
Derivative Approach for Plagiarism Source
Retrieval

Rhulani Maluleka

Peoples’ Friendship University of Russia, Moscow, Russia
rhumaluleka@gmail.com

Abstract. This paper describes our approach to the PAN shared task of
plagiarism source retrieval based on the strategy suggested by Williams
et. al [1]. We also incorporate named entities queries similar to those of
Elizalde [2].

1 Algorithm

We attempt to improve on the current approaches to the source retrieval task.
Based on the results of the 2015 competition [3] we chose to implement an
algorithm that combines the approaches of Williams et. al [1] and Elizalde [2].
Williams’ software was the best performing detector in the source retrieval task
in 2013 and 2014. Even though they did not submit a new version in 2015, thier
approach still went unmatched by the 2015 participants. We chose to work from
their 2013 approach as the added complexity of their supervised result ranking
strategy in 2014 achieved virtually the same results as its predicessor. Elizalde
makes use of a novel idea of extracting named entities across each document in
an attempt to detect highly obfuscated plagiarism.

Our approach consists of several stages, namely: chunking, key-phrase ex-
traction, query formulation, and download filtering.

Chunking: We begin by segmenting the text of the suspicious document into
paragraphs of 5 sentences each. We preprocess each paragraph, removing all
non-alphabetic characters.

Keyphrase Extraction and Query Formulation: In forming keyphrases two dis-
tinct methods were employed. The first attempt to find the most important
features of the entire document, while the other forms queries based on individ-
ual chunks.

Named entity queries: The Natural Language Toolkit (NLTK)1 is used to iden-
tify Named Entities over the whole text. These are then ranked in descending
order of length. The 10 longest named entities are submitted as-is as queries
to the search engine. As noted by Elizalde [2], the rationale behind is that the
named entities are unlikely to change even if paraphrasing has been used to ob-
fuscate plagiarism. Additionally, the longer named entities are likely to contain
more specific information, and thus be more likely to yield true positive results.

1 nltk 3.2.1 http://www.nltk.org/



Chunk based queries: Each sentence in each paragraph is tokenized using NLTK’s
Punkt Sentence Tokenizer and the NLTK pre-trained part-of-speech tagger is
used to tag all the tokens. All stopwords remove, and only verbs, nouns, and
adjectives are retained. The WordNet lemmatizer is used to stem word. Stem-
ming is done last as it may affect the identification of named entities. Queries
are formed by concatenating sequences of tokens to form disjunct sequential
10-grams. The first three 10-grams from each paragraph are submitted to the
ChatNoir search engine. The top three results are returned for each queries.

Download Filtering: The ChatNoir search engine [4] allows one to request a
snippet, of up to five hundred characters, of a specific document. The snippet
is based around a query that is submitted along with the request. We use the
original query that returned the result is used for requesting snippets; and re-
quest snippets of the maximum length. Documents are only downloaded if they
are deemed similar to the suspicious document, based on their snippet. The
similarity between the snippet of each document and the suspicious document
is calculated based on an method suggested by Broder et. al [5] using word n-
grams, also known as shingles. The 5-shingles, overlapping sequences of 5 tokens,
are extracted from the document and each downloaded snippet. The similarity
between a snippet s and a suspicious document d is then calculated as:

Sim(s, d) = S(s) ∩ S(d)

where S is a set of shingles. The results are then ranked by the similarity measure
of their snippet.

The figure (see Algorithm 1) shows the algorithm for our source retrieval
approach. The implementation of our algorithm is publicly available through
PAN’s online code repository.2

References

1. Williams, K., Chen, H.-H., Choudhury, S. R. & Giles, C. L. Unsupervised
Ranking for Plagiarism Source Retrieval. Notebook for PAN at CLEF 2013
(2013).

2. Elizalde, V. Using statistic and semantic analysis to detect plagiarism in
CLEF (Online Working Notes/Labs/Workshop) (2013).

3. Hagen, M., Potthast, M. & Stein, B. Source Retrieval for Plagiarism Detec-
tion from Large Web Corpora: Recent Approaches. Working Notes Papers
of the CLEF, 1613–0073 (2015).

4. Potthast, M., Hagen, M., Stein, B., Graßegger, J., Michel, M., Tippmann,
M. & Welsch, C. ChatNoir: A Search Engine for the ClueWeb09 Corpus
in 35th International ACM Conference on Research and Development in
Information Retrieval (SIGIR 12) (eds Hersh, B., Callan, J., Maarek, Y. &
Sanderson, M.) (ACM, Aug. 2012), 1004.

2 https://github.com/pan-webis-de/maluleka16



5. Broder, A. Z., Glassman, S. C., Manasse, M. S. & Zweig, G. Syntactic clus-
tering of the web. Computer Networks and ISDN Systems 29, 1157–1166
(1997).

Algorithm 1 Source Retrieval Approach

1: procedure SourceRet(text)
2: NEs← getNamedEntities(text)
3: for all result in NEs do
4: snippet← getSnippet(result)
5: if similarity(snippet) ≥ min Sim then
6: if (result ∈ sources) = False then
7: sources← Download(result)
8: end if
9: end if
10: end for
11: paragraphs← splitText(text)
12: for all p in paragraphs do
13: p← preprocess(p)
14: queries← extractTopQueries(p)
15: for all q ∈ queries do
16: results← submitQueries(q)
17: end for
18: results← rankResults(results)
19: for all result in results do
20: snippet← getSnippet(result)
21: if similarity(snippet) ≥ min Sim then
22: if (result ∈ sources) = False then
23: sources← Download(result)
24: end if
25: end if
26: end for
27: end for
28: end procedure


