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Abstract. The successful application of model-based testing (MBT)
heavily relies on constructing a complete and coherent model of a system.
This implies that inconsistency, incompleteness, or inaccuracy due to
human error bear significant consequences. We propose a formal frame-
work for MBT which we call AHR: agile, human-centred and refinement-
oriented. AHR captures an iterative construction of models and test
plans, as well as supports refinements at different levels of abstraction.

1 Introduction

Model-based testing (MBT) is a technique for generating test cases from system
model. Testers using this approach concentrate on a data model and generation
infrastructure instead of hand-crafting individual tests, cf. [2, 4]. MBT heavily
relies on models of a system and its environment to derive test cases for the
system [19]. A system model is a result of the process of abstraction, the aim of
which is a simplification of the complexity of a system and its environment. If the
system is complex enough, however, several refinement steps may be required,
each time using a more detailed representation of the system. Testing method-
ologies for complex systems therefore often integrate different abstraction levels
of the system representation. The crucial points for each abstraction level are
(i) whether we really require the whole representation of a system to analyse
its core properties, and (ii) which test cases are required on this level [11]. As
pointed out in [8], MBT makes sense only if the model is more abstract than the
system under test. This implies that only behaviour encoded in the model can
be tested, and that different levels of abstraction must be bridged. Modelling in
MBT remains a strictly human activity, and the successful employment of MBT
techniques heavily relies on the human factor. [4] mentions the steep learning
curve for modelling notations as one barrier in the adoption of MBT in industry.
Another barrier is the lack of state-of-the-art authoring environments, which can
provide (semi-automatic) support for the human tester and help minimise the
number of human errors as well as their impact.

Construction of complex models heavily relies on tacit human knowledge and
therefore will always remain the task of a human tester, escaping full automa-
tisation. The complexity and error-prone nature of this task, however, calls for
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more emphasis on human-centred approaches in automatic support of model-
based testing. There are numerous works on human error in software develop-
ment [6, 15] and human-oriented software development [12,13,17].

In this paper we introduce AHR (agile, human-oriented, refinement-oriented),
a formal framework for integrating human-centred considerations into MBT with
multiple levels of abstraction. This framework extends the ideas of Human-
Centred Agile Test Design (HCATD), cf. [20], where it is explicitly acknowl-
edged that the tester’s activity is not error-proof: human errors can happen,
both in the model and the test plan, and should be taken into account. HCATD
combines agile modelling with test planning, with the idea to explicitly make
room for inconsistency, incompleteness and inaccuracy of models and test plans
in MBT. The discovery of an error or incomplete information may cause the
tester to return to the model and refine it, which in its turn may induce further
changes in the existing test plan. Agile software development process focuses on
facilitating early and fast production of working code [9] by supporting itera-
tive, incremental development. The term “agile” in AHR is meant to reflect the
iterative and incremental nature of the process of modelling and test planning.
We demonstrate the applicability of AHR using an example from the domain of
combinatorial testing of cyber-physical systems. The framework can be seen as
the first step towards developing tools and environments supporting the human
modeller/tester in agile MBT.

2 The AHR Framework

The proposed AHR framework has three core features:

A Agile: Both the test plan and system model at each abstraction level of mod-
elling/implementation are agile in the sense that they are (only) sufficiently
complete, accurate and consistent (with coverage requirements); error cor-
rection and specification extension are iteratively performed.

H Human-centred: Error correction and specification extension/completion can
be supported by posing series of queries or issuing alerts to the tester.

R Refinement-oriented: Refinement is performed in the framework in several
ways: (i) the usual static refinement of system properties when moving be-
tween abstraction levels, (ii) dynamic refinement of system properties and
test plans as a result of information completion or error correction.

Let S be the system under test. Assume that we construct a model with m
levels of abstraction. We say that S can be completely described at each level
l by the set PROPl(S) of its properties. The main two tasks of the human
tester in the process of MBT are (1) to construct an appropriate abstraction
M of S, and (2) to propose a test suite that validates S against M according
to some chosen coverage requirements. For performing the task (1), we have to
decide which properties of the system are important to model/implement (and,
respectively, to test) and which need to be abstracted away. Thus, we have to
partition the set PROPl(S) into two disjoint subsets: LPROPl(S) – the properties
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to be modelled/implemented and tested, and ABSTRl(S) – the properties to be
abstracted away, knowingly or unknowingly.

LPROPl(S) ∪ ABSTRl(S) = PROP(S)

LPROPl(S) ∩ ABSTRl(S) = ∅

The properties LPROPl(S) might include the pre- and post-conditions of ac-
tions. We denote the pre- and post-conditions of an action Act on the level l by
Prel(Act) and Postl(Act) respectively.

On each abstraction level the traceability between the system properties and
the corresponding tests is crucial for our approach (cf. also Figure 1). If the
information is not important on the current level, it could influence on the overall
modelling result after some refinement steps, i.e., at more concrete levels that
are closer to the real system in the physical world. Therefore, while specifying
system we should make all the decisions on abstraction in the model transparent
and track them explicitly. In the case of contradiction between the model and
the real system this would allow us to find the problem easier and faster.
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Fig. 1. AHR Framework

To introduce an explicit representation of incompleteness, which is manageable
and traceable at different levels of abstraction, we suggest to divide the set
ABSTRl(S) into two disjoint subsets, ABSTRKNOW

l(S) and ABSTRUNKNOW
l(S):

ABSTRKNOW
l(S) ∪ ABSTRUNKNOW

l(S) = ABSTRl(S)

ABSTRKNOW
l(S) ∩ ABSTRUNKNOW

l(S) = ∅
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This allows us to separate the properties of the system from which we ab-
stract intentionally from those, from which we abstract a unknowingly. The
ABSTRUNKNOW

l(S) properties are not identified/classified at level l due to lack
of information (which may be due to error/omission). Thus, on each level l we
generally operate with three sets of properties:

– LPROPl(S) – properties the tester decided to include at this level,
– ABSTRKNOW

l(S) – properties from which he knowingly abstracts at l;
– ABSTRUNKNOW

l(S) – properties which he unknowingly abstracts at l.

With each refinement step the tester moves some part of system’s properties
from the set ABSTR to the set LPROP. We can say that in some sense the set
ABSTR represent the termination function for the modelling process.

In a similar manner, the set of all tests is divided into three mutually disjoint
subsets on each level l:

– validatedl: the tester confirmed these tests as executable on this abstraction
level according to some chosen confirmation strategy;

– rejectedl: the tester rejected these tests as impossible or irrelevant on this
abstraction level;

– uncertainl: the tester has not classified these tests to be validated/rejected,
as not enough information has been provided for the classification.

3 Combinatorial Test Design with AHR

A type of MBT which uses particularly simple models is combinatorial test
design (CTD), cf. [3, 5, 10]. In CTD a system is modelled using a finite set of
system parameters A = {A1, . . . ,An}. Each of the parameters is associated with
a set of corresponding values V = {V(A1), . . . ,V(An)}. The main challenge of
CDT is to optimise the number of test cases, while ensuring the coverage of given
conditions. Tai and Lei [18] have shown in their experimental work that a test set
covering all possible pairs of parameter values can typically detect 50-75% of the
bugs in a program. In what follows we demonstrate an application of the AHR
framework for CDT. In our approach, we suggest to analyse interactions between
the different values of the parameters, i.e., elements of the form I ⊆

⋃n
1 V(Ai),

where at most one value of each parameter may appear. An interaction of size n
(where some value of each system parameter appears) is a scenario (or test). We
say that a set of scenarios T covers a set of interactions C if for every c ∈ C there
is some t ∈ T , such that c ⊆ t. A combinatorial model E of the system is a set of
scenarios, which defines all tests executable in the system. A test plan is a triple
Plan = (E , C, T ), where E is a combinatorial model, C is a set of interactions
called coverage requirements, and T is a set of scenarios called tests, where T
covers C.

One of the most standard coverage requirements is pairwise testing [7, 18]:
considering every (executable) pair of possible values of system parameters. In
the above terms, a pairwise test plan can be formulated as any pair of the form
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Plan = (E , Cpair(E), T ), where Cpair is the set of all interactions of size 2 which
can be extended to scenarios from E .

Typically, the CTD methodology is applied in the following stages. First the
tester constructs a combinatorial model of the system by providing a set scenarios
which are executable in the system. After choosing the coverage requirements,
the second stage is constructing a test plan, i.e., proposing a set of tests over
the model, so that full coverage with respect to a chosen coverage strategy is
achieved. The set of parameters A as well as the sets of corresponding values V
will be refined and extended along with the refinement and extension of the sets
of properties. Respectively, the sets of tests have to be also refined. When a new
level l + 1 is created by specifying LPROPl+1 and Vl+1, and some parameters
and their values are unchanged while refining the system from level l to level
l+1, then a number of corresponding tests are still unchanged too, which means
that we can also reuse their marking as validated/rejected/uncertain. If we trace
the refinement relations not only between the properties but also between test
plans, this might help to correct possible mistakes more efficiently, as well as
provide additional support if the system model is modified. In AHR, we use
upper indices on the test names to denote that the test belongs to a particular
abstraction level, e.g., test35 would denote that the test5 defined on the Level 3.

4 Example Scenario: A Cyber-Physical System

An important domain in which modelling with different levels of abstraction
is particularly beneficiary is cyber-physical systems (CPS). Our early work on
specification of CPS on abstract level was presented in [14].

Let us consider a cyber-physical system system with two robots R1 and R2

interacting with each other. Using the AHR framework, we model each robot on
Level 1 by two parameters, GM and P :

– GM represents the mode of the robot’s grippers, which can be either either
closed (to hold an object) or open. We specify two system parameters of this
type on Level 1, GM1 and GM2 specifying the gripper modes of R1 and R2

respectively, where V(GM1) = V(GM2) = {open, closed}.
– P represents the robot’s position. On Level 1, we assume to have only three

possible positions for each robot. In the system model on Level 1, we have
two system parameters of this type, P1 and P2 specifying the positions of
R1 and R2 respectively, where V(P1) = V(P2) = {pos1, pos2, pos3}.

In what follows let us assume pairwise coverage requirements. We specify two
meta-operations Give and Take to model the scenario when one robot hands an
object to another robot. A meta-operation Give in which R1 gives an object to R2

can only be performed when the gripper of R1 is closed, the gripper of R2 is open,
and the grippers of both robots are in the same position. This means that not all
test cases are executable and further restrictions should be imposed. Suppose,
however, that the information on the position is erroneously omitted, because
of a human error on specification level while defining the set of LPROP1. Thus,
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LPROP1 = {Pre1(Give)}, where Pre1(Give) = {GM1 = closed,GM2 = open}.
This induces a system model with the corresponding tests (cf. Table 1).

Table 1. Example scenario: System model on Level 1

P1 P2 GM1 GM2 

test1 pos1 pos1 closed open 
test2 pos1 pos2 closed open 
test3 pos1 pos3 closed open 
test4 pos2 pos1 closed open 
test5 pos2 pos2 closed open 
test6 pos2 pos3 closed open 
test7 pos3 pos1 closed open 
test8 pos3 pos2 closed open 
test9 pos3 pos3 closed open 

Initially, all tests are be marked as uncertain. The tester then goes on to construct
a test plan by selecting two tests from the table, for example, test1 and test5.
In this test plan, the tester erroneously omitted a test case including pos3. Once
the tester submits the test plan, test1 and test5 are marked as validated. At
this point the tester’s mistake may be discovered, as pairwise coverage is not
achieved: e.g., the interactions {P1 : pos1, P2 : pos2} and {P1 : pos3, P2 : pos3}
remain uncovered. This can be either due to the fact that the tester considered
non-executable tests as possible or forgot to add some tests.

A human-oriented solution to this kind of problems would be issuing a query
to prompt the tester to either extend the logical condition with P1 = P2 (thus
removing the interaction {P1 : pos1, P2 : pos2} from coverage requirements) or
extend the test plan with test9. To provide a better overview of the plan condi-
tions while analysing whether a new conditions and/or tests should be added, we
also suggest to provide an option show the current conditions. When the tester
decides to mark test9 as validated and to add the logical condition P1 = P2 to the
set LPROP1, the framework will update the set LPROP1 and notify the tester
that the pairwise coverage is achieved under the current selected conditions.
After the corresponding corrections, LPROP1 = {Pre1(Give)}, where

Pre1(Give) = {GM1 = closed,GM2 = open, P1 = P2}

As the next step, the framework reminds the tester that a number of tests are
still marked as uncertain (cf. Figure 3). The tester might either accept with the
current marking or mark all the uncertainties as rejected to switch to an opti-
mised view, where only validated tests are presented to increase the readability.
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P1 P2 GM1 GM2 

test1 pos1 pos1 closed open 
test2 pos1 pos2 closed open 
test3 pos1 pos3 closed open 
test4 pos2 pos1 closed open 
test5 pos2 pos2 closed open 
test6 pos2 pos3 closed open 
test7 pos3 pos1 closed open 
test8 pos3 pos2 closed open 
test9 pos3 pos3 closed open 

Pairwise	
  coverage:	
  
not	
  achieved.	
  

Add	
  following	
  tests?	
  	
  
test2	
  	
  
test9	
  

Add	
  following	
  condi7on?	
  	
  
P1 = P2	
  	
  

Current	
  condi7ons:	
  	
  
GM1 = closed 
GM2 = open	
  	
  

Fig. 2. Example scenario (Level 1 ): Pairwise coverage is not achieved
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Fig. 3. Example scenario (Level 1 ): Pairwise coverage is achieved

5 Conclusions and Future Work

This paper3 introduces the AHR framework for supporting an agile MBT. The
framework explicitly acknowledges that the human tester as well as the system
designer may make mistakes that need to be corrected. Error correction and
specification extension/completion is supported by posing series of queries or
issuing alerts to the tester. AHR involves several abstraction levels of modelling
and testing, where models and test planes can be iteratively updated, completed
and improved during the development process. To illustrate the core features of
the framework, we have presented an example scenario from the domain of cyber
physical systems. AHR has the potential to facilitate the adoption of MBT in in-
dustry, increasing the efficiency of the human tester and providing opportunities
for collaborative efforts. To increase the productivity of our approach, we might
embed it into facilities as the Virtual Experiences Laboratory [1, 16], where the
interoperability simulation and testing are performed remotely.

3 The second author was supported by The Israel Science Foundation under grant
agreement no. 817/15.
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