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Abstract. The heterogeneity of sources in Big Data systems requires
new integration approaches which can handle the large volume of the
data as well as its variety. Data lakes have been proposed to reduce the
upfront integration costs and to provide more �exibility in integrating
and analyzing information. In data lakes, data from the sources is copied
in its original structure to a repository; only a syntactic integration is
done as data is stored in a common semi-structured format. Metadata
plays an important role, as the source data is not loaded into an inte-
grated repository with a uni�ed schema; the data has to come with its
own metadata. This paper presents GEMMS, a Generic and Extensible
Metadata Management System for data lakes which extracts metadata
from the sources and manages the structural and semantical informa-
tion in an extensible metamodel. The system has been developed with
a focus on scienti�c data management in the life sciences which is often
only �le-based with limited query functionality. The evaluation shows
the usefulness in this domain, but also the �exibility and extensibility of
our approach which makes GEMMS also applicable to other domains.

1 Introduction

Data integration has become more dynamic with the introduction of data lakes
[8,10]. Instead of loading transformed, cleaned, pre-aggregated data to an inte-
grated repository, data is loaded in its original structure into a central repository,
and the cleaning and transformation steps are done within the repository [3]. The
advantage is the reduction of integration e�orts which have to be spent before the
repository can be used. Also, this model is more suitable if sources are frequently
changing or cannot be completely de�ned in advance.

Scienti�c applications (e.g., life sciences) are examples in which �exible data
management and integration solutions are required [2]. Data from experiments is
collected and processed in various �les (e.g., CSV, Excel, proprietary �le formats)
using a broad range of tools for image and data analysis. There are no prede�ned
schemas, standards are rarely used, and the work�ow is documented only (if at
all) in a lab notebook in an unstructured form. To avoid repeated experiments for
the same substances, or to learn from other similar experiments, an integrated
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Fig. 1. Spreadsheet Example Fig. 2. Conceptual View of the Model

repository would be very bene�cial for the scientists as they could explore and
analyze the data of previous experiments [9]. Building an integrated repository
for a wide range of scienti�c data is a challenge because of the lack of well-de�ned
schemas and frequently changing requirements. Thus, a metadata repository
managing the descriptions of the data sources would be already very helpful.

Fig. 1 shows a typical example for a data �le in the life science domain. The
spreadsheet has been generated by the control software of some hardware device.
It is self-describing and contains metadata about the experiment (author, date,
parameter values, etc.) as well as the measured data with its schema (e.g., head-
ers in columns and rows). Other data �les may have a di�erent set of metadata
properties, various data structures (e.g., table- or tree-like structures instead of
two-dimensional matrices), multiple data units (e.g., several sheets within one
Excel �le), or completely di�erent syntactical formats (e.g., CSV, XML, JSON).
Metadata might be encoded inside the �le, in the �lename, or the directories
of the �le system. This heterogeneity of managing metadata and data makes it
very hard for scientists to search for data e�ciently. Usually, keyword queries
across the �le system are the major method for searching for information. Data
management is done in scripts by reading and writing text-based data �les.

To support the scientist in her data management activities e�ciently and
e�ectively, a system should provide more sophisticated metadata management
functionalities which includes especially an interface that allows queries over (at
least semi-)structured data and metadata. The metadata should include struc-
tural information (i.e., the schema), but also information about the semantics
of the metadata and data elements. By using semantic annotations, such am-
biguities can be avoided and the semantics of elements can be clearly de�ned.
Especially in the life sciences, ontologies are frequently used to standardize ter-
minologies.

In this paper, we describe the design, implementation and evaluation of a
Generic and Extensible Metadata Management System (GEMMS) which (i)
extracts data and metadata from heterogeneous sources, (ii) stores the metadata
in an extensible metamodel, (iii) enables the annotation of the metadata with
semantic information, and (iv) provides basic querying support. The system
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should be also �exible and extensible, as new types of sources should be easily
integrated, which we prove in the evaluation. GEMMS is a major component in
the data lake system introduced in [5], which can be used for scienti�c data in
the life science domain, currently being developed in the HUMIT project3.

The representation of models and mappings in GEMMS is yet less formal
than in some model management systems [1], but we plan to include more expres-
sive languages based on our previous work on generic model management [6,7].
Similar with data lakes, another incremental integration approach are datas-

paces [4], which features human de�ned mappings in a pay-as-you-go fashion.
In contrast to the envisioned dataspace systems, GEMMS focuses on metadata
management as one of its core functionalities.

The paper is structured as follows. Sec. 2 introduces our metadata model,
while Sec. 3 describes our system and an algorithm for deriving a tree model
from a semi-structured data sources. In Sec. 4, we evaluate our system regarding
extensibility and performance. Sec. 5 concludes the paper and gives an outlook.

2 Metadata Model

Our motivating example in Fig. 1 illustrated that data sources come with di�er-
ent types of metadata. The descriptive metadata in the header of the �le, gives
more information about the contents of the source. It is usually just a list of key-
value pairs which does not follow a strict model. Values are either simple literals
or could have also a complex structure (e.g., value ranges such as `280-850' in
the example). We will model this type of metadata as metadata properties.

More important for the extraction and integration of data is the structural
information of the source, i.e., what is the structure of the raw data contained
in the source. In the example from Fig. 1, the raw data is contained in a matrix,
but other data structures such as trees, graphs, or simple tables are also possible.
Therefore, we must be able to describe the various data structures which might
appear in a data source. In the example, we should model the information that
the matrix has two dimensions and that E1, E2, . . . and 380, 382, . . . are values
in these dimensions. This description can then later be used for mapping the
source data to another data structure or to formulate a query. We model this
data as structure metadata4 in our approach.

Metadata properties and structure metadata are important elements to de-
scribe a data source, but are only of limited use if we do not understand the
names which are used for properties or metadata elements. Furthermore, la-
bels might be understandable for humans, but a system needs to have a more
explicit representation of the semantic information. Therefore, our metamodel
allows the annotation of metadata with semantic data, which link the `plain'
metadata objects to elements from a semantic model (e.g., an ontology term).

Fig. 2 depicts a high-level view over our metadata model. The model elements
Data File and Data Unit have not been discussed so far. In this paper, as we

3 http://www.humit.de
4 In the following, we refer to this type of metadata as `structure data' as we do not
want to abuse the term metadata.

http://www.humit.de
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mainly focus on accommodating �les as data sources, we use the Data File

element as one model component to present the metadata of a �le. We are
currently working on the extension of our approach to handle also general data
sources (e.g., database systems or web services). Thus, in the future, this concept
will be generalized to an element Data Source.

As the main part of our model, a Data Unit represents an independent piece
of data, which might carry its own metadata and raw data. A data unit contains
most of the relevant metadata information and is �exible enough for other types
of data sources as well. The data unit is an abstract entity, containing the struc-
ture of the data it contains, plus additional metadata properties. As all other
elements, the data unit can be also annotated. Furthermore, for each �le type,
the scope of a data unit can be de�ned and which metadata properties are part
of a data unit. This information is provided by a Data Unit Template. For di�er-
ent �le formats, the data unit has of course di�erent semantics. For example, in
Excel �les, data units represent worksheets; in an XML document, di�erent data
units could represent di�erent sub-trees of the whole XML document tree. Two
main advantages of applying data units are that they give users �exibility during
the data ingestion process, and also provide a level of abstraction above data
�les. Data �les, as well as other data sources in general, can be seen as containers
for data units, since the latter are the ones most relevant for the metadata.

With regard to the relationship between structure data and data unit, the
structure data is attached to a data unit, since it carries the raw data, whose
schema should be remembered.

As summary, the data model described in this section performs two main
tasks: (1) capture the general metadata properties in the form of key-value pairs,
as well as structure data to aid in future querying and (2) attach annotations
(usually represented as URIs to ontology elements) to metadata elements.

3 System Architecture

We divide the functionalities of GEMMS into three parts: metadata extraction,
transformation of the metadata to the metadata model, and metadata storage in
a data store. Design and implementation of the system aim at extensibility and
�exibility. The high-level design of the system is depicted in Fig. 3. Even each
relationship has a `uses' role, the most highly coupled component is the metadata
manager, which orchestrates the whole process. Another self-contained module is
the extractor, which uses a module for media type �le detection and a component
parsing �les. The components are described in more detailed in the following.

Fig. 3. Overview of the system architecture
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The Metadata Manager invokes the functions of the other modules and con-
trols the whole ingestion process. It is usually invoked at the arrival of new �les,
either explicitly by a user using the command-line interface or by a regularly
scheduled job. The metadata manager reads its parameters and task from a
con�guration �le and then starts processing the input �les.

With the assistance of the Media Type Detector and the Parser Component,
the Extractor Component extracts the metadata from �les. Given an input �le,
the Media Type Detector detects its format, returns the information to the Ex-
tractor Component, which instantiates a corresponding Parser Component. The
media type detector is based to a large degree on Apache Tika5, a framework
for the detection of �le types and extraction of metadata and data for a large
number of �le types. Media type detection will �rst investigate the �le exten-
sion, but as this might be too generic (e.g., for XML �les), it is possible to re�ne
the detection strategy by specifying byte patterns (which should occur at the
beginning of a �le) or by providing custom detector classes.

When the type of input �le is known, the Parser Component can read the
inner structure of the �le and extract all the needed metadata. Every parser
understands the �le type and data structure of the �le which it is built for,
and takes care of speci�c metadata - either structure data or custom metadata
properties. Note that the high expressiveness of some formats, such as XML,
implies the existence of multiple parsers for the same data �le type, since the
medium is clear (e.g., XML DOM tree), but the structure could be entirely
di�erent. The main distinction between extractor and parser components is that
the extractor module manages di�erent types of metadata, e.g., structure data
or metadata properties, while the parser performs the actual �le reading and
is specialized in a single type and �le structure. The parser uses third-party
frameworks working on a lower level than Tika (e.g., Apache POI). The parsers
also make use of several algorithms, for example, to detect a matrix structure
inside a spreadsheet (as in Fig. 1) or to create an abstract description of a tree
structure (i.e., a structure similar to a DTD or an XML Schema).

One important connection point between the data model and system compo-
nents is the Data Unit Template. It is used to de�ne what information should be
extracted, and the module using it most actively is the parser. Intuitively, a data
unit template gives details about the metadata needed from each data �le type
(cf. Sec. 2). The parser will use the template to instantiate a corresponding data
unit, and then �ll this data unit with the metadata extracted from the �le. Data
unit templates can be more speci�c than a �le type. For example, there is one
�le type for Excel �les, but there can be several data unit templates, each one
specifying a di�erent set of metadata properties to be extracted from the spread-
sheet (metadata properties in the header of a sheet can be di�erent for each �le).
For XML documents, the data unit templates contains XPath expressions which
specify the location of data units and metadata in the XML �le.

The Persistence Component accesses the data storage available for GEMMS.
The Serialization Component performs the transformation between models and
storage formats. As serialized objects have to be handled by the storage engine,

5 http://tika.apache.org

http://tika.apache.org
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Step SDF Chembench File New

Media Type Registration
7 6 custom-mimetypes.xml
1 1 CustomTypes.java

Data Unit Template
22 0 TabularTxtDataUnitTemplate.java X
0 3 DataUnitTemplateDeserializer.java
1 1 DataUnitTemplates.java

Parser 85 0 SdfPropertyParser.java X

Extractor
17 0 SdfExtractor.java X
0 17 ChembenchDescriptorExtractor.java X

Mapping to Media Type 3 3 custom-mimetypes.xml

Table 1. Lines of code needed for each new �le type

Media Type File Count Extraction Time (s) Parsing Time (s)

x-2100bioanalyzer+xml 44 10.01 7.46

x-tecan+vnd.openxmlformats.. 26 13.03 8.95

x-nanodrop+xml 27 25.83 24.07

Table 2. Performance of Parsers and Extractors

it is closely connected to the persistence component. In our current implemen-
tation, we use JSON as serialization format and MongoDB as storage engine.

4 Evaluation

The goal of the evaluation is twofold. On the one hand, we want to show that
GEMMS as a framework is actually useful, extensible, and �exible; and that it
reduces the e�ort for metadata management in data lakes. On the other hand,
we also evaluated the performance of the metadata extraction components, as
it should be possible to apply the system to a large number of �les. Flexibility
and Extensibility: GEMMS has been developed with standard �le types (e.g.,
Excel, CSV, XML) and a few life-science-speci�c �le types in mind. In the eval-
uation, we analyzed the required steps and e�orts for the introduction of new
�le types. We used the �le format SDF6 which is signi�cantly di�erent from the
ones considered earlier; the only commonality is that it is also text-based. The
other �le type is X-Chembench7, which is very similar to CSV �les. The required
steps are shown in the left column of table 1. The 2nd and 3rd column indicate
the number of lines of code to implement the required functionality.

The registration of the new media type (�le type) is straightforward and
just requires a few lines of XML code in the �le custom-mimetypes.xml which
is used by Tika to recognize �le types. The �le types have also to be mentioned
in one Java class. The de�nition of the data unit templates requires a little
bit more work, as the structure and metadata properties of interest have to be
de�ned. The most expensive part for SDF �les is the parser, as these �les have

6 Structured Data Format, https://en.wikipedia.org/wiki/Chemical_table_

file#SDF
7 https://chembench.mml.unc.edu/help-fileformats

https://en.wikipedia.org/wiki/Chemical_table_file#SDF
https://en.wikipedia.org/wiki/Chemical_table_file#SDF
https://chembench.mml.unc.edu/help-fileformats
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a speci�c structure that cannot be parsed by one of the existing parsers. For the
Chembench �le type, the existing CSV parser can be used. This would apply
also to XML documents with a custom schema: the existing XML parser could
be reused, the data unit template and the extractor just need to provide XPath
expressions for the extraction of data units and metadata properties.

After the parser has been de�ned, the extractor has to be implemented for the
new �le type. This component integrates the parser with the data unit templates
and extracts the required data. Finally, the Tika con�guration �le needs to be
extended with a mapping of the �le type to the new extractor class.

Overall, we can see that only very little e�orts are required for the frame-
work extension for new data �le types. With an increasing number of �le types
already known by GEMMS, the e�ort for registering new �le types should be-
come smaller, as more code can be reused and the implementation of new parsers
is not necessary. By the introduction of new �le types, it has further been shown
that the designed metadata model is robust enough and had no needs for changes.
Performance Measures: We evaluated the performance of three extractor
classes that have been implemented during the development of GEMMS. The
�les are generated by hardware devices in our life science lab and have propri-
etary �le formats. The tests have been run for the three �le types with distinction
between metadata properties and structure data for two of the formats. Note
that data formats do not correspond directly to the extension of the data �le.
For example, a single format is based on spreadsheets and the other two are
based on XML, but the data in them is structured di�erently. The �rst type of
XML-based data format encodes its metadata and raw data in a straight-forward
tree fashion. XML elements are nested in each other and metadata and raw data
values are contained in the leaves. The second type of XML-based data format
has a little more peculiar structure. It represents tables, in which the keys of
metadata properties are all on the same row, while the values are in the corre-
sponding cells on the row below. Raw data is contained in tables with header
columns. Cells are child nodes of the row elements.

For each of the �le types, the pair of structure and metadata properties
parsers has been run three times in a row in a JUnit test method. The tests
have been run on Java SE 1.8.0_45 on a Windows 7 Professional 64-bit Lenovo
ThinkPad T440 with 8GB RAM and an Intel Core i5-4210U CPU at 1.7 GHz.
The persistence layer of the application is realized with MongoDB 3.0.2. The
mean of the three run-time durations is what is shown in Table 2.

As expected, the average durations of the parsing procedures are lower than
the extraction procedures. The slower performance is caused by the parsing of
the con�guration string for the ingestion process and the automatic detection of
the extractor suitable for the job.

5 Conclusions and Outlook

In this paper, we proposed the generic and extensible metadata management
system GEMMS, designed and implemented as the heart of a data lake [5], which
should increase the productivity in analysis and management of heterogeneous
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data. Based on a classi�cation of metadata � structure data, metadata properties

and semantic data � we derived a generic, extensible and �exible metadata model
providing easy accommodation for the new or evolving metadata of various data
sources. The framework is also extensible as new types of data sources can be
easily integrated as we have shown in the evaluation.

As our focus so far was on extensibility, performance and user interfaces re-
quire future work. Although performance is not a major concern in our context,
a more scalable processing would be desirable. The querying functionality is yet
simple (the user can query for data units annotated with certain ontology terms);
an interactive query and exploration interface is one of the next milestones in
the HUMIT project. Finally, we also need to consider database systems as data
sources; however, we are con�dent that the required changes or extensions will
not break the core system which we have developed so far.
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