
Author Profiling Using Support Vector Machines
Notebook for PAN at CLEF 2016

Rodwan Bakkar Deyab, José Duarte, and Teresa Gonçalves

Departamento de Informática, Escola de Ciências e Tecnologia,
Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

d34642@alunos.uevora.pt, d10401@alunos.uevora.pt, tcg@uevora.pt

Abstract The objective of this work is to identify the gender and age of the
author of a set of tweets using Support Vector Machines. This work is done as
a task for the PAN 2016 which is a part of the CLEF conference. Techniques
like tagging, removing stopwords, stemming, Bag-of-Words representation were
used in order to create a 10 classes model. The tuning of the model was based
on grid-search using k-fold cross-validation. The model was tested for precision
and recall with the corpus from PAN 2015 and PAN 2016 and the results are
presented. We have experienced the Peaking Phenomenon with the increment of
the number of features. In the future we plan to try the term frequency-inverse
document frequency in order to improve our results.

Keywords: PAN, CLEF, Author Profiling, Machine Learning, Twitter, Support
Vector Machines, Bag-of-Words

1 Introduction

Author profiling problem is about detecting some characteristics (age, gender, for ex-
ample) of the author of some piece of text depending on the features (eg. lexical, syn-
tactical) of this text. Men and women, and of different ages, write in different ways.
Having a dataset in hand, written by different authors of different characteristics, we
can train the machine using this dataset so it can predict these characteristics of an un-
seen piece of text fed to it. PAN 161 author profiling task provides a dataset of tweets
for the sake of developing an author profiling system. The task is about predicting the
age and the gender of the author. Machine learning technique suits to achieve this goal.
Support Vector Machines (SVMs)[3] can be used as a multi-class classifier which could
be trained using the dataset provided to produce a model which can be consulted on an
unseen set of tweets written by some author to predict his age and gender. Bag-of-
Words (BOW)[14] is a simplified representation of the text corpus which contains all
the words used in it with their frequencies. BOW representation is used in many areas
like Natural Language Processing[13], Information Retrieval[5], Document Classifica-
tion and among others[14]. In our work we use SVMs and BOW representation. We use
the python machine learning library, scikit-learn[7]. After we produced the best possi-
ble model trained on PAN 16 author profiling dataset, we ran some tests over the test

1 http://pan.webis.de/clef16/pan16-web/author-profiling.html

sets provided by Tira[2,9]. The work presented in this paper was reviewed and is part
of the PAN 2016 overview[11].

This paper is organized as follows: in section 2, the Implementation is described; in
section 3, we present the results with features selected and evaluation criteria; in sec-
tion 4, a retrospective analysis of the work is preformed and a future vision is suggested.

2 Implementation

In this section we describe all the steps of creating the model. We first analyse the
dataset, then we present the architecture of the system and at the end we explain the
implementation of it.

2.1 The dataset

We used the dataset2 provided by the PAN 2016 in our study. The corpus contains 436
files, each file contains a set of tweets and these files are written by different authors.
The information about each file written by which author is indexed by a file called
turth file. The file structure is shown in (1) and is explained in Table 1.

AID ::: G ::: AR (1)

Table 1: Truth file description

Token Value Description
AID Hexadecimal String Unique author identifier

G [MALE; FEMALE] Gender (Male or Female)
AR [18-24; 25-34; 35-49; 50-64; 65-xx] Age Range

The Table 2 shows the distribution of the data after analysing it. For example, the
corpus contains 14 files written by female authors which have ages between 18 and 24.

2.2 System Architecture

Our system has three modules: preprocessing, training and testing modules. In figure
1 we show the architecture of the system in the training phase. In figure 2 we present
the architecture of the system in the testing phase. Both of them use the preprocessing
module.

2 Corpus available in http://pan.webis.de/clef16/pan16-web/author-profiling.html

Table 2: Distribution of the data in the corpus

Gender Age Range Number of files Total

Females

18-24 14 (3%)

218
25-34 70 (16%)
35-49 91 (20%)
50-64 40 (9%)
65-xx 3 (0.6%)

Males

18-24 14 (3%)

218
25-34 70 (16%)
35-49 91 (20%)
50-64 40 (9%)
65-xx 3 (0.6%)

Total 436

Figure 1: The architecture of the system: training phase

Preprocessing Module

Social Media like twitter is a very noisy environment where informal texts can thrive. As
the space is noisy and it does not comply with the syntactic rules of the natural language,
NLP (Natural Language Processing)[13] can not be exploited to the best extent.

In our study, we use the BOW[14] representation of the corpus as set of features.
Before the BOW generation the data had been transformed. The objective is to opti-

Figure 2: The architecture of the system: testing phase

mize the BOW representation by reducing the words set of the corpus without losing
information. This preprocessing is done in three steps.

The data in the corpus comes from twitter and has the nature of being noisy con-
taining a lot of abbreviations and special expressions. These special expressions can
hold important clues that can differentiate the characteristics of the authors. A regular
expression parser has been created in order to replace all of these special expressions
with predefined tags. This first step allows to group expressions and reduce the words
set, without losing information. The list of tags with few examples of tokens replaced
by them is shown in Table 3.

The Second step consists of removing the stopwords form the corpus. Stop words
are a set of words like prepositions (“in”, “on”, “to”) and conjunctions (“and”, “or”).
Usually they carry no information and they are used a lot in the context. The Natural
Language Toolkit (NLTK)[1] has a list of English stop words and the scikit-learn[7]
too. In the work presented, two lists were merged and used to filter out the corpus.

The third step in the stemming. Stemming[6] is the process of finding the root (the
lemma) of a given word. Stemming is used in Information Retrieval[5] such that, for ex-
ample, words like “connect, connected, connecting, connection and connections” would
be considered as one search word which is the stem of these words “connect”. It is use-
ful for the BOW representation such that it reduces the number of the tokens as it may
reduce many words to their root and use them as if they were one word. NLTK pro-
vides many algorithms for stemming. We used the SnowballStemmer[8] algorithm in
our work.

Table 3: Special tags used to preprocess the data corpus

Tag Examples
_LINK_TAG http://t.co/jtQvfIJIyg
_NOSY_EMOJI_TAG :-) :-D :-(
_SIMPLE_EMOJI_TAG :) :D :(
_FIGURE_EMOJI_TAG (K) <3
_FUNNY_EYES_EMOJI_TAG =) =D =(
_HORIZ_EMOJI_TAG *.* o.O ^.^
_RUDE_TALK_TAG F*** stupid
_LAUGH_TAG haha Lol eheheeh
_PUNCTUATION_ABUSE_TAG !! ????
_EXPRESSIONS_TAG ops whoa whow
_SHARE_PIC_TAG [pic]
_MENTION_TAG @username
_HASHTAG_TAG #Paris
_NEW_LINE_TAG a new line in the tweet

The result of the preprocessing module is the BOW model as a list of lists such
that each list represents a file of the dataset. The list length is equal to the number of
features chosen. The numbers in the list represent the frequency of each word of the
Bag-of-Words (the features) in each file in a descending order.

Training Module

Our training module is the core of the work done. It uses the data preparing module
to convert the training dataset to the BOW representation as explained before. Each
word in the BOW is considered as a feature. We do not use the whole BOW as features
but we limit the number, this will be discussed in the result section. After getting the
BOW representation of the dataset we divide it into two parts; one part for training (it is
two thirds of the whole dataset and we call it the development set) and another part for
testing (it is one third of the whole dataset and we call it the evaluation set). We divide
the dataset using the scikit-learn function train_test_split.

Then, this module seeks to get the best parameters to train an SVMs classifier on the
development set. The parameters we seek to get for our SVMs classifier are the kernel,
gamma and C parameters. To achieve that we do a hyperparameter tuning through a grid
search provided by the scikit-learn library using GridSearchCV function. We define a
set of parameters to be used by the grid search function as we show in Table 4.

Grid search uses stratified cross validation once for each pair of the parameters
provided keeping track of the results it gets. We used a k-fold cross validation with
k = 3. It is more usual to use this technique with k = 10 but due to the small number
of some classes, it was not possible as can be seen in Table 2 there are some age ranges
with only 3 elements (files). In other words, with classes of small number of files, it was
not possible to apply a stratified cross validation with k = 10 correctly.

With “rbf(radial basis function)” kernel in our work. We explain how grid search
works by a pseudo code (Code 1).

Table 4: Grid Search values for Gamma and C

1 2 3 4 5 6 7 8 9
Gamma 0.0001 0.001 0.01 0.1 1 10 100 1000 10000
C 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Code 1: Grid Search pseudo-code

f o r each_c i n c _ l i s t :
f o r each_gamma i n gamma_l i s t :

r e s u l t s [i] =
3− f o l d _ c r o s s _ v a l i d a t i o n (each_c , each_gamma)

Results include the cross-validated-mean-score and the standard deviation. The best
parameters are those which produce the highest mean and the lowest standard deviation.
For example, (2) is the result which refers to the best parameters after doing the grid
search over the PAN 16 dataset.

kernel : rbf, gamma : 0.0001, C : 100 (2)

After we get the model trained on the development set using the best parameters we
do a test on the evaluation set. Getting the result of this test, we produce a classification
report to show the results in terms of precision, recall, f1-score and support. This will
be discussed in the result section. We then used the best parameters we obtained from
the grid search to train a classifier on the whole PAN 16 dataset and produce our model
which we used to do the Tira tests.

The Testing Module

This module will take again the benefit of the preprocessing module to get the dataset
in a suitable format (BOW representation) to consult the model was produced by the
training module. It will consult the produced model to predict the age and gender of the
author of each file of the test dataset and it will produce an XML file for each one of
them. The description of the XML file format is shown in Description 1.

Description 1: XML file format description

< a u t h o r i d =" a u t h o r−i d "
t y p e =" n o t r e l e v a n t "
l a n g =" en | e s | n l "
age_group ="18−24|25−34|35−49|50−64|65−xx "
g en de r =" male | f em a l e "

/ >

The set of XML files will be the input of the Tira evaluation where accuracy will be
calculated as a performance measure.

We hint here that our system was developed just for English language.

3 Results

We did many tests over many datasets (the evaluation sets of them) using different
sets of features. Our features, as we mentioned before, are the words formed by the
BOW such that each word is considered as a feature (taking the frequency of it in each
document).

Our results are produced using the classification_report, provided by scikit-learn,
over the testing results on the evaluation sets. After we obtain the model using grid
search over the development set, we use it to predict over the evaluation set and we run
the classification report over the result of prediction. Classification report takes the real
target and the predicted target to calculate the precision, recall, f1-score and support for
each class was predicted and it calculates the average of these metrics.

First we present some results of the tests on the PAN 16 dataset which has ten
classes.

In table 5, we show the results after using a number of features equal to 10000.

Table 5: Results for PAN 16 corpus with 10000 features

precision recall f1-score support kernel gamma c
class1 0.00 0.00 0.00 2

rbf 0.0001 100

class2 0.22 0.15 0.18 26
class3 0.31 0.56 0.39 27
class4 0.25 0.08 0.12 12
class5 0.00 0.00 0.00 1
class6 0.00 0.00 0.00 2
class7 0.43 0.46 0.44 26
class8 0.29 0.29 0.29 34
class9 0.33 0.21 0.26 14
avg / total 0.30 0.31 0.29 144

In table 6, we show the results after using a number of features equal to 100.

We hint here that the class 10 does not appear in the classification report and that
is because of the PAN 16 dataset which contains 436 files, has only 3 files of this class
and the way we divided the dataset into a development set and an evaluation set did not
give any file of the class 10 to the evaluation set.

Now we show some results of tests we did on the PAN 15 dataset which has only
eight classes. Using a number of features equal to 10000, we present the results in
Table 7.

And in Table 8 we present the results after using a number of features equal to 100.

We further discuss the results in the conclusion.

Table 6: Results for PAN 16 corpus with 100 features

precision recall f1-score support kernel gamma c
class1 0.00 0.00 0.00 2

rbf 0.01 10

class2 0.32 0.23 0.27 26
class3 0.34 0.67 0.45 27
class4 0.22 0.17 0.19 12
class5 0.00 0.00 0.00 1
class6 0.00 0.00 0.00 2
class7 0.43 0.35 0.38 26
class8 0.29 0.29 0.29 34
class9 0.14 0.07 0.10 14
avg / total 0.30 0.32 0.30 144

Table 7: Results for PAN 15 corpus with 10000 features

precision recall f1-score support kernel gamma c
class1 0.71 0.45 0.56 11

rbf 0.0001 100

class2 0.88 0.58 0.70 12
class3 1.00 0.29 0.44 7
class4 0.00 0.00 0.00 3
class5 0.55 0.75 0.63 8
class6 0.14 1.00 0.25 3
class7 1.00 0.67 0.80 3
class8 0.00 0.00 0.00 4
avg / total 0.65 0.49 0.51 51

Table 8: Results for PAN 15 corpus with 100 features

Precision Recall F1-score Support Kernel Gamma C
Class 1 0.71 0.45 0.56 11

rbf 0.01 10

Class 2 0.65 0.92 0.76 12
Class 3 0.67 0.29 0.40 7
Class 4 0.00 0.00 0.00 3
Class 5 0.60 0.75 0.67 8
Class 6 0.18 0.67 0.29 3
Class 7 1.00 0.33 0.50 3
Class 8 1.00 0.25 0.40 4
Avg / Total 0.64 0.55 0.54 51

4 Conclusion and future work

We decided to use the BOW representation as features for our classifier after observing
the nature of texts in the social media like twitter. The process of making a parser to
replace the special pieces of texts which may mean important in this kind of text and

making the BOW (after stemming and stopwords removal) of the resulting tagged text
may suit well for this task. But, selecting the right features for SVMs is not an easy
task. There are many issues that should be taken into consideration. The scale range of
each feature can be a problem[4].

We notice that the results were better for PAN 15 than for PAN 16. That could
be because of the tagging process, when we tag the dataset to match special mentions
like links and smiles, these special mentions could be found more often in the PAN 15
dataset than in the PAN 16 dataset. In other words, the tagger behaviour is not guaran-
teed and that depends on the essence of the dataset.

We also notice, from these tests on PAN 16 and PAN 15 datasets that increasing
the number of features does not mean necessarily better results. For example, when we
used a number of features equal to 100 in the test done for PAN 16 dataset, we got a
precision equal to 0.3 and we got the same value of precision for a number of features
equal to 10000 for the same test. This is known as the Peaking Phenomenon[12] (PP)
and it can occur when using a high number of features. The performance of a model is
not proportional to the number of features used, there is a point where the performance
deteriorates when more features are added to the model. Procedures already presented
in Section 2 like preprocessing the text using tagging, stopwords removal and stemming
before creating the BOW representation can help to minimize this problem.

There are many things that could be done or improved in order to continue this study.
A true Random Search could be implemented in order to improve the features selection
and parameters tuning. It could also be improved by adding features extracted with
respect to the natural language (syntactic and semantic features, for example). Natural
Language Processing[13] can be exploited to achieve that. But as we mentioned before
it may not be possible to exploit it to the best extent as the nature of this environment is
noisy.

The use of the term frequency-inverse document frequency (tf-idf) technique[10]
and tuning the maximum size of the BOW can help too. In fact the scikit-learn provides
the necessary functions to use tf-idf technique and it could be a good experiment to do
as a future work.

Acknowledgement

We want to address our thanks to the Departamento de Informática da Escola de Ciên-
cias e Tecnologia da Universidade de Évora, for all the support to our work.

References

1. Bird, S.: Nltk: the natural language toolkit. In: Proceedings of the COLING/ACL on Inter-
active presentation sessions. pp. 69–72. Association for Computational Linguistics (2006)

2. Gollub, T., Stein, B., Burrows, S., Hoppe, D.: TIRA: Configuring, Executing, and Dissemi-
nating Information Retrieval Experiments. In: Tjoa, A., Liddle, S., Schewe, K.D., Zhou, X.
(eds.) 9th International Workshop on Text-based Information Retrieval (TIR 12) at DEXA.
pp. 151–155. IEEE, Los Alamitos, California (Sep 2012)

3. Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector machines.
Intelligent Systems and their Applications, IEEE 13(4), 18–28 (1998)

4. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification
(2003)

5. Lewis, D.D.: Naive (bayes) at forty: The independence assumption in information retrieval.
In: Machine learning: ECML-98, pp. 4–15. Springer (1998)

6. Lovins, J.B.: Development of a stemming algorithm. MIT Information Processing Group,
Electronic Systems Laboratory Cambridge (1968)

7. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

8. Porter, M., Boulton, R.: Snowball. On line http://snowball.tartarus.org/.[Visited 25/02/2016]
(2001)

9. Potthast, M., Gollub, T., Rangel, F., Rosso, P., Stamatatos, E., Stein, B.: Improving the Re-
producibility of PAN’s Shared Tasks: Plagiarism Detection, Author Identification, and Au-
thor Profiling. In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A.,
Toms, E. (eds.) Information Access Evaluation meets Multilinguality, Multimodality, and
Visualization. 5th International Conference of the CLEF Initiative (CLEF 14). pp. 268–299.
Springer, Berlin Heidelberg New York (Sep 2014)

10. Ramos, J.: Using tf-idf to determine word relevance in document queries. In: Proceedings of
the first instructional conference on machine learning (2003)

11. Rangel, F., Rosso, P., Verhoeven, B., Daelemans, W., Potthast, M., Stein, B.: Overview of
the 4th Author Profiling Task at PAN 2016: Cross-genre Evaluations. In: Working Notes
Papers of the CLEF 2016 Evaluation Labs. CEUR Workshop Proceedings, CLEF and CEUR-
WS.org (Sep 2016)

12. Sima, C., Dougherty, E.R.: The peaking phenomenon in the presence of feature-selection.
Pattern Recognition Letters 29(11), 1667–1674 (2008)

13. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast—but is it good?: evaluating
non-expert annotations for natural language tasks. In: Proceedings of the conference on em-
pirical methods in natural language processing. pp. 254–263. Association for Computational
Linguistics (2008)

14. Zhang, Y., Jin, R., Zhou, Z.H.: Understanding bag-of-words model: a statistical framework.
International Journal of Machine Learning and Cybernetics 1(1-4), 43–52 (2010)

