fig. 7. Rejection threshold of training and validation set 

Although we expect lower thresholds from the validation set, as shown in Figure 7, 

majority of the thresholds are higher than that of the training set. This is due to the 

fact that there is too little sample (2048 ≪ 𝑀) in the validation set. Thus, only lower 

thresholds are considered. Ratios of each of these (seven) thresholds to its correspond-

ing training set thresholds are computed, and then averaged into 𝑄. As detailed in (3), 

the denominators are the thresholds of the training set, while the numerators are of the 

validation set. The values in (3) are based on Figure 7.  
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𝑄 is then multiplied to the threshold 𝒕 of the training set, as shown in (4), before using 

it to reject samples during evaluation.  

 𝒕′ = 𝑄𝒕 (4) 

Applying 𝒕′ to the evaluation set, only 69 samples are rejected as it is lower compared 

to the original 𝒕. Some of the images are shown in Figure 8.  

     

     

Fig. 8. Subset of rejected samples with threshold 𝒕′ 

4.4 Observation Based Identification 

Identification based on a single image may be insufficient. In the PlantCLEF2016 

dataset, images based on the same observation share a unique ObservationId. One 

ObservationId may be assigned with multiple images of different organs. Specifically 

images of flower or fruit which have much characteristic features, their existence in 

an observation often improves identification performance.  

To further improve the identification performance, after rejecting samples as ex-

plained in Section 4.2 and 4.3, we sum the raw (i.e. before softmax normalization) 

class scores of images with the same ObservationId. The summed scores are then 

softmax normalized. As the result, images with the same ObservationId share the 

same normalized scores.  

5 Evaluation 

In our evaluation experiments, the enhanced CNN model is used to extract class 

scores. Four different post processing methods are then applied to the extracted class 

scores, detailed as follows. As mentioned in Section 4.2 and 4.3, 𝒕 is the rejection 

threshold obtained from training set, while 𝒕′ is the rejection threshold obtained by 

considering both training and validation sets.   

─ Run 1: Sample rejection with 𝒕 , identification based on single sample 

─ Run 2: Sample rejection with 𝒕′, identification based on single sample 

─ Run 3: Sample rejection with 𝒕 , observation based identification 

─ Run 4: Sample rejection with 𝒕′, observation based identification 



In our run files (Bluefield), we provide scores up to top 30 classes, and rejected sam-

ples are entirely excluded from our run files. Evaluation results compared with other 

participants are summarized in Table 1 and Figure 9.  

Table 1. Evaluation results sorted by official score MAP (MAP: Mean Average Precision) 

Run 
Official score  

MAP 

MAP restricted  

to potentially  

invasive species 

MAP ignoring  

unknown classes  

and queries 

Bluefield Run 4 0.742 0.717 0.827 

SabanciUGebzeTU Run 1 0.738 0.704 0.806 

SabanciUGebzeTU Run 3 0.737 0.703 0.807 

Bluefield Run 3 0.736 0.718 0.820 

SabanciUGebzeTU Run 2 0.736 0.683 0.807 

SabanciUGebzeTU Run 4 0.735 0.695 0.802 

CMP Run 1 0.710 0.653 0.790 

LIIR KUL Run 3 0.703 0.674 0.761 

LIIR KUL Run 2 0.692 0.667 0.744 

LIIR KUL Run 1 0.669 0.652 0.708 

UM Run 4 0.669 0.598 0.742 

CMP Run 2 0.644 0.564 0.729 

CMP Run 3 0.639 0.590 0.723 

QUT Run 3 0.629 0.610 0.696 

Floristic Run 3 0.627 0.533 0.693 

UM Run 1 0.627 0.537 0.700 

Floristic Run 1 0.619 0.541 0.694 

Bluefield Run 1 0.611 0.600 0.692 

Bluefield Run 2 0.611 0.600 0.693 

Floristic Run 2 0.611 0.538 0.681 

QUT Run 1 0.601 0.563 0.672 

UM Run 3 0.589 0.509 0.652 

QUT Run 2 0.564 0.562 0.641 

UM Run 2 0.481 0.446 0.552 

QUT Run 4 0.367 0.359 0.378 

BME TMIT Run 4 0.174 0.144 0.213 

BME TMIT Run 3 0.170 0.125 0.197 

BME TMIT Run 1 0.169 0.125 0.196 

BME TMIT Run 2 0.066 0.128 0.101 



 

 

Fig. 9. Evaluation results sorted by run name in alphabetical order 

Bluefield Run 4 yields the highest official score among all of the participants. Usage 

of ObservationId shows significant improvement. On the other hand, rejection thresh-

old 𝒕′ that takes validation set into account shows a slight improvement in official 

MAP.  

6 Conclusion 

In this paper, we described our approach to PlantCLEF 2016, focusing on model en-

hancements, data augmentations, and an irrelevant sample rejection strategy. We still 

leave some rooms for improvements, which are itemized as follows:  

 As mentioned in Section 3.1, images for training process are resized to two scales. 

We should consider applying random scaling instead of a constant number of (two) 

scales. Other than scaling, random rotation should be applied as well.  

 In Section 4.2 and 4.3, instead of taking minima as rejection threshold, we should 

consider using mean and standard deviation to obtain a more stable threshold.  

 The PlantCLEF 2016 dataset includes rich metadata information such as Genus, 

Family, Date, Longitude, Latitude, Location and Content (organ type). However, in 

our work, only ClassId (class label) and ObservationId are used. More metadata in-

formation should be utilized to obtain more accurate identification performance.  
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