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Abstract. This paper describes a convolutional neural network based deep learn-

ing approach for bird song classification that was used in an audio record-based 

bird identification challenge, called BirdCLEF 2016. The training and test set 

contained about 24k and 8.5k recordings, belonging to 999 bird species. The rec-

orded waveforms were very diverse in terms of length and content. We converted 

the waveforms into frequency domain and splitted into equal segments. The seg-

ments were fed into a convolutional neural network for feature learning, which 

was followed by fully connected layers for classification. In the official scores 

our solution reached a MAP score of over 40% for main species, and MAP score 

of over 33% for main species mixed with background species. 
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1   Introduction 

Identification and classification of bird species can greatly help to explore biodiversity 

and to monitor unique patterns in different soundscapes [1]. The LifeCLEF 2016 is a 

competition hosted by CLEF Initiative (Conference and Labs of the Evaluation Forum, 

formerly known as Cross-Language Evaluation Forum) [2]. BirdCLEF 2016 [3] is a 

part of the LifeCLEF competition and addresses the classification of 999 different bird 

species based on audio recordings of Xeno-canto collaborative database [4]. Whereas 

the original Xeno-canto database includes about 275,000 audio records covering 9450 

bird species from all around the world, the BirdCLEF 2016 focuses on South-America 

(Brazil, Colombia, Venezuela, Guyana, Suriname and French Guiana) and contains 

24607 audio recordings belonging to the 999 bird species. The test set included 8596 

recordings from the BirdCLEF 2015 challenge extended by soundscape recordings. The 

latter means that the recordings are not focusing on specific bird species, but contains 

the environmental sounds with arbitrary number of singing birds. The length of the 

samples was widely diverse, in the training set the longest recording was ~45 minutes 

long, and the shortest length of recording was ~260 milliseconds. In the test set the 

longest was about 2 hours and 18 minutes, while the shortest ~700 milliseconds.  



 The LifeCLEF challenge allows manually aided solutions (like crowdsourc-

ing), however we have chosen state-of-the-art deep learning techniques to address the 

problem. Our solution uses two dimensional convolutional neural networks, that is 

trained with preprocessed bird songs transformed to the frequency domain.  

 The outline of this paper is as follows. Section 2 briefly overviews the appli-

cation of convolutional neural networks in speech recognition and sound classification, 

furthermore investigates some solutions for the previous BirdCLEF challenges. Section 

3 describes the data preparation method we applied. Section 4 introduces the applied 

deep learning technique and neural network architectures for bird song classification. 

Section 5 presents our results and Section 6 draws conclusions.  

2 Related Work 

Besides image classification one of the main propelling force of deep learning is speech 

recognition. In speech recognition different deep learning techniques, like deep belief 

networks, deep neural networks and convolutional networks, are proven to surpass the 

accuracy of ‘traditional’ Gaussian Mixture Models [5]. Recurrent architectures, espe-

cially Long Short-Term Memory (LSTM) networks are successfully applied to speech 

recognition tasks as well [6]. Combining convolutional and LSTM-based recurrent net-

works the accuracy of speech recognition can be further improved [7].  
The task of bird song classification with neural networks has been investigated even 

back in 1997 [8]. They have applied feedforward neural network with 3-8 hidden neu-

rons to classify 6 bird species from 133 recordings. They have achieved 82% accuracy 

with neural nets, however Quadratic Discriminant Analysis reached significantly better 

results, namely 93%. Another approach is presented in [9]. In their work after noise 

reduction 13 dimensional Mel-Frequency Cepstral Coefficient (MFCC) features were 

extracted and their dynamic counterpart were calculated. This 26 dimensional vector of 

the current, the preceding and the following frames were fed into a feed forward neural 

network with one hidden layer and 10-160 hidden neurons. They reached 98.7% and 

86.8% accuracy on classifying 4 and 14 bird species, respectively. In [10] a random 

forest based segmentation method is shown to select bird calls in noisy environments 

with 93.6% accuracy. The work introduced in [11] uses binned frequency spectrum, 

MFCC and Linear Prediction Coefficients (LPC) features, that are classified by an en-

semble of logistic regression, random forests and extremely randomized trees. They 

achieved 4th place on NIPS4B bird classification challenge hosted on Kaggle. 
There have been a number of competitive approaches in the BirdCLEF challenges 

of previous years, however deep learning was not applied in the BirdCLEF competition 

before. The winning solution of 2014 used a robust feature extraction (including 

MFCC, fundamental frequency, zero crossing rate, energy features, etc. - altogether 

6669 features per recordings), feature selection (reducing the number of features from 

6669 to 1277) and template matching. The last year’s challenge was won by the same 

competitor. His work described in [12] downsamples the spectrograms for faster feature 

extraction, applies decision trees for feature ranking and selection and bootstrap aggre-

gating for classification.   



3 Data preparation 

As a first step, we downsampled every audio file to 16 kHz frequency in order to reduce 

the size of the training data. Following the preprocessing steps of [10], first a Hamming 

window and then a short-time FFT were applied with a frame length of 512 samples 

and 256 samples overlap between subsequent frames. Next we implemented and ap-

plied a filtering method to extract the essential parts of the spectrogram, that contains 

bird calls. Some previous work (e.g. [11]) filters frequencies below 1 kHz, however in 

the current dataset we found useful information also in this range (see Figure 1), so we 

only applied low-pass filter with cutoff frequency of 6250 Hz.  
 

 
Fig. 1. Example of useful information (bird call) below 1 kHz. 

As a result, the vertical dimension (frequency) of the spectogram was 200, and 

the horizontal dimension (time) depended on the length of the recording. In the time 

domain (horizontal axis) we split the spectograms into 30 sample long columns (that 

corresponds ~0.5 seconds) and in the frequency domain (vertical axis) we split the spec-

trograms into 10 sample high rows. As a result, every spectogram was split into 30✕10 

sized cells. We used these cells to remove the irrelevant parts (that is likely not to con-

tain any bird call) of the spectrogram based on the mean and the variance. We calculated 

the mean and variance of every 10 sample high row (that corresponds a frequency 

range). If a cell's mean is less than 1.5 times the addition of mean plus variance of the 

actual row, than we dropped the cell. In case of Run 1, 3 and 4 we also removed those 

parts of the filtered spectrogram where 95% of the column vectors were zeros (see Fig-

ure 2). This step was skipped at our second submission (referred to as ‘BME TMIT Run 

2’ in the official results; see Table 1). After these preprocessing steps we split the re-

maining parts of the spectrogram to five seconds long pieces. Thus the dimensions of 

the resulting arrays were 200✕310 (310 samples corresponds to five seconds). We used 

this as the input of the convolutional neural network.  



 

Fig. 2. Example of a spectrogram before (above) and after (below) preprocessing, when zero 

elements were kept (Run 2). 

 

 
Fig. 3. Example for the same spectrogram after preprocessing, when mostly-zero cells 

were removed (Run 1, 3, 4). 



4   Deep learning based classification 

For classifying the bird songs we used convolutional neural networks. The resulting 

200✕310 arrays of the spectograms after data preparation were fed into the convolu-

tional neural network and was treated like grayscale images. We used two different 

CNN architectures: the first one was inspired by the winner architecture of 2012 

ImageNet competition [14] (AlexNet [15]), the second convolutional neural network 

was inspired by audio recognition systems.  

In the first type of neural network we modified the shape of the input and the con-

volutional layers of AlexNet. We also added batch normalization layers before the max-

pooling layers. Experiments show that with batch normalization significantly better ac-

curacy can be achieved on MNIST and ImageNet datasets with faster convergence [16]. 

This network is referred to as CNN-Bird-1. 

The second type of neural network used a simpler architecture, it consisted four con-

volutional layers and the fully connected layers had less neurons. We used ReLUs as 

activation functions [17] and batch normalization layers were also applied. The number 

of parameters of the second network was much less, thus the network was learning 

faster. This network is referred to as CNN-Bird-2. The proposed networks are shown 

in Figure 4. 

To train the model we used RMSProp adaptive algorithm as optimizer [18] with 

mini-batch learning. Early stopping with a patience of 100 epochs was applied.  

 

 
 

 
 

Fig. 4. CNN-Bird-1 (above) and CNN-Bird-2 (below) convolutional neural networks for bird 

species identification based on the spectogram of bird song recordings. (A@BxC refers to A 

number of planes with size BxC. The DxD refers to the kernel size.) 
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Due to the fact that we split each audio file to smaller pieces (that were fed to the CNNs) 

if a recording was longer than five seconds we had to combine the multiple predictions 

of the neural network. In case of ‘BME TMIT Run 1, 2, 3’ we simply calculated the 

mean of the classification results. In case of ‘BME TMIT Run 4’ we used a custom 

calculation method for submitting the classification results: if the recording was split 

into more parts than we calculated the variance of the CNN’s outputs of each predicted 

class throughout the 5 seconds long split parts. Next the six predictions with the highest 

variance were selected. The predicted bird species came from the mean of these predic-

tions.  

5 Evaluation 

The hardware we used for training were a NVidia GTX 970 (4 GB) and a NVidia 

Titan X (12 GB) GPU card hosted in two i7 servers with 32 GB RAM. Ubuntu 14.04 

with Cuda 7.5 and cuDNN 4.0 was used as general software architecture. For data prep-

aration, training and evaluating deep neural networks the Keras [19] framework with 

Theano [20] backend was used. For calculating area under the precision-recall curve 

(AUROC) values we used the sklearn Python package. The differences in data prepa-

ration (see Section 3), in the architectures, in the combination method of the predictions 

(see Section 4) and the epochs needed to reached the maximum AUROC measured on 

validation set are summarized in Table 1. The AUROC values throughout the training 

of Run 1, 2, 3 and 4 are shown in Figure 5. The database sizes, the data preparation and 

CNN training times are shown in Table 2. 

Table 1. The experimental setup of the submitted runs. 

Run Data preparation CNN  

architecture 
Combination of  

the predictions 
Epochs 

BME TMIT Run 1 ‘Zero’ parts removed CNN-Bird-1 Mean 124 
BME TMIT Run 2 ‘Zero’ parts not removed CNN-Bird-1 Mean 121 
BME TMIT Run 3 ‘Zero’ parts removed CNN-Bird-2 Mean 104 
BME TMIT Run 4 ‘Zero’ parts removed CNN-Bird-2 Mean of top six pre-

dictions with highest 

variance 

104 

 



Fig. 5. The value of AUROC throughout the training for Run 1, Run 2 and Run 3&4. 

We investigated the accuracy of the model on a separated test set. The least average 

precisions (AP) were achieved by Ochre-rumped Antbird (AP=0.00067), Santa Marta 

Antpitta (AP=0.00136) and Rufous-breasted Leaftosser (AP=0.0015) bird calls. Yel-

low-eared Parrot (AP=0.692), Lesser Woodcreeper (AP=0.796) and Spillmann's 

Tapaculo (AP=0.899) species scored the best in the test. Furthermore, a lot of bird calls 

were misclassified to Orange-billed Nightingale-Thrush (AP=0.229). Analyzing the 

waveforms and the spectrograms of these species we couldn’t find any particular fea-

ture. Hence we suppose the significant difference in AP and the misclassification are 

generally caused by some shortcomings of the proposed CNN architectures.  

The MAP (Mean Average Precision) values of our submission in the official results 

are shown in Table 3. The first MAP value corresponds to the recordings in which there 

was a dominant singing bird in the foreground with some other ones in the background. 

The second MAP is for recordings with only one singing bird. And the third MAP value 

is for the soundscape audio, that was not targeting specific species and these recordings 

might have contained an arbitrary number of singing birds. The results show that the 

smaller convolutional neural network (CNN-Bird-2; Run 3 and 4), which was faster to 

train performed similarly as the bigger CNN. However, the gain in AUROC on the 

validation database is not reflected in the official results (MAP values) in case of Run 

3 and 4. Moreover the difference in the combination methods of Run 3 and 4 could be 

measured on the validation set, but in the official results Run 4 didn’t outperform our 

other approaches. According to the official results we resulted the 4th place out of 6. It 

should be noted that we joined the competition only on April and we had no previous 

experience with bird call recognition.  

Table 2. Database sizes, data preparation (left) and CNN training (right) times. 

Method 
Preparation 

time [minutes] 
Size [GB] 

‘Zero’ parts 

removed 
103 41.8 

‘Zero’ parts 

not removed 
123 48.76 

 

CNN architecture Training time [hours] 

CNN-Bird-1 37.8 

CNN-Bird-2 48.8 

CNN-Bird-3 & 4 27.6 
 

Table 3. Official results: MAP values of our submissions. 

Run MAP  

(with background species) 
MAP  

(only main species) 
MAP 

(‘soundscape’ recordings) 
BME TMIT Run 1 0.323 0.407 0.054 
BME TMIT Run 2 0.338 0.426 0.053 
BME TMIT Run 3 0.337 0.426 0.059 
BME TMIT Run 4 0.335 0.424 0.053 

 



6 Conclusions 

In this paper a deep learning based approach was presented for large-scale bird spe-

cies identification based on their songs. In the data preparation process the spectogram 

for every recording was calculated and the irrelevant parts were removed. The resulting 

spectogram was sliced into five seconds long segments, these segments were used as 

input of the CNN. Two different types of CNNs were used that achieved about the same 

accuracy, while one of them had much less parameters. At the final step the predictions 

of the slices were combined. The results show that the deep learning based approach is 

well suitable for the task, however fine-tuning is necessary to reach better accuracy, 

like separating time and frequency in the CNN feature learning part and applying re-

current architectures, e.g. Long Short-Term Memory (LSTM). 
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