
Development of a News Recommender System based on
Apache Flink

Alexandru Ciobanu1 and Andreas Lommatzsch2

1 Technische Universität Berlin Straße des 17. Juni, D-10625 Berlin, Germany
alexandru.ciobanu@campus.tu-berlin.de

2 DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7, D-10587 Berlin, Germany
andreas@dai-lab.de

Abstract. The amount of data on the web is constantly growing. The separation
of relevant from less important information is a challenging task. Due to the huge
amount of data available in the World Wide Web, the processing cannot be done
manually. Software components are needed that learn the user preferences and
support users in finding the relevant information. In this work we present our
recommender system tailored for recommending news articles. The developed rec-
ommender system continuously analyzes a data-stream using the APACHE FLINK

framework, computes recommender models and provides real-time recommenda-
tions. The recommendations are optimized on specific news portals and consider
the user session. The recommender system analyzes the user-item interactions
in real-time and continuously updates the recommender models ensuring that
only fresh articles are recommended. We explain the developed architecture of
the system and discuss the specific challenges of processing continuous streams.
The scalability and the methods for optimizing the parameter configuration are
explained. The evaluation in the NEWSREEL Living Lab scenario as well as in
the offline evaluation shows that our recommender fulfills the requirements and
reaches a good recommendation performance.

Keywords: Apache Flink, stream analysis, recommender system, scalibility, news
recommender

1 Introduction

The demand for always being up to date with current events and developments is
addressed by the media offering instant publications of the most recent news. The
amount of published news articles has steadily grown making it almost impossible for
users to read all the published news. Furthermore readers are often interested in a limited
set topics or categories. Finding the relevant items in the huge mass of existing items
is an issue addressed by recommender systems [6]. Recommending news articles is a
challenging task due to the specific properties of news items: News articles tend to be
short-living and expire after few days or weeks. The cost for creating and consuming
news is relatively low leading to a high volume of items and a big diversity in consuming
news [7]. Compared to movies or online shops, most news web sites do not require a
login, making the exact identification of users almost impossible. The diversity of topics,



the variety of usage scenarios, the limited user tracking capabilities and short life cycle
of news item are the major challenges that must be addressed when developing powerful
algorithms for recommending news.

News recommender components must be able to handle a huge amount of messages
describing the creation and deletion of news articles as well as the interaction between
users and items. The amount of data is often represented as a continuous data streams.
Due to the steady changes in the user preferences and in the item set, models relying
on static sets cannot cover the dynamics of the scenario. Thus recommending suitable
articles and analyzing streams are tightly coupled tasks.

Requirements for News Recommenders A news recommender is a piece of software
that helps users finding relevant news articles in the huge amount of available news.
Recommender algorithms predict what articles (potentially unknown to a user) match
the individual user preferences. The user interests are derived from user ratings and the
user behavior, e.g. the interactions of users with items. The decision whether an article is
relevant or not is made by an algorithm that suggests the most interesting items to the
user.

Highlighting the most relevant news articles helps users coping with the huge amount
of available items. The recommender component computes the potentially most relevant
articles. Based on the analysis of the user behavior the recommender adapts to the user
preferences and supports users in selecting the relevant items.

Our Contribution In this paper, we present a recommender system focusing on the
efficient handling of data streams. The APACHE FLINK framework is applied for observes
the NewsREEL stream and for creating statistics in real-time. The data is aggregated in
a model used for the fast provisioning of recommendations (based on a most-popular-
algorithm). The paper researches the influences of parameter configurations on the
recommendation quality. Variables (such as considered time frame length) are optimized
in the offline evaluation.

Structure of the Work The remaining work is structured as follows. Section 2 describes
the analyzed scenario and the NEWSREEL Challenge in detail. In the third Section, we
discuss related work and already existing solutions. Section 4 explains our approach and
explains the design of the developed recommender system. The implementation of the
system and the influence of different parameter settings on the system’s performance are
presented in Section 5. Finally, a conclusion and an outlook on future work are given in
Section 6.

2 Problem Description

The NEWSREEL [4] challenge gives researches the possibility to evaluate developed
news recommender systems based on real-life data. In the Living Lab scenario (Task 1)
recommendations for news articles must be computed for different news portals. In the
Offline Scenario (Task 2) the participating teams must provide recommendations for a
simulated stream of messages. The structure of the contest is shown in Figure 1.



Online News Portal

Article text Lorem ipsum dolor sit amet, consectetuer adipiscing elit. 
Aenean commodo ligula eget dolor. Aenean massa. Cum sociis 
natoque penatibus et magnis dis parturient montes, nascetur 
ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, 
pretium quis, sem. Nulla consequat massa quis enim. Donec pede 
justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, 

Actract Lorem ipsum dolor sit amet, consectetuer 
adipiscing elit. Aenean commodo ligula eget dolor. Aenean 
massa. Cum sociis natoque penatibus et magnis dis 
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Fig. 1: The figure visualizes the placement of recommendations on the online news portals.

The communication between news portals and participants of the competition is
coordinated by company PLISTA. PLISTA hosts the API (“ORP”) that provides all relevant
data and assigns the recommendation requests to the participating teams. Furthermore,
PLISTA creates statistics, aggregates the log data, and computes the performance of
the team in the Living Lab scenario. In the challenge the participating teams receive
information about freshly published news articles and the user-item interactions. In
addition, teams receive recommendation requests that must be completed within a tight
time limit. The quality of the recommendations is measured based on the Click-Through-
Rate (CTR). The CTR describes how many of the provided recommendations have been
clicked by users (cf. Figure 2) [5].
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Fig. 2: The figure visualizes the architecture of the NEWSREEL challenge. When a user visits a
web portal participating in the challenge, an recommendation request is sent to a registered team.
The recommendations are embedded into the web page. If the user clicks on the recommendation,
the team is rewarded. In addition to the online evaluation NEWSREEL offers an offline task based
on a simulated message stream.



The developed recommender components must be able handle high request volumes.
An answer is expected within 100ms which is characteristic for NEWSREEL as stated
by Brodt et al. These requirements introduce limitations that need to be considered in
the design of recommender systems. Special attention must be put on efficiency and
scalability in order to assure high quality recommendation and to fulfill the technical
requirements. Due to the data available in the scenario not all types of recommender
algorithms can be applied.

3 Related Work

We review existing recommender approaches and discuss how these strategies could be
used in the analyzed news recommendation scenario.

3.1 News Recommender Algorithms

Recommender algorithms are software components supporting the users to find items
matching the user preferences. Recommender algorithm became popular with growing
relevance of e-commerce shops as they help finding interesting products in the long-tail.
These recommendation systems can be also applied to news portals. Predicting what
news item is interesting for which user is a complex task. Different types of algorithm
algorithms have been created to fit the specific characteristics of different scenarios.

News item rated as interesting by a huge number of users are potentially also relevant
to new users. Algorithms focusing on recommending the most popular items have a low
computational complexity. This enables the fast and efficient processing of a large num-
ber of requests. The weakness of the most popular approach is that the recommendations
are not personalized. Since the visitors of news websites might are interested in a wide
spectrum of topics, most popular recommender may perform poorly since individual
preferences are not taken into account. In many analyzed scenarios, personalized rec-
ommender algorithms provide more relevant suggestions optimized to the individual
user preferences [3]. The weakness of personalized recommender algorithms is that
they require comprehensive training data. Furthermore, these algorithms usually have
a high computational complexity. This can be problematic in web-based scenarios in
that the exact identification of users is impossible and strict response time limits for the
recommender services exist.

Recommending news articles requires an approach optimized to the specific re-
quirements of the scenario. The news recommendation scenario differs from scenarios
focusing on recommending movies, books or general shopping products regarding the
dynamics of the set of items and users and the technical constraints. Said et al. state
that characteristic properties of news articles are short relevance period, low consuming
costs and wide range of used devices [7]. Most news websites do not require a user
authentication which limits the precision of tracking and creation of preferences for
users.



3.2 CF-Based Approaches

Collaborative filtering (CF) is the most frequently used approach for providing personal-
ized recommendations. The idea of CF is that users, who showed a similar taste in the
past, will like the same items in the future. The similarity between users is computed
based on the user behavior and on ratings. In order to recommend an item to a user
A, the system determines the most similar users to A and suggests items the similar
users liked. These CF-based algorithms perform well on websites with a big amount of
different visitors and many interactions. Big companies such asNETFLIX or AMAZON
successfully run CF-based recommender systems.

Collaborative filtering is usually applied in scenarios characterized by a static set
of items. In the analyzed news recommendation scenario the set of items changes
continuously requiring frequent model updates. In addition, the computation of one
or more entities (neighborhood) with equal preferences is a time consuming task that
requires optimized parameter configuration for the similarity function and the size of the
analyzed neighborhood. Lommatzsch and Werner [9] have presented an implementation
of item-based collaborative filtering for the NEWSREEL challenge. Their evaluation has
shown significant performance differences that depend on news portal and context.

3.3 Stream processing Frameworks

Data on the web is created continuously. In order to capture the most recent events and
trends, the data must be processed in real-time. This task can be accomplished by using
stream processing frameworks. These libraries provide scalable, distributed architecture
and can be accessed using an API. A level of abstraction helps integrating stream analysis
into existing applications.

APACHE STORM is a common open source framework which brings the MapReduce
paradigm to streams. STORM has been developed since 2011 and has reached a mature
stage providing several components and extensions. The technical documentation and
the tutorials help new users to integrate the framework in new applications.

APACHE SPARK provides a higher-level API and can be used for both stream and
batch-based analysis. The stream component is optional; internally a micro-batching
approach is used.

APACHE FLINK provides functions of both worlds regarding to [8]. This new frame-
work is optimized for real-time applications. It combines a high-level API for JAVA,
SCALA and PYTHON with highly expressive syntax and can be run in cluster or in local
mode.

3.4 Discussion

In our scenario the use of APACHE FLINK seems to be most promising since the features
of APACHE FLINK match our requirements best. The framework is used to handle the
large NEWSREEL message streams to create a model for our recommender system.
Most-popular algorithms have been implemented successfully by other participants.
These algorithms can be used for efficiently computing predictions relevant to most
users. In our work we combine APACHE FLINK and Most-popular algorithms. We study



how a FLINK-based recommender system applying most-popular algorithms performs
in the NEWSREEL scenario.

4 Approach

We develop a recommender system tailored to the specific requirements of the NEWS-
REEL challenge. Our system architecture is optimized for the efficient handling of huge
message streams and the continuous adaptation of recommender models. The continuous
model updates ensure that only fresh news articles, requested most in the last minutes
are recommended. We implement a most popular algorithm; the implementation is build
based on APACHE FLINK in order to ensure that huge message streams are efficiently
processed. The use of FLINK ensures the scalability and simplifies the distribution of the
system over several machines. We use a highly modular system architecture (Figure 3).
The system consists of four components:

1. The HTTP endpoint receives the NEWSREEL messages. The impression messages
are forwarded to the FLINK-based analysis component. The recommendation re-
quests are dispatched to the recommendation request handler. Furthermore the http
endpoint converts the recommendation into valid JSON messages and provides valid
answers as defined in the NEWSREEL protocol.

2. The APACHE FLINK-based component analyzes the impression messages and com-
putes the statistic.

3. The models build based on the impression statistics are stored in a database.
4. The models are used by the Request Handler for computing the recommendations

for incoming requests.

We discuss the algorithms and data structures used by the different components in
the next sections.
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Fig. 3: The figure visualizes the system architecture.

4.1 Endpoint

The http endpoint receives the NEWSREEL messages from PLISTA. Messages describe
user-item interactions and provide data about freshly published news. The messages are



formatted in JSON; the data is sent via HTTP post messages [2]. A Java-based webserver
handles the incoming messages. Based on the message type the received data is either
forwarded to the FLINK-based component (that keeps the models up-to-date) or to the
component that computes the recommendation results.

4.2 Flink Processing

This component is responsible for reading and analyzing the data stream. It is designed
to be efficient and scalable through load distribution on multiple cores or machines.
FLINK observes the stream and aggregates the information applying a window-based
approach. The model only incorporates the most recent items; old items are discarded
and treated as outdated. This ensures that the models always describe the most recent
items and interactions on the relevant news websites.

APACHE FLINK is used to aggregate the data of every domain (“publisher”) and
category, which are then transformed into descriptive models (used by the component that
provides the results). The stream processing runs completely decoupled from all other
processes. This design pattern allows us running time consuming operations without
violating the 100ms response time constraint for requests. The separate handling of
requests and the real-time analysis of the impression processing ensures the scalability
as well as continuous updates of the recommender models.

4.3 Recommender Models

The separation of recommender algorithms and model creation requires communication
between the two components. We implement the data exchange based on a data pool used
for storing the commonly needed data. Our model stores the statistics as well-structured
tuples optimized for relational databases. The database is connected to the FLINK output
stream and stores all the aggregated information. For our recommendation algorithms,
the portals, the categories, the articles as well as the number of views within the current
time frame are stored. This model can be used to answer the following question: “What
are the most popular articles within the last minutes in a specific category of a given
website?”.

For the recommender system, we decided to use a MYSQL database. MYSQL is an
open source database server, supporting indexing and the concurrent access (which is
required due to concurrency in the system). MYSQL has a big potential of horizontal
scaling using master-slave replication. It is widely integrated in most common program-
ming languages such as JAVA [1]. It runs on a big variety of platforms and answers all
required queries within a small time frame. The recommender can also benefit from
the transparent query cache. Since we do not provide personalized recommendations,
the cache speeds up the query handling a lot; most requests can be answered based on
cached results.

4.4 Result Creation

The recommendations are computed by a separate component. This component commu-
nicates with the database and loads batches of statistics. Due to the distributed writes



of APACHE FLINK the upper and lower bounds of a time window need to be detected.
A system-wide identifier for every period cannot be set since no system-wide clock
is available. The detection of the intervals can be done by comparing timestamps of
two successive rows. Due to the fact that writes are very fast, the differences are a few
seconds in maximum. Whenever a bigger gap is detected, a new time window is assumed.
The decoupling of stream processing and the creation of recommendation results raises
another problem: It is impossible to determine whether the currently running write
operations have been finished and whether the statistics in the database are complete. We
solve this issue by using the previously mentioned interval detection. The implemented
strategy ensures that always the most recent, completely written model is used. This
solution introduces a delay which is acceptable in our scenario.

The central step for computing the recommendations is the computation of the most
popular news items based on the statistics (created by the FLINK-based component).
The required sorting and filtering of the data is efficiently done by the database, since
databases are optimized for these operations. SQL queries allow us to write compact,
human readable code that is fast and reliably execute by the database server.

5 Evaluation

The implemented recommender has been evaluated in Task 2 (offline evaluation) of the
NEWSREEL challenge. Our analysis focuses on the recommendation accuracy as well
as on technical aspects, such as response time and scalability. We study how different
parameter configurations influence the evaluation results as well as discuss strengths and
weaknesses of our approach.

5.1 Efficient, Reproducible CTR Optimization

We optimize the parameter configuration of our recommender the NEWSREEL offline
evaluation scenario. The offline evaluation environment allows us to analyze different
parameter settings concurrently in a reproducible way. In contrast to the online evaluation
environment characterized by a high variance in the number of messages, the offline
scenario offers a reliably, high volume message stream. The offline evaluation compo-
nents allow us re-playing the data stream previously recorded in the online scenario. The
re-played streams contain exactly the same messages (as the stream at the recorded day);
the order of messages is preserved; but the stream is re-played faster in order to speed-up
the evaluation. In our evaluation, we use the data collected at May 12th, 2016. Several of
the system’s configurations have been additionally tested using the data collected at May
15th. In the evaluation we consider only messages from the sport1 domain due to the
very small number of requests for the other publishers.

The Impact of Time Window Size We analyze the influence of the window size used
by APACHE FLINK for building the recommendation model. We evaluate the recom-
mendation performance for the following window sizes t = 600s, 300s, 180s
and 60s. In the evaluation we simulate a load level of 1,000 concurrent requests. In the
online scenario the amount of information is lower because the NEWSREEL participants



receive only a small fraction of the traffic. However, this setup represents the productive
system load better.
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Fig. 4: The figure visualizes the offline CTR dependent on the window size. The graph shows that
there is clear relation between the window size and CTR.

The measured CTR dependent from the window size (used by APACHE FLINK) is
shown in Figure 4). The Figure shows, that no direct correlation exists. This indicates
that the impact of window size on the prediction quality is low. The system reaches an
offline CTR of 1.3% using a window size as short as 30 seconds.

Impact of the Re-calculation Interval A challenge in the NEWSREEL scenario is
the continuous changes in the user preferences and in the set news items. Thus, the
recommender must continuously discard outdated items and compute the relevance of
freshly added items. In order to address this challenge, we periodically re-compute our
recommender model using APACHE FLINK. We study the impact of the re-calculating
interval on the model. Short re-calculation intervals allow the recommender to following
trends quickly keeping the model very close to the most recent data in the stream. The
disadvantage of short re-calculation intervals consists in a big number write operations
(in the database) resulting in a high load on the database. Long re-calculation intervals
cause a smaller database load due to smaller number of write operations and smaller
updates in the database caches.

We evaluate the influence of different model update intervals p on the recommender
performance.

The evaluation (cf. Figure 5 shows that refreshing the model every couple of minutes
works well for ensuring a good recommendation quality (in high load scenarios). Shorter
re-calculation periods reduce the recommendation precision and increase the system
load.
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Fig. 5: The figure visualizes the impact of different recalculation intervals. Higher intervals lead
to a better CTR.

5.2 Evaluation of Technical Aspects

In the offline evaluation we analyzed the handling of 1,000 concurrent requests. The
number of concurrent requests is much higher than the typical number of concurrent
requests in the Living Lab (“online”) scenario but the high load allows us to maximize
the throughput of the recommender. Due to the high number of concurrent requests in
the offline evaluation, only a small fraction of requests is handled within the 100ms limit
as shown in Figure 6.

The architecture of our system decouples the computation of recommendations and
the building of recommender models. This has several advantages. In extreme load peaks,
we can apply sub-sampling in order to reduce the effort for building the model. Since
the number of requests is small compared with the number of impression messages,
a sub-sampling based on the stream of impression data allows us to use the available
resources for handling the recommendation requests. Recommendation requests are
typically processed very fast since the results have been pre-computed in the model.

Based on our experiences, the bottlenecks in the systems seem to be the used
webserver and the database server. In the online evaluation our recommender reached
a low error rate. This shows that our recommender reliably handles the number of
messages in the online evaluation scenario. In extensive tests we observed on several
days that APACHE FLINK stopped writing to the output stream. In order to handle this
case, we implemented an observer component that restarts the component in the case of
an error.

5.3 Discussion

The evaluation results show that our system reaches the best prediction performance
when it updates the recommendation model every few minutes (in the offline scenario).
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Fig. 6: The chart shows the processing time for different recommender configurations.

Using time windows of less than half of a minute does not result in a significant CTR
improvement. The architecture of our recommender systems ensures that huge message
streams can be efficiently handled. This is shown by a low error rate in the online
evaluation.

6 Conclusion and Future Work

In this work we presented a recommender system implemented based on APACHE
FLINK tailored to the news recommendation scenario. The evaluation results show
that our system performs well in the contest. The implemented system continuously
updating the recommender models is a suitable approach for the efficient processing of
message streams. The APACHE FLINK API provides a good abstraction and simplifies
the development and adaptation of the recommender algorithms. The decoupling of the
model building and the provisioning of recommendations ensures that sophisticated data
analysis algorithms can be implemented ensuring that the tight response time constraints
are reliably fulfilled.

Our recommender system uses a most popular item model. The model is robust
against noisy userIDs and fast changes in the set of news items. The evaluation shows
that the recommender reaches a competitive CTR. Our system computes the popularity
separately for every domain. The approach can be refined by calculating the most
popular models for every category (using the categorization provided in the message
meta-data). Further optimization can be reached by adapting the size of the window used
for re-calculating the model and by learning the best fitting interval for retraining.

The evaluation with respect to technical aspects showed that our system is highly
scalable. The use of APACHE FLINK allows us to distribute the system over multiple



machines. The integration of additional machines enables us to concurrently compute
the model on several different machines ensuring the scalability of the system.

As future work, we plan to analyze trend extrapolation approaches. Based on the most
recent most popular items and the trends, we want to predict the items most popular in
the near future. We plan to examine the influence of context parameters for evolution of
trending items. In addition we plan to investigate approaches for dynamically identifying
topics and analyze recommender algorithms based on trending topics.
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