
Automated Sensor Registration, Binding and

Sensor Data Provisioning

Pascal Hirmer1, Matthias Wieland1, Uwe Breitenbücher2, and

Bernhard Mitschang1

1 Institute of Parallel and Distributed Systems
2 Institute of Architecture of Application Systems

University of Stuttgart, Universitätsstr. 38, Stuttgart, Germany

{lastname}@informatik.uni-stuttgart.de

Copyright © by the paper’s authors. Copying permitted only for private and academic
purposes.

In: S. España, M. Ivanović, M. Savić (eds.): Proceedings of the CAiSE’16 Forum at

the 28th International Conference on Advanced Information Systems Engineering,

Ljubljana, Slovenia, 13-17.6.2016, published at http://ceur-ws.org

Abstract Today, the Internet of Things has evolved due to an increasing

interconnection of technical devices. However, the automated binding and

management of things and sensors is still a major issue. In this paper, we

present a method and system architecture for sensor registration, binding,

and sensor data provisioning. This approach enables automated sensor

integration and data processing by accessing the sensors and provisioning

the data. Furthermore, the registration of new sensors is done in an

automated way to avoid a complex, tedious manual registration. We enable

(i) semantic description of sensors and things as well as their attributes

using ontologies, (ii) the registration of sensors of a physical thing, (iii) a

provisioning of sensor data using different data access paradigms, and (iv)

dynamic sensor binding based on application requirements. We provide

the Resource Management Platform as a prototypical implementation of

the architecture and corresponding runtime measurements.

Keywords: Internet of Things, Sensors, Ontologies, Data Provisioning

1 Introduction and Background

Nowadays, the integration of sensors becomes more and more important, especially

for the emerging Internet of Things (IoT) [17] and Industry 4.0 [11]. Through the

integration of raw sensor data, high level information can be derived that leads

to huge benefits, e.g., in advanced manufacturing, smart homes or smart cities.

In previous work [9], e.g., we presented SitRS – a service for situation recognition

in smart environments based on raw sensor data. However, in this and in many

other IoT approaches, sensors are manually registered and bound for processing,

which is a complex and tedious task that requires technical knowledge about the

sensors to be registered. Furthermore, adapters have to be manually created and

deployed for each sensor to extract its data and to provision it to the application

that is intended to consume the data. However, these steps are error-prone and

can take hours or even days to be processed manually: a sensor expert has to

configure the sensors, install a sensor gateway, bind the sensors, implement the

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



82 Pascal Hirmer et al.

sensor data provisioning and establish interfaces to applications that intend to

consume the sensor data. By doing so, he constantly has to communicate with

domain-experts that want to build or use sensor-driven applications. In real-world

scenarios, efficiency and accuracy are of vital importance. The drawbacks that

come with a manual registration can lead to high costs due to occurring errors

and a tedious, time-consuming registration process.

In this paper, our goal is to reduce the manual steps to the modeling of

sensors and things using ontologies. All other steps (sensor binding, sensor data

provisioning) can be processed automatically in milliseconds instead of hours or

even days when conducting them manually. By doing so, we can reduce occurring

errors that are more likely with manual processing and, as a consequence, save

costs. To enable this, we need a means for automated sensor registration, sensor

binding, as well as provisioning of the sensor data for further processing. In

this paper, we present a method and system architecture for this means by

(i) using ontologies for the definition of sensors and things, by (ii) enabling

dynamic sensor binding through automated adapter deployment, and by (iii)

sensor data provisioning using different data access paradigms. This enables

direct Machine-to-Application communication by the abstraction of technical

details.

Note that there are also objects in the world that are not observable by

sensors. These objects are not covered in this paper.

The remainder of this paper is structured as follows: In Sect. 2, we describe

related work. In Sect. 3, the main contribution of this paper is presented. After

that, in Sect. 4, we evaluate the approach through runtime measurements of our

prototypical implementation. Finally, in Sect. 5, we give a summary of the paper

and describe future work.

2 Related Work

In [8] the goal is similar to our approach. The authors present a middleware

called Global Sensor Network (GSN), which enables binding data sources like

sensors and data streams with zero programming effort. To realize that, a virtual

sensor abstraction is provided in [8], which allows declarative specification of

deployment descriptors and basic processing of the data using SQL-like queries.

In our approach, we separate these steps strictly. First, the dynamic sensor

binding is done using ontologies. Second, the data is provisioned to sensor-driven

applications.

Sensor description and configuration is standardized in IEEE1451.2 defining

Transducer Electronic Data Sheets (TEDS) [12] that enable the self-description

of sensors. Furthermore, an interface for standardized dynamic plug and play

binding of sensors to networks is provided. In our approach, the physical binding

of sensors is not the focus. We concentrate on an easy provisioning of sensor data

to sensor-driven applications through the Internet. Note that standards such as

the IEEE1451.2 could be used for sensor binding in our approach.



Sensor Registration, Binding and Sensor Data Provisioning 83

In [10], a REST-based interface is built to access sensors and retrieve their

data. By doing so, this paper assumes an already in place sensor network bound

to a gateway, which provides information of the sensors and manages their access

for data retrieval. In contrast, our paper does not necessarily assume such a

gateway and manages the sensor binding itself. Only the provisioning of sensor

data is similar to our approach in [10].

In recent years, a large amount of Machine-to-Machine (M2M) gateways

have been created such as FIWARE, OpenMTC3, OpenIoT [16], or GSN [2,1].

These gateways serve as layer between physical sensors and “virtual” sensor

data. It is important to note that the approach in this paper does not try to

compete with these approved platforms but rather uses them, i.e., provides a

more abstracted layer on top in order to enable an easy way to bind things in

contrast to specific sensors, and to automatically provision data of the contained

sensors to sensor-driven applications using Internet technologies. More precisely,

the mentioned platforms can be used as gateways by our approach to realize the

sensor binding.

Middleware between the physical and application layer gain more and more

importance [4]. The main purpose of such middleware systems is to hide and

abstract the physical details in order to allow the programmer to focus on the

development of a specific sensor-driven application. Furthermore, it is important

to abstract from the concrete environment and sensory that will be used after de-

ployment of the application, in order to avoid a cumbersome and time-consuming

configuration in each new environment.

SStreaMWare [7] is a service-oriented middleware for heterogeneous sensor

data. It uses a hybrid approach supporting both centralized data streams and

distributed sensor networks. Furthermore, a generic schema for sensor data

representation is proposed (measures, timestamps and properties) and declarative

queries can be executed on the sensor data streams. SStreaMWare has an approach

similar to ours in managing the sensors and binding them based on the devices

observed.

OntoSensor [14] is a sensor knowledge repository for modeling and management

of sensors. It combines SensorML, IEEE SUMO, ISO 19115, OWL and GML.

The goal of OntoSensor is to achieve a usage for description of sensors in different

application domains. Through the combination of many different sensor definition

languages, the ontologies become heavy-weight and complex. In our approach,

we aim for a particularly lightweight ontology. Because of that, we decided to

use only a subset of SensorML and omit using the whole OntoSensor ontology.

DCON [15] is an ontology for representation of user activity context. In [15],

the authors combine many different OSCAF ontologies4 to create a Personal

Information Model: DDO (for Devices), DPO (for Presence), DCON [15] for

representation of user activity context, and further. This is a specialized area and

the ontologies are very detailed. In our approach the goal is to support any kind

of domain, so the concepts are more generic. Not everything is focused on the

3 www.open-mtc.org/ 4 http://www.semanticdesktop.org/ontologies/



84 Pascal Hirmer et al.

users, in our approach things are the main focus and persons in contrast should

not be monitored for privacy reasons.

In summary, the presented related work is mainly focusing on specific aspects

like the access of sensors using gateways, or the execution of queries on sensor

data streams or in a sensor network. However, the goal of our approach is to

provide an easy-to-use ontology for the Internet of Things that combines sensor

registration, binding of the sensors, and sensor data provisioning. Whereat the

binding of a concrete sensor is done indirectly based on the things that are

monitored by the sensors. Furthermore, our approach allows a separation of

concerns, since the sensor data processing is specified separately, e.g., in the

situation recognition as described in [9], based on situation templates that can be

mapped onto different execution systems. Additionally, our approach allows the

integration of heterogeneous sensor types in a standard way as REST resources

or through a publish-subscribe model so that they can be accessed by multiple

clients and in parallel.

3 Sensor Registration, Binding and Sensor Data

Provisioning

This section presents the main contribution of this paper by introducing a system

architecture and a method for ontology-based sensor registration, binding, and

sensor data provisioning. Figure 1 depicts the overall architecture of our approach.

It consists of the following main components: (i) the sensor registry, storing

meta-information about the physical things and sensors, (ii) the sensor ontology,

containing sensor binding information, (iii) the sensor adapters, extracting the

data from the sensors, that can be deployed directly on a thing or on an adapter

platform, and (iv) the Resource Management Platform (RMP) provisioning the

sensor data as remotely accessible resources (pull) or via a publish-subscribe

approach (push).

Sensor-driven Applications

Sensor Registry

Physical Things with Sensors

…

Service Service

Create 
Resource

Register
Sensors/Objects

Sensor 
Ontology

Sensor Data Storage

Queue
Broker

Sensor 
Adapter 1

Sensor 
Adapter
Platform

Model

Sensor 
Adapter 2

Sensor 
Adapter n

Resource
Management

Platform

Figure 1. Architecture for ontology-based sensor registration and binding

This architecture is applied through a method that enables automated sensor

registration, binding and sensor data provisioning in five consecutive steps. Note

that a full automation of this method is possible.



Sensor Registration, Binding and Sensor Data Provisioning 85

Step 1: Task Definition

– Input: thing identifier, sensor identifier(s), optional: ontology snippet

– Output: thing identifier, sensor identifier(s), optional: ontology snippet

In the first step of the method, the things and sensors to be registered are defined

by so called task definitions. Each task definition contains a unique identifier of

the thing to be registered and, if specific sensors of a thing should be registered,

also the sensors’ identifiers. Detailed information of sensors and things are not

necessary, because they are contained in the sensor ontology (cf. Step 2). In

case a thing or a sensor is not known, i.e., is not represented in the ontology, an

ontology snippet describing their properties has to be added to the task definition,

which will be processed in Step 2. However, in the following, we assume that the

ontology contains all sensors and things of the specific domain our approach is

applied to and is modeled correctly.

Step 2: Ontology Traversal

– Input: thing identifier, sensor identifier(s), optional: ontology snippet

– Output: list of sensor specifications, thing identifier, sensor identifier(s)

Based on the information contained in the task definitions of Step 1, additional,

specific information about things and sensors are retrieved from the ontology next.

The ontology describes technical details that are necessary for an automated

sensor registration, sensor binding, as well as sensor data provisioning, and can

also be used as meta-data source by sensor-driven applications. These information

include sensor specifications (accuracy, frequency, ...), information about the

sensor access, i.e., about sensor binding in terms of the corresponding adapter

in a sensor adapter repository, and information about the contained sensors of

a thing. To enable an efficient storage and retrieval of these information, we

use ontologies based on the XML-based sensor markup language SensorML [6].

Ontologies offer a means for an automated editing and extension, e.g., using

generated SPARQL queries. Furthermore, in Internet of Things scenarios, the use

of ontologies is commonly accepted [14,13,3] due to the heterogeneous, dynamic

environments that have to be integrated. On sensor registration, we traverse the

ontology and search for the corresponding entry of the sensor or thing. Once

the relevant sensor information is found, it is used for automated sensor binding,

which is described next.

Step 3: Sensor Adapter Deployment / Automated Sensor Binding

– Input: list of sensor specifications, thing identifier, sensor identifier(s)

– Output: list of successfully deployed adapters

After the information necessary to bind the sensors has been extracted from the

ontology, the next step is the automated sensor binding and, furthermore, the

provisioning of the sensor data. To enable this, we first need a means to extract



86 Pascal Hirmer et al.

the sensor data from the corresponding sensors. This requires adapters, which

are connecting to the sensors’ serial interfaces, extract the data as a stream, and

send it to the Resource Management Platform (e.g., using HTTP or MQTT).

An advantage of our approach is that the adapters do not have to care about

sensor data provisioning to sensor-driven applications, because they send the

data directly to the centralized RMP that manages the provisioning for them.

Sensor adapters are deployed automatically. First, the adapters are retrieved

from a repository and can be parameterized (e.g., with the RMP’s URL). The

information, which adapter is needed to bind the sensor(s) defined by the task

definition is extracted from the ontology in Step 2. There are several possibilities

how an adapter deployment can be realized: if the sensor is connected to a thing

that is containing a powerful runtime environment such as, e.g., a Raspberry

Pi, the adapter can be deployed directly using, e.g., SSH connections or more

sophisticated approaches such as TOSCA [5]. However, in most cases this is

not possible. Because of that, the adapters have to be deployed on external

platforms, either self-implemented or using approved solutions, such as FIWARE

or OpenMTC, that are capable to connect to the sensors, even if, e.g., they are

embedded into a production machine, using Machine-to-Machine standards.

Step 4: Sensor Data Provisioning

– Input: list of successfully deployed adapters

– Output: REST resource URI(s), queue topic(s)

Once a sensor adapter is deployed and activated, it starts sending data to the

RMP. However, the data can only be accessed by the sensor-driven applications

after the fourth step is processed, the sensor data provisioning. In this step,

the interfaces to the sensor-driven applications are established. The sensor data

provisioning step represents the integration of all components, from the sensor

adapters to the sensor data provisioning through the RMP. After the automated

adapter provisioning (Step 3), the RMP is informed that the registered sensors

have started sending their data. By doing so, entries in the sensor data storage

as well as corresponding REST resources are created for each sensor to provision

its data to enable the pull approach. Furthermore, we create topics in a queue

for each sensor and publish these topics to the sensor-driven applications that

can subscribe to them to enable the push approach. After this step, the sensor

data are available to sensor-driven applications.

Step 5: Sensor Deactivation

– Input: thing identifier, sensor identifier(s)

– Output: list of successfully deactivated sensors

The last step is the deactivation of sensors once they are not needed anymore.

To do so, the thing and the type of the sensor have to be provided to the sensor

registry. Based on this information, the sensor registry finds running sensors of a

thing with the corresponding type, connects to the adapters to terminate them,



Sensor Registration, Binding and Sensor Data Provisioning 87

clears the values from the sensor data storage, and removes the REST resources

and the topics in the queue. Deactivation of sensors saves energy and, thus, costs.

4 Evaluation

We implemented an open-source prototype of the RMP that is in productive

use within the project SitOPT. The sensor registry component is based on

NodeJS5 and offers a REST-based programmatic interface. The sensor registry

uses SPARQL requests to access the sensor ontology, SSH to deploy the sensor

adapters and HTTP to notify the RPM that a new sensor has been registered.

Currently, the native file system is used as adapter repository. The ontology

was defined using the Web Ontology Language (OWL) 1.16. The access to the

ontology is done by SPARQL requests through the Apache Jena7 framework.

The RMP is also implemented in NodeJS, which enables an easy definition of a

RESTful interface. Furthermore, due to the lightweight platform, it offers high

efficiency. The sensor data storage is implemented using the NoSQL database

mongodb8, which allows high efficiency, scalability, and data replication. The

direct push approach was realized using MQTT9 and the Mosquitto10 broker.

We conducted runtime measurements of our prototype for evaluation purposes

using a machine with a Core i5-3750K @3.4GHz and 8 GB RAM. We measured

the average runtime of the steps described in the previous section based on 10

measurements: (i) the sensor registration took 1,91 ms, (ii) the ontology traversal

6,73 ms, and (iii) the adapter deployment 139,63 ms. The measurements show

that we could achieve the efficiency goals of this paper (cf. Sect. 1).

5 Summary and Future Work

In this paper, we present an approach for ontology-based sensor registration and

sensor data provisioning. We introduce a system architecture and a method to

make our approach applicable for a wide range of Internet of Things applications.

After registration of a sensor, an adapter is deployed automatically that reads

the sensor data, and passes it to the Resource Management Platform. The RMP

creates topics in a MQTT queue and HTTP REST resources to provision the data.

By doing so, we created an easy-to use solution for sensor-driven applications

to bind sensors and access their data. Our goal was the registration, binding

and sensor data provisioning in an automated manner to enable this within

milliseconds in contrast to a manual processing of these steps that can take up

to hours or even days. This goal was achieved as described in our evaluation.

In the future, we will add security, privacy and robustness features to our

prototypical implementation and, furthermore, we will work on the performance

that will supposedly decrease by adding these features. In addition, we will work

on optimizations for our presented method.

5 http://nodejs.org/ 6 http://www.w3.org/Submission/owl11-overview/
7 https://jena.apache.org/ 8 http://www.mongodb.org/ 9 http://mqtt.org/
10 http://mosquitto.org/



88 Pascal Hirmer et al.

Acknowledgment. This work is partially funded by the DFG project SitOPT

(610872) and by the BMWi project SmartOrchestra (01MD16001F).

References

1. Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor

network deployment. In: Proceedings of the International Conference on Very Large

Data Bases (VLDB 2006) (2006)
2. Aberer, K., et al.: Zero-programming Sensor Network Deployment. In: Proceedings

of the Service Platforms for Future Mobile Systems (2007)
3. Attard, J., Scerri, S., Rivera, I., Handschuh, S.: Ontology-based Situation Recogni-

tion for Context-aware Systems. In: Proceedings of the 9th International Conference

on Semantic Systems (2013)
4. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Computer

Networks (2010)
5. Binz, T., et al.: TOSCA: Portable Automated Deployment and Management of

Cloud Applications, pp. 527–549. Springer (2014)
6. Botts, M., et al.: OGC Sensor Web Enablement: Overview and High Level Archi-

tecture. In: GeoSensor Networks. Springer Berlin Heidelberg (2008)
7. Gurgen, L., Roncancio, C., LabbÃľ, C., Bottaro, A., Olive, V.: SStreaMWare:

a service oriented middleware for heterogeneous sensor data management. In:

International Conference on Pervasive Services (2008)
8. Hauswirth, M., Aberer, K.: Middleware support for the" Internet of Things". 5th

GI/ITG KuVS Fachgespräch "Drahtlose Sensornetze" (2006)
9. Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbücher, U., Leymann,

F.: SitRS-A Situation Recognition Service based on Modeling and Executing Situ-

ation Templates. In: Proceedings of the 9th Symposium and Summer School on

Service-Oriented Computing (SUMMERSOC 2015). pp. 247–258 (2015)
10. Ishaq, I., Hoebeke, J., Rossey, J., De Poorter, E., Moerman, I., Demeester, P.:

Facilitating Sensor Deployment, Discovery and Resource Access Using Embedded

Web Services. In: Innovative Mobile and Internet Services in Ubiquitous Computing

(IMIS), 2012 Sixth International Conference on. pp. 717–724 (July 2012)
11. Jazdi, N.: Cyber physical systems in the context of Industry 4.0. In: Automation,

Quality and Testing, Robotics, 2014 IEEE International Conference on (2014)
12. Lee, K.: IEEE 1451: A standard in support of smart transducer networking. In:

Instrumentation and Measurement Technology Conference, 2000. IMTC 2000.

Proceedings of the 17th IEEE (2000)
13. Probst, F., Gordon, A., Dornelas, I.: OGC discussion paper: ontology-based repre-

sentation of the OGC observations and measurements model. Institute for Geoin-

formatics (ifgi) (2006)
14. Russomanno, D.J., Kothari, C.R., Thomas, O.A.: Building a Sensor Ontology: A

Practical Approach Leveraging ISO and OGC Models. In: IC-AI (2005)
15. Scerri, S., Attard, J., Rivera, I., Valla, M.: DCON: Interoperable Context Represen-

tation for Pervasive Environments. In: AAAI Workshops (2012)
16. Soldatos, J., Kefalakis, N., Hauswirth, M., et al.: OpenIoT: Open Source Internet-

of-Things in the Cloud. In: Interoperability and Open-Source Solutions for the

Internet of Things. Springer International Publishing (2015)
17. Vermesan, O., Friess, P.: Internet of Things: Converging Technologies for Smart

Environments and Integrated Ecosystems. River Publishers (2013)


