
Towards a Graphical Language for
Process Modelling in Construction

Elisa Marengo1, Patrick Dallasega2, Marco Montali1, Werner Nutt1

1 Faculty of Computer Science, 2 Faculty of Science and Technology,
Free University of Bozen-Bolzano, Italy

firstname.lastname@unibz.it

Copyright c© by the paper’s authors. Copying permitted only for private and academic
purposes.

In: S. España, M. Ivanović, M. Savić (eds.): Proceedings of the CAiSE’16 Forum at
the 28th International Conference on Advanced Information Systems Engineering,
Ljubljana, Slovenia, 13-17.6.2016, published at http://ceur-ws.org

Abstract. To guarantee the success of a construction project, a detailed
process model specification is essential. The peculiarities of the domain,
like the high number of details, the participation of multiple parties with
different strategic goals, and the need of flexibility, make generic process
modelling languages unsuitable. For this reason, the PRECISE method-
ology has been recently introduced by a group of civil engineers.
PRECISE introduces a domain-specific graphical language, successfully
employed in real construction projects. However, currently the language
suffers of some limitations and ambiguities that prevents the development
of tools for supporting the project management and possibly implement-
ing automatic functionalities. In this paper, we highlight the problems
related to the language and propose an extension to overcome them.
The resulting language can then be formalized in Linear Temporal Logic
formula over finite traces, paving the way for the development of (auto-
matic) supporting tools.

Keywords: Process Modelling in Construction; Collaborative Design of
a Process; Automatic Verification

1 Introduction

Process management in construction aims at defining and executing a construc-
tion process, guaranteeing a high quality of the final product and limiting time
and cost overruns. Some peculiarities of the domain make this task challeng-
ing in reality. One aspect concerns the high number of details to be considered:
besides defining the tasks to be performed, it is also necessary to specify the
different locations where each of them is foreseen and the resources needed, po-
tentially shared among different tasks. An efficient management of resources is
important and aims at maximizing their usage while ensuring their availability
when needed. These aspects require coordination among the different crafts that
participate in the construction process. In fact, companies prefer to coordinate
among themselves rather than working for general contractors, because the profit
margins are lower in this case. As a consequence, before the process can start,

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

18 Elisa Marengo et al.

the companies need to agree on the way the activities will be carried out. Ac-
cordingly, modelling the process is important for an efficient management of the
resources and to ensure good quality of the final result. The process model needs
to be flexible so that it can be quickly adapted to face unpredictable events (e.g.
bad weather conditions) or changes of the requirements (which often occur in
construction projects).

In the literature, two main approaches for process modelling exist: i) the
data-centric one, which identifies a number of relevant entities and describes the
process in terms of their possible evolution; and ii) the activity-centric one, which
focuses on the activity control flow, representing the data in a very limited way
(e.g., BPMN [10]). Both approaches aim at process modelling in general domains.
As a consequence, as discussed also in [9,11], they need to be general enough
to accommodate the needs of many application domains, inevitably failing in
capturing all the specificities of a particular application domain.

To meet the peculiarities of the constriction domain, a group of civil engineers
introduced a new domain-specific methodology, named PRECISE (Process REli-
ability in ConstructIon for SmEs) [5]. It has been developed by re-engineering two
completed construction projects and has been tested in several real construction
projects, like in the construction of the facade of the extension of the hospital
of Bolzano [6] and in the project “Softbridge” in Oxford [6]. The methodology
foresees three phases: i) the modelling of the process; ii) the scheduling of the
activities to be performed on-site; and iii) the monitoring of the progress of the
work on-site. Considering the state of the art in construction, none of the exist-
ing approaches consider all the three phases in an integrated way. In particular,
the most predominant approach used in construction is BIM (Building Informa-
tion Modelling), which is supported by a variety of commercial tools. However,
these tools are mainly oriented to the the building design and to the scheduling,
considering the process modelling only marginally.

In this paper we focus on the process modelling phase of the PRECISE
methodology for which a domain-specific graphical language has been intro-
duced. The modelling is conceived as a collaborative activity to be performed by
all the key actors taking part in the construction project. The resulting process
model encompasses all the details that are needed for the different companies
to synchronize and coordinate their activities on-site. A model constitutes the
basis for the subsequent phase of the methodology, which is the scheduling of the
activities to be performed on-site. According to PRECISE, during the modelling
the following elements are defined: i) a representation of the building in terms
of locations, suitable to locate the tasks to be executed; ii) the resources that
are needed; iii) the tasks to be executed and on which the different crafts have
to synchronize; and iv) the dependencies on the execution of the tasks.

In this setting, two main modelling requirements emerge: the modelling lan-
guage should be easy to use and understand, and a model must be non-ambiguous
in defining the activities of the different companies and the dependencies among
them. This is important both to achieve the desired coordination among the

Towards a Graphical Language for Process Modelling in Construction 19

companies and for the implementation of (automatic) supporting tools. Cur-
rently, the language is used with limited support of IT and automatic tools
(e.g., process models are defined on magnetic whiteboards) and it presents some
ambiguities that are usually solved by annotating a model with additional in-
formation (e.g., with notes and comments) that is not part of the language. In
this paper, after presenting the limitations of the PRECISE modelling language
(Section 2), we propose an extension which allows one to overcome the described
limitations (Section 3). We conclude by describing the future work of formalizing
the language in terms of Linear Temporal Logic (LTL) (Section 4).

2 The PRECISE Process Modelling Language

According to the PRECISE methodology a process model is graphically rep-
resented as a graph where nodes are tasks and edges are dependencies among
them. A task is represented as in Fig. 1 and contains the following information:
¬ a unique task id ; ­ the number of workers and ® the number of days needed
to complete the task; ¯ the responsible craft ; ° the activity to be executed;
± a space for annotations; and the information on the locations where the task
is foreseen. The PRECISE language does not define a standard for the repre-
sentation of the location. The figure refers to an example were locations were
identified as pairs of ² section, which defines the technological content of an area
(e.g. room, swimming pool) and ³ level, i.e. a floor of the building. Tasks are
connected one with another by means of precedence dependencies, represented as
arrows. These declaratively specify the set of constraints that a schedule needs
to satisfy. Accordingly, several schedules may satisfy a process model.

Fig. 1 reports an excerpt of the process model of a real construction project
for the construction of a hotel [5]. The hotel consists of four floors, one of which
under ground (f0, f1, f2, u1 in the picture). The model starts with the ac-
tivity construction site preparation, which concerns the delimitation of the
construction site. According to the specification, this task can be performed by
a crew of 4 people working as Site Equippers (SE) and requires 5 working days
to be completed. It must be executed in all sections of all levels. The Excavation

can start after the site has been prepared and after the task Concrete Pouring

can be executed. At this point, a first ambiguity in the model arises. Indeed,
according to the previous usage of precedence dependencies, it could seem that
concrete has to be poured in all locations before the process can progress. It
is also not clear which task should be performed next among: i) Scaffolding

Installation by the Scaffolder (Sc); ii) Electricity Connection by the Electri-
cian (El) and Water and Gas Connection by the Plumber (Pl); and iii) Pipes

Installation. The intention of the model is to capture that first the concrete has
to be poured for the underground level. Then, at the same level, the connections
for electricity, water and gas can be made, before the task Excavation Fill-

ing. After this, the scaffolding can be installed for the first floor, and then the
concrete can be poured for the same floor. This sequence of Scaffolding Instal-

lation and Concrete Pouring repeats for all floors until the last is reached. At

20 Elisa Marengo et al.

Construction Site
Preparation

*
*

4 51 SE

Excavation

*
*

6 102 Di

Water and Gas
Connection

*
u1

3 55 Pl

Drinking water, white
water, gas

Excavation
Filling

*
u1

2 36 Di
Pipes Installation

f0
C
u1

R
u1

R

2 208 Pl

Floor heating, radiator

Electricity
Connection

*
u1

2 24 El

330 V, 220 V

Scaffolding
Installation

f2
*
f1

*
f0

*

4 37 Sc

In parallel with concrete
pouring per level

Concrete Pouring

f1
* *
f0 f2

*
u1

*

3 403 Br

Install casing and
pour concrete

Task Representation

Pipes Installation

f0
C
u1

R
u1

R

2 208 Pl

Activity

Description

Section
Level

#workers

id

#days Craft

Floor heating, radiator

¨

≠
Æ Ø

∞

≤
≥

±

Fig. 1. Excerpt of a real process model for the realization of a hotel. The wild-card ∗
represents all sections and/or levels. The project foresees four floors (u1, f0, f1, f2). The
sections are Room (R) and Corridor (C). The involved crafts are Site Equipper (SE),
Digger (Di), Brick Layer (Br), Plumber (Pl), Electrician (El), and Scaffolder (Sc).

this point, the Pipes Installation can start in the room (R) and in the corridor
(C) of the underground floor (u1), and in the room (R) of the ground floor (f0).
Note that these ambiguities are solved by expressing further requirements in the
description field of the tasks (e.g. as in Scaffolding Installation description).
However, a model should be a non-ambiguous agreement among the parties, so
as to allow one to determine, for instance, whether it is satisfiable or whether a
schedule is compliant with a model.

As highlighted by this example, some limitations of the language emerge. We
describe them in the following.

(a) Representation of locations. The PRECISE modelling language does not
foresee a unique representation of locations, which can be specified in different
ways depending on the project. A standard way for representing them would
allow for the implementation of tools for supporting the process modelling, and
for the definition and reuse of common modelling patterns in different projects.

(b) Ordering on the execution of a task in different locations. A task is repre-
sented together with a set of locations where it is foreseen. In some cases, the
order in which the task is executed in these locations matter. For instance, con-
sidering the task Concrete Pouring: its execution has to be performed from
the lowest level to the highest, but this is not captured in the model.

(c) Scope of a dependency. Currently, when two tasks are connected by a depen-
dency, it is not clear whether the precedence constraint applies at the level of task
or of location. For instance, the meaning of the dependency between the tasks
construction site preparation and Excavation is that the first task needs to
be finished in all locations before the second one can start. The dependency be-
tween tasks Scaffolding Installation and Concrete Pouring, instead, applies
at the level of floor.

(d) Different kinds of precedence constraints. When the scope of a dependency
is at the level of location, it is not clear whether the first task has to wait for

Towards a Graphical Language for Process Modelling in Construction 21

the second one to be completed in the same location before it can progress
somewhere else (like a chain execution), or this is not required. In the example,
for instance, not only Scaffolding Installation has to be performed before
Concrete Pouring, but the installation of the scaffolding cannot progress to a
subsequent floor until the pouring of the concrete is finished in the previous one.
Thus the two tasks have to be executed in chain. This is not always the case.
If we consider tasks Painting and Cleaning, then the former task can start in
every location without waiting for the second one to be finished.

3 Extending the PRECISE Modelling Language

In this section we propose an extension of the PRECISE modelling language,
making it able to address all critical aspects discussed in Section 2.

(a) Representation of locations. From the real projects where the methodology
has been applied we identified the following elements as suitable to represent a
building in an abstract way [4]:

Sectors: identify parts of the building whose construction process progresses
(almost) in an independent way one from the other (e.g., different wings).

Levels: the floors of the building (e.g., f0, f1, f2).
Sections: identify the technological content of certain areas (e.g., swimming

pool, corridor, room and such like).
Units: a unit is a number used to enumerate locations of the same kind. For

instance, different rooms at the same floor have different unit numbers.

We will refer to this representation as the construction area hierarchy. With
slight abuse of terminology, we will refer to a construction area (CA) as a location
specified at different levels of the hierarchy, that is a sector, a pair sector-level, a
triple sector-level-section or a tuple sector-level-section-unit are all construction
areas. The latter, in particular, provides the highest level of detail in repre-
senting a location. We refer to it as construction unit. For instance, the tuple
〈A, f1, room, 2〉 represents the construction unit at sector A, floor 1, room 2.

#workers
#days

≠
Æ

Craft

∞

<l

Scaffolding
Installation

*
f1
A

*

f0
A
f2
*
**

A

*

4 37 Sc¨

±

¥
≥

≤

intra-task precedence constraintµ

Id

Activity

Sector
Level

Section
Unit

Ø

Fig. 2. Representation of a task.

A task is then foreseen to be per-
formed in a number of construction
units. To represent this information
we extend the representation of a
task, as reported in Fig. 2.

As shown, a construction unit is
represented in terms of ± sector,
² level, ³ section and ´ unit. The
wild-card ∗ can be used instead of the
unit number (e.g., 〈A, 1, room, ∗〉) to
identify all units of a section at a par-

ticular level of a sector. The wild-card can also be used for the other elements
of a construction unit, if all elements below in the CA hierarchy are also ∗.

22 Elisa Marengo et al.

(b) Ordering on the execution of a task in different locations. In some cases
it is necessary to specify intra-task precedence constraints, expressing that the
execution of a task in different construction areas must be performed following
a given order (as for the task Scaffolding Installation in Fig. 1, which has to
be performed from the lower level up to the top one). An intra-task precedence
constraint can be specified at different levels of the CA hierarchy to capture, for
instance, that a task needs to be performed following an order on the construction
units, on the floors (e.g., from the first to the last floor, regardless of the execution
in the units within a floor) on the sections or on the sectors. To express this kind
of requirements we introduce the notion of scope which identifies at which level of
the CA hierarchy the constraint applies. Possible scopes are sector, level, section
or unit and are graphically represented with the symbols <sr, <l, <sn and <u

resp., as depicted in µ in Fig. 2.

(c) Scope of a dependency. To specify at which level a dependency applies we
introduce a notion of scope which is similar to the one introduced for the intra-
task precedence constraints. The scope allows one to specify that, for instance,
a dependency between two tasks applies at scope level, i.e. in every floor where
the two tasks are foreseen, the first task must be performed before the second.
Additionally, we consider task to be a possible scope for the dependencies. This
is used to express that a certain task must be completed (everywhere) before
another task can start. Graphically, the scope of a dependency is specified by
annotating an arrow with the symbols t, sr, l, sn and u to represent task, sector,
level, section and unit scopes resp. (see Table 1).

(d) Different kinds of precedence constraints. By taking inspiration from De-
clare [1], we extend the possible kinds of dependency that can be expressed
between two tasks and provide a graphical representation. The set of depen-
dencies is reported in Table 1. The types of dependency that we identified are
described in the following (note that the language can be easily extended).

Existence. Drawing a task in a model corresponds to an existence constraint,
which requires the task to be sooner or later executed in all construction units
specified in the task. If an intra-task precedence constraint is specified, as in
Fig. 2, this means that the order in which the construction areas are specified
matters. The dependencies that we present in the following can be equally ap-
plied to tasks with and without intra-task precedence constraints.

Precedence. This dependency involves two tasks and it is annotated with a
scope. If the scope is task, then the Task Precedence applies, requiring the
first task to be finished in all specified construction units before the second one
can start. If the scope is not task, then the CA Precedence relation applies.
In particular, this applies to all construction areas (at the specified scope) that
the two tasks share. In the areas that are not shared, the two tasks can be
performed independently. Graphically, a precedence dependency is represented
with an arrow annotated with the scope.

Chain Precedence. This dependency between two tasks A and B, is used to
specify that in each construction area (at the specified scope) shared between A

Towards a Graphical Language for Process Modelling in Construction 23

Existence: existence(A:task, Lo:{CA})

Task A must be executed in all construction areas Lo
A

#id C

Ordered Existence: ordered existence(A:task, Lo:{CA}, <s:order)

Task A must be executed in all construction areas in
Lo following the order given by <s

A
#id C

<s

Task Precedence: task precedence(A:task, LoA:{CA}, B:task, LoB:{CA})

Task B cannot start in any construction area in LoB
until task A is finished in all construction areas in LoA

A
#id C

B
#id C

t

CA Precedence: CA precedence(A:task, LoA:{CA}, B:task, LoB:{CA}, s:scope)

Task B cannot start in a construction area that is
shared with task A at scope level s, until A is finished

A
#id C

B
#id C

s

Chain Precedence: A chain B(A:task, LoA:{CA}, B:task, LoB:{CA}, s:scope)
For all construction areas shared between A and B at

scope s, once A is started then B must be performed in
the same construction area before A can progress

A
#id C

B
#id C

s

Strict Sequence: A sequence B(A:task, LoA:{CA}, B:task, LoB:{CA}, s:scope)
For all construction areas shared between tasks A and
B at scope level s, task A must be done before B and

B must start immediately after A is finished

A
#id C

B
#id Cs

Table 1. Existence and Dependency Relations. (CA stands for Construction Area)

and B i) A must be executed before B, and ii) once A is started in a CA c1 it
cannot progress in another CA c2 until B is finished in c1. Graphically, this is
captured with an arrow with an X symbol closed to A, to capture that, in order
to progress, A has to wait for B.

Strict Sequence. In some cases it is necessary to specify that a certain task
must be started immediately after another one is finished. A strict sequence
dependency allows to express this requirement and is represented with a double
arrow. Similarly as before, it is applied only to construction areas shared among
the two tasks and it is specified at a certain scope.

4 Conclusion and Future Work

In this paper we presented the PRECISE methodology for construction project
management. In particular, we focused on the process modelling phase and high-
lighted some limitations of the original language, on the one hand related to the
lack of abstractions needed for capturing relevant constratins, and on the other
hand connected to the ambiguity of the language, which prevents the imple-
mentation of automatic supporting tools. To overcome these issues we proposed
an extension of the language, which also paves the way towards the definition

24 Elisa Marengo et al.

of its formal semantics. In particular, we are now formalizing the different de-
pendencies in terms of Linear Temporal Logic [3] over finite traces [8], taking
inspiration from previous approaches focused on constraint-based, declarative
process models [2,7]. Intuitively, the execution of a task in a certain construction
unit is formalized with the “eventually” (♦) operator. Precedence dependencies,
instead, are formalized in terms of the “until” (U) operator. The adoption of
this well-known logic would allow to adopt existing tools and techniques [3,2,7]
as a starting point for the development of automatic tools to support the process
modelling. In particular, we will focus on: i) Soundness of a model. The aim is
to check whether there exists a schedule that satisfies the model. This kind of
check may be performed at the control flow level, checking whether the set of de-
pendencies is satisfiable, and at the level of resources, checking whether given a
certain number of available resources the model can be enacted. ii) Compliance
of a schedule. A process model specifies the coordination among the different
companies involved in a construction project. Checking that a schedule is com-
pliant with the model corresponds to checking that the coordination is actually
implemented as designed. This check can be performed by adopting well known
LTL model checking techniques over finite traces [3,7].

Acknowledgements. This work was done within the research projects MAGIC,
financed by the Province of Bolzano, and MoMaPC financed by the Free Univer-
sity of Bozen-Bolzano. The authors thank Ognjen Savković for the discussions.

References

1. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service
Flow Language. In: Dagstuhl Seminar Proceedings (2006)

2. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Bal-
ancing Between Flexibility and Support. Computer Science-R&D 23(2) (2009)

3. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
4. Dallasega, P., Marengo, E., Nutt, W., Rescic, L., Matt, D.T., Rauch, E.: Design

of a Framework for Supporting the Execution-Management of Small and Medium
sized Projects in the AEC-Industry. In: DCEE (2015)

5. Dallasega, P., Matt, D.T., Krause, D.: Design of the Building Execution Process
in SME Construction Networks . In: DCEE (2013)

6. Dallasega, P., Rauch, E., Matt, D.T.: Sustainability in the Supply Chain Through
Synchronization of Demand and Dupply in ETO-Companies. CIRP Elsevier (2015)

7. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
Business Metaconstraints Based on LTL&LDL for Finite Traces. In: BPM (2014)

8. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on Finite Traces:
Insensitivity to Infiniteness. In: AAAI. pp. 1027–1033 (2014)

9. Dumas, M.: From Models to Data and Back: The Journey of the BPM Discipline
and the Tangled Road to BPM 2020. Keynote. In: BPM. LNCS, vol. 9253 (2015)

10. Object Management Group: Business Process Modeling Notation Version 2.0. Tech.
Rep., Object Management Group Final Adopted Specification (2011)

11. Singh, M.P.: Agent Communication Languages: Rethinking the Principles. In:
Communication in Multiagent Systems, Agent Communication Languages and
Conversation Polocies. LNCS, vol. 2650 (2003)

	Towards a Graphical Language for Process Modelling in Construction
	Introduction
	The PRECISE Process Modelling Language
	Extending the PRECISE Modelling Language
	Conclusion and Future Work

