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Abstract. The paper presents our deep learning approach to automatic
recognition of plant species from photos. We utilized a very deep 152-
layer residual network [15] model pre-trained on ImageNet, replaced the
original fully connected layer with two randomly initialized fully con-
nected layers connected with maxout [13], and fine-tuned the network on
the PlantCLEF 2016 training data. Bagging of 3 networks was used to
further improve accuracy. With the proposed approach we scored among
the top 3 teams in the PlantCLEF 2016 plant identification challenge.

1 Introduction

In the past, automatic recognition of plants was usually solved by requiring a
photo of a specific plant organ, such as leaf [21,6,28], flower [24,1,23] or tree
bark [6,29,3]. Moreover, a number of these systems and datasets placed further
constraints on the input image, such as white background behind in a leaf image.

Recently, Deep Convolutional Neural Networks (CNNs) succeeded in a num-
ber of computer vision tasks, especially those related to complex recognition
and detection of objects. This was also the case of plant recognition, where in
PlantCLEF 2015 [9] the deep learning submissions [5,7,4,26] outperformed com-
binations of hand-crafted methods significantly (see Fig. 1).

Our submission to this year’s challenge also employs a deep CNN pretrained
on ImageNet, namely the very recent ResNet architecture [15], which allows to
train very deep networks efficiently. The idea of ResNets is that each layer should
not learn the whole feature space transformation, but only a residual correction
to the previous layer. To bridge domain shift between a general-class network
pretrained on ImageNet and a fine-grained task of plant classification, we added
an additional maxout [13] layer on top of the pretrained network. This brought
a noticeable improvement in accuracy in our validation experiments.

The rest of this paper is organized as follows: Section 2 gives a quick overview
of the PlantCLEF 2016 plant identification task. The proposed method is de-
scribed in Section 3 and the preliminary results and validation in Section 4. The
results on the test set are discussed in Section 5. Finally, Section 6 contains the
conclusions and the discussion for future work.
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Fig. 1. Results of the previous year’s (PlantCLEF2015) main task. Source: The Life-
CLEF 2015 Plant Identification Task [9] presentation.

2 The PlantCLEF 2016 Plant Identification Task

The goal in the PlantCLEF challenge is to automatically identify plant species
from photos of different nature. This years challenge [10,19] addresses the task
as an open-set or open-world recognition problem [27,2]: the test data contains
distractors of unseen categories and the metric for the classification is the mean
average precision (mAP), considering each class of the training set as a query.
This poses a requirement on robustness to unseen categories.

The training data consist of the training and test set of PlantCLEF 2015,
which were fully annotated with the correct taxonomic species as well as other
meta-data such as type of view (Leaf, LeafScan, Flower, Fruit, Stem, Branch,
Entire), date of acquisition, author ID or its GPS coordinates (if available). The
training set consists of 113,205 pictures of herb, tree and fern specimen belonging
to 1,000 species. The evaluated metric is the mean average precision — mAP. The
test set contains 8000 images, including the above mentioned distractor images.
The official results on the test (evaluated by the organizers) are discussed in
Section 5.

3 The Proposed Approach: Very Deep Residual Maxout
Networks

Recently, the very deep residual networks of He et al. [15] gained a lot of at-
tention after achieving the best results in both the ILSVRC (ImageNet Large
Scale Visual Recognition Challenge) 2015 and the COCO (Common Objects



in Context) 2015 Detection Challenge. The residual learning framework allows
to efficiently train networks that are substantially deeper than the previously
used CNN architectures. We used the pre-trained models on ImageNet publicly
available! for Caffe [18].

To further improve the classification accuracy, we made a small change in the
network architecture: the additional fully-connected layer with 512 neurons was
added on top of the network, right before the softmax classifier. The activation
function in the new layer is maxout [13] with 4 linear pieces. Dropout with a
ratio of 50% is applied after the maxout layer and before the classifier. The final
layer is a 1000-way softmax classifier corresponding to the number plant species
needed to be recognized. Glorot [8] initialization was used for these two layers.

Thereafter, we have finetuned the network for 150,000 iterations in submis-
sions ”CMP Run 1”7 and ”CMP Run 2” and for 370,000 iterations in ”CMP Run
3”7, all with the following parameters:

— The learning rate was set to 1073 and lowered by factor of 10 each 100 000
iterations.

— The momentum was set to 0.9, weight decay to 2-107%. r

— The effective batch size was set to 28 (either computed at once on NVIDIA
Titan X, or split into more batches using Caffe’s iter_size parameter when
used on lower-memory GPUs).

— A horizontal mirroring of input images was performed during training.

Beyond fine-tuning the network, we performed bagging, inspired by its impact
on the PlantCLEF 2015 results, where an interesting margin was gained with
bagging of 5 networks by Choi [5]. Due to computational limits at training time,
we only used bagging of 3 networks, although we believe that using a higher
number of more diverse networks would further improve the accuracy. The voting
was done by taking species-wise maximum of output probabilities.

We have also experimented with training Support Vector Machines (SVMs)
on L2 normalized outputs of the last pooling layer ”kernelized” using an ap-
proximate x? feature map [30]. Platt’s probabilistic output was used [22,25] to
obtain comparable results with One-vs-All arrangement of the binary classifiers.

4 Preliminary Results and Validation

For our preliminary experiments and validation, we used the PlantCLEF 2016
training set, which is the union of previous year’s (PlantCLEF 2015) training
and test sets. Our validation process was threefold:

First, we validated networks trained on the PlantCLEF 2015 training set by
evaluating them on the PlantCLEF 2015 test set using the previous year’s score
metric [9]. The goal of this phase was to validate that the ResNet-152 archi-
tecture is superior to the GoogleNet networks finetuned by the winners of the
PlantCLEF 2015 challenge. While the best submission without bagging achieved

! nttps://github.com/KaimingHe/deep-residual-networks



a score of 59.4% on image observations in the PlantCLEF 2015 challenge, a fine-
tuned ResNet-152 (without maxout) scored 62.1%. Applying SVMs on top of
the last pooling layer pushed the score further to 62.5%, and training different
SVMs for different groups of view types (always one for Leaf and LeafScan, sec-
ond for Flower and Fruit, and third for Stem, Branch and Entire) gives another
small improvement to 62.7%. Note that the meta information about view type
is also available at test-time.

Table 1. Validation of the finetuned ResNet-152 using the Plant CLEF 2015 [9] score.
LR denotes the learning rate, it. denotes the number of iterations, sepSVM is the set of
SVM classifiers, each trained only on images of certain types (leaves, flowers & fruits,
stem & branch & entire).

Method Score
LR = 0.001, 70K it. 58.7%
LR = 0.001, step size 100K, 150K it. 62.1%

LR = 0.001, step size 100K, 150K it. + SVM 62.5%
LR = 0.001, step size 100K, 150K it. + sepSVM |[62.7%

Second, we tested networks finetuned on PlantCLEF 2015 training data by
evaluating them on the test set of PlantCLEF 2015 with the mAP metric chosen
for PlantCLEF 2016. This step demonstrated the difference between the metrics
used in PlantCLEF 2015 and PlantCLEF 2016.

While deploying the SVMs slightly improved the 2015 score, using the CNN
SoftMax output worked better for the 2016 metric. This is probably due to
better comparability of SoftMax outputs among different samples, which was
not important for the 2015 score, but which is crucial for the mAP used in
PlantCLEF 2016. Finetuning ResNet-152 for 150,000 iterations lead to 52.2%
mAP, while finetuning for 130,000 iterations with maxout lead to 56.75% mAP,
proving that using maxout improves the accuracy significantly. The training set
size is big enough to finetune networks for a larger number of iterations without
overfitting, which brings additional 0.5% of mAP points, see Table 2. The test-
time 10-view image augmentation [20] (4 corner-crops, center crop and their
mirrored versions) added only 0.2% of mAP, unlike in the ImageNet competition.
Evaluating the network in a fully convolutional style on images scaled to 448
pixels (in longer dimension) surprisingly decreased the accuracy.

Third and lastly, we performed bagging on the selected pipeline by dividing
the 2016 training set into three folds and finetuning 3 networks, each using a
different fold for validation and the remaining two folds for finetuning. The only
goal of this validation was to check, that finetuning of all 3 networks converged
to a meaningful solution.



Table 2. Validation of the finetuned ResNet-152 using the PlantCLEF 2016 [10] mAP
score. LR denotes the learning rate, it. denotes the number of iterations, sepSVM is
the set of SVM classifiers, each trained only on images of certain types (leaves, flowers
& fruits, stem & branch & entire).

Method mAP

ResNet-50 (150K it.) 50.3%
ResNet-152 (150K it.) 52.2%
ResNet-152 (150K it.) + SVM 51.8%
ResNet-152 (150K it.) + sepSVM 50.6%
ResNet-152 + maxout (130K it.) 56.8%
ResNet-152 + maxout (130K it.) + 10-view test aug. [20] [56.9%
ResNet-152 4+ maxout (130K it.) + fully convolutional eval.|55.9%
ResNet-152 + maxout (370K it.) 57.3%

5 Results on the Test Set

Our primary submission - the bagging of 3 deep residual (ResNet-152) networks
finetuned with maxout - scored with 71.0% mAP among the top 3 teams in the
challenge and among top 7 runs, loosing by 3.2 to the leader. This submission is
denoted as CMP Run 1 in Figure 2.

The second submission (CMP Run 2), achieving mAP 64.4%, was generated
using only one of the three residual networks utilized in CMP Run 1. The dif-
ference between the first two submissions is 6.6%, underlining the importance of
bagging.

The third submission (CMP Run 3), achieving mAP 63.9%, was generated
by a network pretrained only on the LifeCLEF 2015 training set, for a higher
number of iterations.

6 Conclusions

Our results confirm the suitability of very deep convolutional networks for plant
recognition in the wild, allowing to use a unified end-to-end pipeline for recog-
nition of different plant organs as well as overall views in an uncontrolled envi-
ronment. Significant improvements, compared to the most successful approaches
from the previous year, were achieved by deploying a very deep (152-layer) resid-
ual network and placing a maxout layer in front of the classifier.

6.1 Future Work

Very recent improvements to the ResNet architecture, such as deeper networks
trained with stochastic depth [17] or the new residual unit proposed based on
the latest study of identity mappings [16], would be the next steps for future
work in plant recognition using deep residual networks.
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Fig. 2. Results of the main task in PlantCLEF2016 [10]. CMP results are in orange,
our primary submission (CMP Run 1) scored among the 3 best performing teams.

The second open question is what is the best way of learning for domain
adaptation. We believe that the results can be further significantly improved
without any change in the CNN architecture.

One of the attractive applications of plant recognition are mobile apps with
automatic field guides [21,12,11]. Compared to the standard automatic plant
recognition approaches, deploying a CNN allows to process different types of
images using exactly the same pipeline. However, since our networks are very
deep and have a significant memory footprint (241MB), they should be optimized
in terms of speed, memory and energy efficiency prior to utilization on mobile
devices. The Deep Compression of Han et al. [14] is a promising direction for
this optimization.
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