
From Users to Systems: Identifying and Overcoming
Barriers to Efficiently Access Archival Data

Nicola Ferro
Department of Information Engineering

University of Padua
Padua, Italy

nicola.ferro@unipd.it

Gianmaria Silvello
Department of Information Engineering

University of Padua
Padua, Italy

gianmaria.silvello@unipd.it

ABSTRACT
Digital archives are one of the pillars of our cultural her-
itage and they are increasingly opening up to end-users by
focusing on accessibility of their resources. Moreover, digi-
tal archives are complex and distributed systems where in-
teroperability plays a central role and efficient access and
exchange of resources is a challenge.

In this paper, we investigate user and interoperability re-
quirements in the archival realm and we discuss how next
generation archival systems should operate a paradigm shift
bringing a new model of access to archival resources which
allows to better address these needs.

To this end, we employ the data structures and query
primitives based on the NEsted SeTs for Object hieRarchies
(NESTOR) model to efficiently access archival data over-
coming the identified barriers and limitations.

Keywords
set-based data models, archival data, XPath, XML

1. INTRODUCTION
Archives, along with libraries and museums, are one of

the main cultural institutions encompassed by Digital Li-
braries (DL). Archives represent the trace of the activities
of a physical or legal person in the course of their busi-
ness which is preserved because of their continued value over
time. They are composed of unique documents interlinked
with each other as well as with their production and preser-
vation environments. The main characteristic of archives
lies in the hierarchical structure used to retain the context
and the full informational power of archival data.

The hierarchical structure shaping archives is a founda-
tional feature of traditional paper-based archival description
– the so-called finding aid. This is reflected in its digital
counterpart, the Encoded Archival Description (EAD) [14]
eXtensible Markup Language (XML) format, which is the
key brick for managing, finding and accessing archival data.

Over the last decade, thanks to the centrality of the Web
for information access and the rapid evolution of DL ser-
vices, we have witnessed a major shift towards a “radical
user orientation” [12] of archives, where usability and find-
ability of resources are becoming number one priorities [20]

In Proceedings of 1st International Workshop on Accessing Cultural Her-
itage at Scale (ACHS’16), June 22, 2016, Newark, NJ, USA. Copyright
2016 for this paper by its authors. Copying permitted for private and aca-
demic purposes.

given the “dramatic increase” [3] in the number of people ac-
cessing them. A recent user study [11] analyzing the user in-
teraction patterns with finding aids highlighted that “[they]
focus on rules for description rather than on facilitating ac-
cess to and use of the materials they list and describe” and
that many archive’s users have serious issues using finding
aids [1]. Common and frequent user interaction patterns
with finding aids are navigational and thus they require to
browse the archival hierarchy to make sense of the archival
data; for instance, two common interaction patterns are [11]:
top-down where users “start at the highest level, gain back-
ground and context, and work down to the most specific level
of detail” and bottom-up where users “start at the most de-
tailed level seeking specific information, and then move back
to the higher levels”.

From this new point-of-view, digital finding aids (i.e. EAD)
constrain user orientation of archives because several key op-
erations are not possible nor efficient, given that it is prob-
lematic to: (i) let the user access a specific item on-the-fly,
whereas we have to define fixed access points to the archival
hierarchy [8]; (ii) let the user reconstruct the context of an
item without requiring to browse the whole archival hierar-
chy [2]; and, (iii) present the user with only selected items
from an archive, whereas we have to give them the archive
as a whole [7, 18].

From the technological perspective, the presented limi-
tations also affect the interoperability of archives in dis-
tributed environments, thus preventing the exchange of re-
sources by means of standard DL technologies such as the
Open Archives Initiative Protocol for Metadata Harvest-
ing (OAI-PMH)1 [8, 15]. Indeed, a single EAD file describes
a whole archive and thus it is not possible to share or ex-
change in a distributed environment only a subset of records;
for archives, it is common to be required to exchange only
the high-level descriptions (e.g., fonds and sub-fonds) or to
exchange only the records open to public disclosure. This
problem affects the possibility to exchange finding aids with
variable granularity by means of OAI-PMH forcing archival
institutions to share whole archives or nothing. EAD pro-
vides archivists with many degrees of freedom in tagging
practice exacerbating the differences in how XML elements
are used and nested one inside the other [10]. This makes
it difficult to know in advance how an institution will use
the hierarchical elements and then to define general rules
and paths to access EAD elements; for instance, there is no
guarantee that an XML Path Language (XPath) expression
returning all the series or the units in a given EAD file will

1http://www.openarchives.org/pmh/

work with a different file in another collection or even in the
same one.

In this paper, we stem from the above observations about
the user and interoperability needs in the archival realm to
discuss how next generation archival systems should operate
a paradigm shift bringing a new model of access to archival
resources which allows to better address these needs. In par-
ticular, the contribution of the paper is to turn the above
requirements into specific access use cases to archival re-
sources, discussing how and why current approaches rep-
resent a barrier to their complete fulfillment, and showing
how our proposed solution, called NEsted SeTs for Object
hieRarchies (NESTOR) [8, 9], represents a step forward.

Indeed, NESTOR [8] defines an alternative way to rep-
resent hierarchical data by expressing the relationships be-
tween objects through the inclusion property between sets,
in contrast to the binary relation between nodes exploited by
the tree which is the typical model used to represent archival
data. NESTOR has been instantiated by three data struc-
tures on which query primitives, proven to be highly efficient
in a wide spectrum of cases, have been realized [9]. NESTOR
represents a paradigm shift with respect to state-of-the-art
solution to access hierarchical data because it answers query
primitives – e.g., descendants and children to deal with the
top-down interaction pattern and ancestors and parent to
deal with the bottom-up one – by exploiting basic set op-
erations which do not require to browse and navigate the
hierarchy.

Moreover, in order to fully understand the difference be-
tween NESTOR and state-of-the-art navigational (i.e., based
on XPath) approaches, we conducted a case study evalua-
tion based on ten real-world heterogeneous EAD files repre-
senting different key challenges for the identified access use
cases, where we discuss the main drawbacks of a navigation-
based access approach and how they are addressed by the
NESTOR set-based one. We also show how the intrinsic
differences between NESTOR and traditional navigational
approaches are also consistently reflected in the query exe-
cution times, which are a quantitative proxy for appreciating
the paradigm shift represented by NESTOR and its impact.

The rest of the paper is organized as follows: Section 2
provides relevant background information; Section 3 dis-
cusses the examined use cases; Section 4 presents the ex-
perimental outcomes. Finally, Section 5 draws some conclu-
sions.

2. BACKGROUND

2.1 Digital Archives
Archives are composed by “unique records of corporate

bodies and the papers of individuals and families” [14]. The
original order – i.e. the principle of provenance – of the doc-
uments within an archive is preserved because the context
and the physical order in which the documents are held are
as valuable as their content [6].

According to the International Standard for Archival De-
scription (General) (ISAD(G)), archival description (i.e. the
finding aids) proceeds from general to specific as a conse-
quence of the provenance principle and has to show, for ev-
ery unit of description, its relationships and links with other
units and to the general fonds, taking the form of a tree
as shown in Figure 1 on the left. The digital encoding of
ISAD(G) is the Encoded Archival Description (EAD) [14],

FONDS
A

SUB-
FONDS C

SERIES D

SERIES E

SERIES F

UNIT
G

UNIT
H

UNIT
I

UNIT
L

(a) Archival Tree (b) EAD representation

SUB-
FONDS B

Archival record 2
Archival record 3

Archival record 4
Archival record 5

Archival record 6

Archival record 11
Archival record 12

Archival record 13Archival record 1

Archival record 10

Archival record 7

Archival record 8

Archival record 9

 [...]
<did> [...] </did>

 <dsc level="fonds">
 [...]

 <c01 level="sub-fonds">
[...]

 </c01>
 <c01 level="sub-fonds">

 [...]

 <c02 level="series">
 [...]

 </c02>
 <c02 level="series">

 [...]
 </c02>
 <c02 level="series">

 [...]
 <c03 level="unit">
 […]
 </c03>
 <c03 level="unit">
 […]
 </c03>
 <c03 level="unit">
 […]
 </c03>
 <c03 level="unit">
 […]
 </c03>
 […]

Figure 1: A sample archive and its EAD represen-
tation.

shown in Figure 1 on the right, which is an XML descrip-
tion of a whole archive, reflects the archival structure, holds
relations between entities and retains context.

EAD follows the traditional archival paradigm where ex-
perts know exactly what they are looking for and, for ex-
ample, they browse EAD to know the location of physical
records [12]. By contrast, in the new user-oriented paradigm
enabled by digital archives “users no longer have to be de-
pendent on the physical presence of archivists to identify,
review, and retrieve materials” [23], but they need effective
means for performing information seeking activities. As a
matter of fact, EAD turns out to be problematic in: (i)
supporting user-oriented information access; (ii) supporting
flexible control access policies; (iii) enabling interoperabil-
ity between digital archives working in distributed environ-
ments.

2.2 XPath: A Navigational Approach
XPath2 is widely adopted for searching and selecting por-

tions of EAD files. XPath is a language for addressing parts
of an XML document; it provides basic facilities for manip-
ulation of several data types and adopts a path notation
for navigating through the hierarchical structure of an XML
document. “Location path” is a common kind of XPath ex-
pression, which selects a set of nodes relative to a given node
and as output returns the node-set containing the nodes se-
lected by the location path. Each part of an XPath ex-
pression can be composed of three parts: (i) an axis, which
specifies the tree relationship between the nodes; (ii) a node
test, which specifies the node type and expanded-name of
the selected nodes; and (iii) zero or more predicates that
can further refine the selected set of nodes.

As it emerges from the previous discussion, archival sys-
tems typically rely on third-party and standard libraries
for XPath processing. Since the NESTOR data structures
and query primitives are implemented in Java and work in-
memory, we are interested in comparing to state-of-the-art

2http://www.w3.org/TR/xpath/

SERIES E

SERIES D

UNIT L
UNIT I

UNIT
H

UNIT
 G

SUB-FO
NDS C

SERIES
 F

SERIES F

SERIES
E

SERIES
D

UNIT G UNIT H

UNIT I UNIT L

SUB-FONDS C

SUB-FONDS
B

FONDS A

FONDS
ASUB-FONDS B

(a) Euler-Venn representation
 of the NS-M

(b) DocBall representation
 of the INS-M

Figure 2: The archive of Figure 1 modeled with the
NS-M and the INS-M.

in-memory Java-based solutions. Xalan3, Jaxen4 and JX-
path5 are the three most used state-of-the-art Java libraries
for XPath processing.

2.3 NESTOR: A Set-Based Approach
The NESTOR model is defined by two set-based data

models: The Nested Set Model (NS-M) and the Inverse Set
Data Model (INS-M) [8]; they are formally defined in the
context of set theory as a collection of subsets. The most
intuitive way to understand how these models work is to re-
late them to the archival tree. In Figure 2a we can see how
the archive shown in Figure 1 is mapped into an organization
of nested sets based on the NS-M.

From Figure 2a we can see that the NS-M adopts a bottom-
up approach: (i) each set corresponds to an archival division;
(ii) the innermost sets are the leaves of the hierarchy, e.g.
the units; (iii) you create supersets as you climb up the hi-
erarchy, e.g. the series, sub-fonds and fonds. The archival
records are represented as elements belonging to the sets.
With the NS-M an archive is modeled as a collection of sub-
sets where there is a set – i.e. “fonds” – which contains all
the subsets – i.e. “subfonds”, “series”, “units”– of the archive
and where two subsets at the same level – e.g. two “series”
– cannot have common elements, thus their intersection is
empty.

As shown in Figure 2b, the INS-M adopts a top-down ap-
proach: (i) each set corresponds to an archival division; (ii)
the innermost set is the root of the hierarchy, i.e. the fonds;
(iii) you create supersets as you climb down the hierarchy,
e.g. sub-fonds, series and then units. As for the NS-M, also
in this case the archival records are represented as elements
belonging to the sets. With the INS-M an archive is modeled
as a collection of sets where there exists an archival division
shared by all other divisions; in our example, the “fonds” is
the archival division common to all the other divisions in
the archive.

This vision overcomes EAD limitations because in NESTOR
each archival record is an element belonging to a set which
can be selected and managed independently from the other
records; thus, we can return to the users a list of records be-
longing to different archival divisions at any level allowing
them to access and consult the records hiding the complexity
of the whole archival structure.

3http://xml.apache.org/xalan-j/
4http://jaxen.codehaus.org/
5http://commons.apache.org/proper/commons-jxpath/

NESTOR can be instantiated by three data structures [9]:
Direct Data Structure (DDS), Inverse Data Structure (IDS)
and Hybrid Data Structure (HDS). Each one of these struc-
tures is composed by three dictionaries, one containing the
materialization of the sets, one containing the direct subsets
of each set and the last one containing all the supersets of
each set. DDS is a structure built around the constraints
defined by the NS-M, IDS is a structure built around the
constraints of INS-M and HDS can be seen as a mixture
between DDS and IDS [9].

When we deal with a collection of sets defined by NESTOR,
we can distinguish between set-wise and element-wise prim-
itives. The former ones enable us to query the structure of
an archive, whereas the latter ones query the content of the
archive (i.e., the archival records). For instance, by means
of the set-wise primitives we can ask for all the series of a
specific sub-fonds, whereas with the element-wise primitives
we can ask for all the archival records belonging to the series
of that sub-fonds.

NESTOR primitives (i.e., Descendants, Ancestors, Chil-
dren and Parent) are efficient alternative implementations of
XPath primitives as shown in [9] where we conducted an ex-
tensive evaluation on five EAD collections, Wikipedia and
two synthetic XML datasets and we compared NESTOR
with state-of-the-art XPath engines. In [9] we evaluated
NESTOR on average performances by testing the primitives
on thousands of files and then presenting mean execution
times; in this paper we investigate how NESTOR primitives
behave with specific digital archives and how efficiently they
answer to common and frequent archival operations.

3. USE CASES
We present three user-oriented use cases derived from com-

mon interaction patterns individuated in the archival do-
main and four interoperability use cases based on the ex-
change of archival data in distributed environments.

3.1 User-oriented Use Cases

Use Case 1: identifying and selecting relevant material
This use-case is related to the“searching for known material”
information seeking activity investigated by Duff and John-
son in [5]. This activity may be performed by researchers
at the beginning of a project to establish a context and de-
tect relevant information and it may be re-iterated several
times to “reevaluate information that has suddenly gained
new significance” [5]. Such activities can be associated to
the top-down pattern of interaction identified by Freund and
Toms in [11] where the users “start at the highest level [of
an archival description], gain background and context, and
work down to the most specific level of detail”.

In Figure 3 we can see a graphical representation of this
use case. We consider an archival system that answers a
user query that starting from a given context node requires
to return a list of archival records. From this list the user
then selects the description of, say, sub-fonds C; in this case
two frequent queries to be answered are: to return the sub-
divisions (series D, series E, series F, unit G, unit H, unit I
and unit L) which are part of this sub-fonds – i.e a structural
query – and to return all the records (the actual records
or their descriptions contained by the three series and four
units which are children of sub-fonds C) associated to this
sub-fonds – i.e a content query.

SERIES F

SERIES ESERIES
D

UNIT
G

UNIT
H

UNIT I UNIT L

SUB-FONDS C

SUB-FONDS
B

FONDS A

Structural Operation: What are the sub-divisions composing Sub-Fonds C?
 Content Operation: Which records belong to Sub-Fonds C?

SERIES F

SERIES
 E

SERIES
D

UNIT
G

UNIT
H

UNIT I UNIT L

SUB-FONDS C

Descendants Structural
 Operation:

Get all the subsets of
sub-fonds C

Descendants
Content

Operation:
Get all the elements

belonging to
sub-fonds C

Descendants Structural
 Operation:

Get all the supersets
of sub-fonds C

Descendants
Content

Operation:
Get all the elements

belonging to
sub-fonds C and

its supersets

(b) Nested Sets Model (c) Inverse Nested Sets Model

Use-case 1: Identifying and selecting relevant material

SERIES E

SERIES D

UNIT L
UNIT I

UNIT
H

UNIT
 G

SUB-FO
NDS C

SERIES
 F

FONDS
ASUB-FONDS B

SE
RI

ES
 E

SE
RI

ES
 D

UN
IT

 L
UN

IT
 I UN

IT

H UN
IT

 G

SUB-FONDS C

SE
RI

ES

 F

FONDS
A

SUB-
FONDS C

SERIES D

SERIES E

SERIES F

UNIT
G

UNIT
H

UNIT
I

UNIT
L

SUB-
FONDS B

Archival record 2
Archival record 3

Archival record 4
Archival record 5

Archival record 6

Archival record 11
Archival record 12

Archival record 13Archival record 1

Archival record 10

Archival record 7

Archival record 8

Archival record 9

(a) Tree

SUB-
FONDS C

SERIES
D

SERIES
E

SERIES F

UNIT
G

UNIT
H

UNIT
I

UNIT
L

Archival record 2
Archival record 3

Archival record 4
Archival record 5

Archival record 6

Archival record 11
Archival record 12

Archival record 10

Archival record 7

Archival record 8

Archival record 9

Archival record 2
Archival record 3

Archival record 4
Archival record 5
Archival record 6

Archival record 7
Archival record 8
Archival record 9

Archival record 11
Archival record 12
Archival record 10

 /fondsA/subfondsC/
descendant-or-self::*

 /fondsA/subfondsC/
 descendant-or-
 self::*/text()

Structural expression: Content expression:

Figure 3: Use-case 1: Identifying and selecting relevant material.

With a navigational approach based on XPath, the struc-
tural query corresponds to the following XPath expression:
/fondsA/subfondsC/descendant-or-self::*; and the con-
tent query corresponds to: /fondsA/subfondsC/descendant-
or-self::*/text(). Both these expressions require to nav-
igate the archival tree to the sub-fonds C division and then
to visit all of its descendants.

In Figure 3 we see that the NS-M answers the structural
query by returning all the subsets of sub-fonds C (i.e. all
its descendants), whereas the INS-M answers it by return-
ing all the supersets of the sub-fonds (i.e. all its ancestors).
The content query is answered by NS-M by returning all the
elements belonging to sub-fonds C, whereas INS-M has to
return the union of all the elements belonging to sub-fonds
C and its supersets. We can see that the NS-M and the
INS-M answer the queries by exploiting two different prim-
itives, the first is based on the subsets of a set, whereas the
second is based on its supersets. In NS-M the descendants
of an archival node, say sub-fonds C, are the subsets of the
set representing sub-fonds C; whereas, in INS-M the descen-
dants are the supersets of the given set.

Use Case 2: building contextual knowledge
“Building context is the sine qua non of historical research”[5]
and one of the main functions of archives. As we described
above, the context of an archival record is required to dis-
close its full informational power and thus, reconstructing
the knowledge of a record or of an archival division is one of
the most common and important operation an archival sys-
tem has to provide. This operation can be associated with
the bottom-up pattern of interaction identified also by [11]
where the users “start at the most detailed level seeking spe-
cific information, and then move back to the higher levels
to make sense of the information and place it in context if
necessary”.

Figure 4 presents the operations required to“build contex-
tual knowledge” of an archival description. To better guide
the user when exploring the archive the more accurate the
contextual information returned are, the better; indeed, if
we return the whole archive to the user then s/he might be
disoriented by the large amount of heterogeneous informa-

tion [22]. To address this aspect we need to return to the
user all and only the archival divisions from the selected unit
up to the root.

If we consider the case presented in Figure 4 where we
need to reconstruct the context of “Unit L”, we can see that
a structural query needs to return all the archival divisions
up to the root – i.e., the ancestors of unit L which are series
F, sub-fonds C and fonds A – and the content query returns
all the records or descriptions contained by these divisions.

With an XPath-based approach, the structural query (e.g.,
/fondsA/subfondsC/seriesF/unitL/ancestor-or-self::*)
requires to navigate the archival tree from the leaf “unit L”
up to the root; the output of this query is a sub-tree with
the same root of the original tree, but containing only those
nodes on the path between “Fonds A” and the leaf “unit L”.
The content query (/fondsA/subfondsC/seriesF/unitL/ancestor-
or-self::*/text()) does the same operation but selects
only the data nodes that are then returned to the user.

As shown in Figure 4, the NS-M answers the query about
the context by exploiting a set-wise primitive which returns
all the supersets of the selected division, whereas the INS-M
does so by returning all its subsets. This operation also has
an element-wise counterpart answering the content query
and in this case, NS-M returns all the elements belonging to
the union of the supersets of the selected unit, whereas the
INS-M simply returns the elements belonging to the set of
the unit.

Use Case 3: seeking unknown archival material
This use-case is related to the “becoming oriented to a new
archive or collection” information seeking activities inves-
tigated in [5]. It analyses a common scenario where users
have not a clear idea about what they are looking for and
may proceed systematically from an archival division to the
other. This use case is also related to the two previous ones
because, among other operations, it may require to analyze
the descendants of a given archival division or record as well
as to climb up the hierarchy. Indeed, we can see this use
case as a combination of the top-down and the bottom-up
patterns and can be associated to the “systematic interro-
gation” interaction [11], where the users “develop hypotheses

SERIES F

UNIT L

SUB-FONDS C
FONDS

A

FONDS
A

SUB-FO
NDS C

SERIES F

UNIT L

SERIES F

SERIES
 E

SERIES
D

UNIT
G

UNIT
H

UNIT I UNIT L

SUB-FONDS C

SUB-FONDS
B

FONDS A

9

Structural Operation: What is the context of unit L?
 Content Operation: Which records are related to record 9?

Ancestors Structural
 Operation:
Get all the

supersets of
unit L

Ancestors Content
Operation:

Get all the elements
belonging to unit L
and its supersets

Ancestors Structural
 Operation:

Get all the subsets
of unit L

Ancestors Content
Operation:

Get all the elements
belonging to unit L

(b) Nested Sets Model (c) Inverse Nested Sets Model

Use-case 2: Building contextual knowledge

SERIES E

SERIES D

UNIT L
UNIT I

UNIT
H

UNIT
 G

SUB-FO
NDS C

SERIES
 F

FONDS
ASUB-FONDS B

FONDS
A

SUB-
FONDS C

SERIES D

SERIES E

SERIES F

UNIT
G

UNIT
H

UNIT
I

UNIT
L

SUB-
FONDS B

Archival record 2
Archival record 3

Archival record 4
Archival record 5

Archival record 6

Archival record 11
Archival record 12

Archival record 13Archival record 1

Archival record 10

Archival record 7

Archival record 8

Archival record 9

 /fondsA/subfondsC/
seriesF/unitL/
ancestor-or-self::*

/fondsA/subfondsC/
seriesF/unitL/
ancestor-or-self::*/
text()

Structural expression: Content expression:

FONDS
A

SUB-
FONDS C

SERIES F

UNIT
L

Archival record 2
Archival record 3

Archival record 4
Archival record 5

Archival record 1

Archival record 9

(a) Tree

Archival record 1

Archival record 2
Archival record 3

Archival record 4
Archival record 5

Archival record 9

Figure 4: Use-case 2: Building Contextual Knowledge.

SERIES F

SERIES ESERIES
D

UNIT
G

UNIT
H

UNIT I UNIT L

SUB-FONDS C

SUB-FONDS
B

FONDS
A

UNIT
G

UNIT
H

UNIT I UNIT L

UNIT L

FONDS
A

SERIES E

SERIES D

UNIT I

UNIT
H

UNIT
G

SUB-FO
NDS C

SUB-FONDS B

SERIES F

UNIT I

UNIT
H

UNIT
G

UNIT L

Structural Operation: Which divisions are related to unit L?

Content Operation: Which records are related to unit L?

Parent and Children
 Structural Operations:

Get all the subsets
 of the superset

of unit L

Parent and Children
 Structural Operations:

Get all the elements
of the subsets of the
 superset of unit L

Parent and Children
 Structural Operations:

Get all the supersets
of the subsets of

unit L

Parent and Children
 Structural Operations:

Get all the elements
 of the supersets of
the subset of unit L

(b) Nested Sets Model (c) Inverse Nested Sets Model

Use-case 3: Seeking unknown archival material

FONDS
A

SUB-
FONDS C

SERIES D

SERIES E

SERIES F

UNIT
G

UNIT
H

UNIT
I

UNIT
L

SUB-
FONDS B

Archival record 2
Archival record 3

Archival record 4
Archival record 5

Archival record 6

Archival record 11
Archival record 12

Archival record 13Archival record 1

Archival record 10

Archival record 7

Archival record 8

Archival record 9

Structural expression: Content expression:

(a) Tree

 /fondsA/subfondsC/
seriesF/unitG/parent::*

 /fondsA/subfondsC/
seriesF/child::*

UNIT
G

UNIT
H

UNIT
I

UNIT
L

Archival record 6

Archival record 7

Archival record 8

Archival record 9

 /fondsA/subfondsC/
seriesF/unitG/
parent::*/text()

 /fondsA/subfondsC/
seriesF/child::*/
text()

Archival record 6
Archival record 7
Archival record 8
Archival record 9

Figure 5: Use-case 3: Seeking unknown archival material.

as to where in the finding aids structure the information is
most likely to be and check each one in turn”.

In Figure 5 we show this use case where the user selects an
archival division or a record and then asks for all the archival
divisions (structural or set-wise) or all the records (content
or element-wise) at the same level of the selected element
(e.g. the siblings of this element). For instance, if the user
selects one of record descriptions represented by “Unit L” in
the figure, this operation allows her/him to retrieve all the
other descriptions connected to it (e.g. all the sibling units
of “Unit L” or the elements belonging to them).

We can see that to answer this interrogation, both from
the structural and the content viewpoints, the navigational
approach requires two XPath expressions where the first one
returns the parent node of the given node and the second,
starting from this last one node, returns all of its children;
note that to do this, navigational approaches need to visit
each child node and thus the higher the number of children,
the higher the complexity of this operation.

The NS-M answers the query with a set-wise primitive by

returning all the direct subsets (i.e. the children) of the su-
perset (i.e. the parent) to which the selected unit belongs;
as usual, the INS-M reverses this logic and answers by re-
turning all the direct supersets of the subset to which the
selected unit belongs. The element-wise primitive takes the
sets outputted by the set-wise one and then returns all the
elements belonging to them.

3.2 Interoperability-oriented Use Cases
As described above and reported in [15], digital finding

aids based encoded by the EAD standard represent a bar-
rier towards the very interoperability this standard aims to
enable. Indeed, as we see below, with EAD there are sev-
eral OAI-PMH functions which cannot be used by archival
systems. On the other hand, NESTOR set-based operations
can be straightforwardly employed by archival systems to
use all OAI-PMH functionalities with digital finding aids [8].

Use Case 4: Get Records
This use case is based on the a common OAI-PMH request
where a service provider requests all the records belonging
to an archive. This use case can be addressed also by navi-
gational approaches just by exchanging the whole EAD file
via OAI-PMH.

NESTOR addresses this case by relying on the descendant
content operation shown in Figure 3 with a slight variation;
indeed in the figure we ask for all the descendants of sub-
fonds C, whereas in this case we are asking the NS-M to
return the set representing “Fonds A” which contains all the
records in the archive, and the INS-M to return the union of
all records belonging to the set “Fonds A” and its supersets.

Use Case 5: Get Sub-hierarchy
This use case is a specification of the previous one where the
service provider requests only those records belonging to the
sub-hierarchy rooted in a given archival division. Naviga-
tional approaches do not apply to this case, whereas NESTOR
can address it by means of the descendant content operation
as shown in Figure 3.

Use Case 6: Get Context
In this case the service provider requests all the records be-
longing to a specific division, say “Unit L”, and to all the
related divisions up to the root as shown in Figure 4.

As in the previous case, navigational approaches do not
apply to this case, whereas NESTOR addresses it by em-
ploying the ancestor content primitive which for the NS-M
returns the union of all the records belonging to “Unit L”
and its supersets and for the INS-M returns all the elements
belonging to the “Unit L”.

Use Case 7: List Sets
This use case is related to the“listSets”OAI-PMH verb“used
to retrieve the set structure of a repository” and allows the
service provider to know the structure of a local repository
in advance.

This request cannot be answered by an XPath expression
because it is not possible to extract only structural informa-
tion filtering out all data nodes; moreover, the OAI-PMH
set-based organization of metadata does not apply to EAD.
On the other hand, answering the “listSets” verb is natural
for NESTOR because it retains the structure by exploiting
inclusion relationships between sets. Therefore, it answers
this request by employing the descendant structure opera-
tion as shown in Figure 3.

4. VALIDATION
We proposed three different instantiations of NESTOR

according to three alternative data structures, namely DDS,
IDS and HDS. In order to compare the query operations
defined on these data structures with currently adopted so-
lutions for operating on digital archives we selected two EAD
collections that provide us with real-world archival data: the
National Archives of the Netherlands6 and the Library of
Congress finding aids.

We selected ten EAD files taken from these collections
representing a wide variety of archives with different char-
acteristics representing key challenges for archival systems.
The statistics about these files are reported in Table 1.
6http://www.nationaalarchief.nl/

Table 1: Statistics of ten selected EAD files.
Size max average

(MB) # nodes depth fan-out fan-out

EAD-01 0.368 7,316 10 823 4.33
EAD-02 1.853 21,355 10 1,610 1.62
EAD-03 3.131 42,123 13 2,453 1.49
EAD-04 3.866 75,094 9 10,271 1.73
EAD-05 4.043 51,946 12 1,320 1.80
EAD-06 5.310 73,372 12 3,663 1.87
EAD-07 6.017 57,362 14 565 1.91
EAD-08 9.242 103,703 18 340 1.62
EAD-09 9.746 160,031 14 8,930 2.01
EAD-10 15.512 188,862 17 696 1.62

DDS, IDS and HDS are compared to widely-adopted ready
to use solutions based on the XPath for operating of the
structure and the content of EAD files: Xalan, Jaxen and
JXPath, which represent the state-of-the-art solutions for
dealing with EAD files7.

The main characteristic of EAD files representing a chal-
lenge for XPath libraries is the number of nodes in each
file; the selected files are of increasing sizes to show that
navigational-based solution performances depend by the num-
ber of nodes and the overall dimension of the EAD files,
whereas this does not apply for the set-based operations im-
plemented by NESTOR. Indeed, in Figure 6 we can see that
all the XPath libraries answer in linear time with respect
to the size of the EAD file because they need to navigate
big hierarchies by visiting a great number of nodes. On the
other hand, we can see that IDS answers the descendant
structural operation in constant time for all the EAD files
and it is five orders of magnitude faster than XPath-based
solutions. DDS and HDS show some dependence on the size
of the EAD file; indeed, they need to perform some set op-
erations (more nodes mean more operations) that require
some time, even though for the descendant content oper-
ation, they are several orders of magnitude more efficient
than navigating the archival hierarchy. Overall, IDS is the
best solution for addressing use case 1 and 7, whereas DDS
is the best for use cases 1, 4 and 5.

It is interesting to note that for addressing use cases 1, 4
and 5, XPath-based libraries are slower for the EAD-04 file
which is the one with the highest number of children (i.e.,
10,271) followed by EAD-09 which also has a high number
of children (i.e., 8,930). These two files are challenging for
all the use cases requiring the descendants or the children
of a node such as use cases 1, 3 and 5. Navigational-based
solutions are particularly challenged by this case as we can
see in Figure 6 for the content operation and in Figure 8. On
the other hand, we can see that the IDS and the HDS are
not affected by the high max fan-out of these files given that
they can answer without visiting the high number of child
nodes, but just by returning a set or by performing basic set
operations. DDS requires more set operations than the other
two set-based solutions; even though in most cases it is con-
sistently more efficient than navigation-based solutions, it is
still less performing than IDS and HDS which are extremely
efficient for these cases. The overall performances reported
in Figure 8 with a particular focus on EAD-04 and EAD-09
show that set-based solutions are particularly well-suited to
address the operation employed by use case 3.

7We ensure a fair comparison because all the tested solutions
are implemented in Java, work in central memory and are
tested on the same machine.

Lastly, use case 2 requires to climb up the archival hierar-
chy from a given entry point. We considered EAD files with
variable depth (from 9 to 17) and we validated the ancestor
operations using the deepest node in each hierarchy as en-
try point which represents the worst case scenario for any
archival system. From a performance viewpoint, in Figure 7
we can appreciate the difference between the NESTOR set-
based approaches and the XPath navigational approaches.
Indeed, NESTOR-based solutions behave consistently for all
the tested EAD files and do not depend by the depth and
size of EAD files. On the other hand, the XPath libraries
behave differently from file to file showing a dependence on
the number of nodes, fan-out and depth of the files; for in-
stance, JXPath behaves less efficiently when EAD files have
a high max fan-out (EAD-04 and EAD-09), whereas Xalan
performances worsen as the number of nodes increases.

5. CONCLUSIONS
In this paper we identified and described the barriers pre-

venting an efficient access to archival data. We described
the main drawbacks of EAD and we showed how it impairs
a smooth and efficient access to archival descriptions as well
as that it does not satisfy several interoperability require-
ments.

We analyzed the role of the NESTOR model in the context
of digital archives and described its main advantages with
respect to state-of-the-art navigational-based solutions. We
have seen that NESTOR set-based approach represents a
paradigm shift in the access of XML files which is well-suited
to enable interaction and interoperability functionalities in
the archival context.

We identified and described seven use cases highlighting
the key challenges archival systems have to address in or-
der to deal with common user interaction patterns and to
satisfy interoperability requirements. In this frame of refer-
ence, we compared and discussed strengths and limitations
of navigational-based solutions with respect to NESTOR
set-based ones.

We have seen that NESTOR is a model of access to archival
resources that allows us to better address the identified needs
both from the user and the interoperability viewpoints. From
a quantitative standpoint, the experimental validation con-
firms that NESTOR-based solutions consistently outperform
state-of-the-art solutions; moreover, we have seen that NESTOR-
based solutions are less dependent – or not dependent at all
– on the hierarchical structure of archives than navigational-
based ones.

References
[1] J. C. Chapman. Observing Users: An Empirical Analysis

of User Interaction with Online Finding Aids. J. of Arch.
Org., 8(1):4–30, 2010.

[2] J. G. Daines and C. L. Nimer. Re-Imagining Archival Dis-
play: Creating User-Friendly Finding Aids. J. of Arch. Org.,
9(1):4–31, 2011.

[3] M. G. Daniels and E. Yakel. Seek and You May Find: Suc-
cessful Search in Online Finding Aid Systems. American
Archivist, 73:535–468, 2010.

[4] E. Discovery, S. Shaw, and P. Reynolds. Creating the Next
Generation of Archival Finding Aids. D-Lib Mag., 13(5/6),
2007.

[5] M. W. Duff and C. A. Johnson. Accidentally Found on
Purpose: Information-Seeking Behavior of Historians in
Archives. The Library Quarterly, 72(4):472–496, 2002.

[6] L. Duranti. Diplomatics: New Uses for an Old Science.
Society of Amer. Arch. and Association of Canadian Arch.,
1998.

[7] M. Y. Eidson. Describing Anything That Walks: The Prob-
lem Behind the Problem of EAD. Journal of Archival Or-
ganization, 1(4):5–28, 2002.

[8] N. Ferro and G. Silvello. NESTOR: A Formal Model for
Digital Archives. Inf. Proc. Manage., 49(6):1206–1240, 2013.

[9] N. Ferro and G. Silvello. Descendants, Ancestors, Children
and Parent: A Set-Based Approach to Efficiently Address
XPath Primitives. Inf. Proc. Manage., 52(3):399-429, 2016.

[10] L. Francisco-Revilla, C. B. Trace, H. Li, and S. A. Buchanan.
Encoded Archival Description: Data Quality and Analysis.
Proc. American Society for Inf. Science and Tech., 51(1):1–
10, 2014.

[11] L. Freund and E. G. Toms. Interacting with Archival Finding
Aids. JASIST, 67(4):994-1008, 2015.

[12] I. Huvila. Participatory archive: towards decentralised cura-
tion, radical user orientation, and broader contextualisation
of records management. Archival Science, 8(1):15–36, 2008.

[13] N. A. Khan. Emerging Trends in OAI-PMH Application.
In Design, Development, and Management of Resources for
Digital Library Services, pages 147–159, 2013.

[14] D. V. Pitti. Encoded Archival Description. An Introduction
and Overview. D-Lib Mag., 5(11), 1999.

[15] C. J. Prom. Does EAD Play Well with Other Metadata
Standards? Searching and Retrieving EAD Using the OAI
Protocols. J. of Arch. Org., 1(3):51–72, 2002.

[16] C. J. Prom. User Interactions with Electronic Finding Aids
in a Controlled Setting. The American Archivist, 67(2):234–
268, 2004.

[17] C. J. Prom and T. G. Habing. Using the Open Archives Ini-
tiative Protocols with EAD. In Proc. 2nd Joint Conference
on Digital Libraries, pages 171–180. ACM Press, 2002.

[18] J. Roth. Serving Up EAD: An Exploratory Study on the
Deployment and Utilization of Encoded Archival Description
Finding Aids. The Amer. Arch., 64(2):214–237, 2001.

[19] W. Scheir. First Entry: Report on a Qualitative Exploratory
Study of Novice User Experience with Online Finding Aids.
J. of Arch. Org., 3(4):49–85, 2006.

[20] A. Sexton, C. Turner, G. Yeo, and S. Hockey. Understand-
ing users: a prerequisite for developing new technologies.
Journal of the Society of Archivists, 25(1):33–49, 2004.

[21] S. L. Shreeves, T. G. Habing, K. Hagedorn, and J. A. Young.
Current Developments and Future Trends for the OAI Pro-
tocol for Metadata Harvesting. Library Trends, 53(4):576–
589, Spring 2005.

[22] S. Yako. It’s Complicated: Barriers to EAD Implementation.
American Archivist, 71(2):456–475, 2008.

[23] J. Zhang. Archival Representation in the Digital Age. J. of
Arch. Org., 10(1):45–68, 2012.

[24] X. Zhou. Examining Search Functions of EAD Finding Aids
Web Sites. J. of Arch. Org., 4(3/4):99–118, 2008.

Use-cases 1 and 7

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

Descendant Content Operation

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

Descendant Structural Operation
Use-cases 1, 4 and 5

Figure 6: Execution times of the descendant structural and content operations.

Use-case 2 Use-cases 2 and 6

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

Ancestor Content OperationAncestor Structural Operation
XPath:

Figure 7: Execution times of the ancestor structural and content operations.

Use-case 3

Children Structural Operation

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

Parent Structural Operation

Children Content Operation

Parent Content Operation

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

EAD files

Ex
ec

ut
io

n
Ti

m
es

 (m
se

c)
, l

og
 s

ca
le

DDS
IDS
HDS
Xalan
Jaxen
JXpath

Figure 8: Execution times of the parent and children structural operations.

