
Complexity-based Prediction of Faults Number for
Software Modules Ranking Before Testing: Technique

and Case Study

Svitlana Yaremchuk1, Vyacheslav Kharchenko2

1Danube Institute of National University "Odessa Maritime Academy",
8 Didrikhson St., 65029, Odessa, Ukraine

svetlana397@yandex.ru

2 National Airspace University of N. E. Zhukovsky "The Kharkiv Aviation Institute",
17 Department, Chkalova St., 61070, Kharkiv, Ukraine

v_s_kharchenko@ukr.net

Abstract. The proposed method is based on estimating software modules’
complexity by means of metrics. Indices of source code complexity are the in-
put data for the method. Ranged selection software modules with faults form
the output data for the method. The verification of the method has been per-
formed on the basis of representative selection of experimental data for five
systems. An appropriate coefficient is proposed and calculated for assessment
of the method’s efficiency. It shows the correlation between a part of revealed
faults to a part of verified modules. The efficiency coefficient value increases
on condition of increase in quantity of applied metrics. The proposed method
enables to reach the required reliability by means of a choice of certain part of
modules for identification as it is possible for the most part of faults. The
method provides a software reliability increase in limited resources conditions.

Keywords. Reliability, efficiency, complexity metrics, software modules with
faults

Key Terms. Software System, Metric, Software Engineering Process

1 Introduction

1.1 Motivation

Software system reliability (hereinafter referred to as the System) substantially de-
pends on its complicatedness. Complicatedness of multiple and mutually related re-
quirements leads to formation of erroneous, incomplete, contradicting specifications.
System’s architecture complicatedness causes fatal errors (critical faults) generations,

ICTERI 2016, Kyiv, Ukraine, June 21-24, 2016
Copyright © 2016 by the paper authors

mailto:svetlana397@yandex.ru
mailto:v_s_kharchenko@ukr.net

which may result to project ruination. Complicated system implementation leads to
errors’ increase in the initial code. Various sources show that testing process reveals
10 – 20 errors per each 1,000 code lines as an average. Changes in initial code are
required at the stage of system operation contributing to newer errors generation.
Integrated approach is therefore essential to access and ensure reliability basing on
system complicatedness evaluation throughout its lifetime. Actual software indicators/
metrics should be measured thoroughly and continuously to ensure reliability and
handle development and verification procedures. Increasing systems’ complicated-
ness, from the one side and limited resources, from the other side, generate contradic-
tions between required systems’ reliability and that achieved once development is
completed. It is therefore critically important to develop and to research reliability
assessment methods basing on system’s complicatedness analysis, both in general and
its components taking into note limited testing resources.

1.2 Related Works

Systems’ reliability should be continuously controlled throughout their entire lifecy-
cle. Therefore the process of required reliability progress should be controlled at all
stages. Any process management demands indicative values evaluation. Multiple
number of models, methods and tools are developed to evaluate various reliability
indicators at various lifecycle stages.

Works [1-5] propose various models and methods to increase precision of evalua-
tion of reliability indicators. In work [1] the authors analysed the impact of debugging
time upon reliability evaluation and forecast. The debugging time causes an overesti-
mation of the perceived software quality up to 15% in studied dataset; similarly, it
causes the underestimation of testing time required to obtain a given quality for a
software product.

Authors of [2] suggested a method based on matrix allowing known reliability
models. Applying matrix enables to 1) form an allowance vector for software system
under development to take into account development process peculiarities; 2) to
choice appropriate model basing on allowances vector; and 3) calculate model pa-
rameters. However, the allowances matrix requires adding newer models and meth-
ods.

The most of expenditures are associated with the testing stage. Here the bulk of de-
fects are also revealed. Authors of [3] proved that applying combined operation and
debugging tests (OP-D) ensures, in general, addressing both faults occurring with
high frequency at the operation time and those occurring with lower frequency. The
objective of proposed OP-D technique lies in reliability improving only by means of
operation testing revealing, at the same time, as many bugs, as possible, as may be
achieved via debugging application. However, the proposed OP-D technique is unable
to take into account rigid restrictions in testing resources.

Work [4] has been devoted to the basic theory of the of software systems’ dynam-
ics and established the theoretical basis for the reliability assessment of and proposed
a new universal method for such assessment. This method takes into account effects
of secondary faults, and improves the accuracy of software reliability indices more
than twice. Proposed models and methods require experimentally obtained data of
faults revealing time in the course of testing. The more data becomes available, the

- 428 -

more precise are reliability evaluating indicators, shorter is the testing period, and the
less are resources required to achieve required reliability level.

Work [5] describes software reliability model with complexity index based on the
non-homogenous Poisson process (NHPP). The method of software reliability as-
sessment has been developed on the basis of generalized NHPP model and the testing
sufficiency criteria. Software application for software failures prediction using
artificial neural networks has been developed. However, reliability forecasting by
means of neural networks binds developers to use software known not so well and to
study network characteristics. Complicatedness, reduced studying rate and high level
of operation margin prevent this method from implementation into routine engineer-
ing practice.

It is statistically established that revealing and elimination of faults at the earlier
stages of development are 10 – 100 times cheaper, than same actions performed at the
ready product testing stage. Reliability indicators should be evaluated prior testing
commencement to save expenditures. Developers should be aware of faults quantity
in the software system. This knowledge enables to draw up testing process and to link
it with available resources. However, this data is insufficient. It is more important to
know which modules contain the highest quantity of faults. It enables to minimize
testing group efforts and to maximize faults revealing which plays an essential; part in
restricted resources situation. Works [6] through [13] propose certain methods of code
complicatedness evaluation by means of metrics.

Work [6] describes analytic model to establish relation between faults quantity in
the initial code and complicatedness indexes basing upon developed model. Applica-
tion and statistical analysis of the proposed method showed that discrepancy between
actual faults quantity and estimated one amounted to 11%. The work researches
methods of faults localization in software modules. As a result, 9% discrepancy be-
tween obtained indicators and actual quantity of faults has been found. However, the
problems associated with choice and ranging of the fault prone software modules still
has not been solved.

The method proposed in [7] allows combining techniques so as to maximize the
number of faults revealed for the tested software from those expected to be available.
As for fault types the method refers to well-known orthogonal defects classification
(ODC). As for testing techniques, the method applies techniques of functional, statis-
tical, robustness and stress testing. The final result is a forecast of faults quantity of
each ODC category each technique is capable to detect for a particular application.
However, it still remains a question which modules should be tested if limited mone-
tary and time resources make it impossible to carry on total testing.

Solutions for the problem in question are proposed in works [8] through [13]. Au-
thors of work [8] developed three individual models forecasting fault-proneness in
data set: one with ascending stepwise logistic regression, one with descending step-
wise logistic regression and one without stepwise selection in logistic regression. The
authors concluded that descending stepwise regression provides the best model. The
level of false alarm rate is too high in all the models, while it should be contrary.

Complexity metrics in predicting fault-prone software modules have been inten-
sively studied in the work [9]. The binary logistic regression method is applied in
studying using as an example commonly available data on five commercial products.
The study shows that (1) models generated using more data sets can improve the pre-

- 429 -

diction accuracy but not the recall rate; (2) reducing the cut-off value may improve
the recall rate, but the number of false positives will increase, resulting in higher
maintenance efforts.

The authors of work [10] studied, whether metrics available in the early lifecycle
(i.e. requirement metrics), combined with metrics available in the late lifecycle (i.e.
code metrics), may be used to identify fault prone modules using genetic algorithm-
based technique. However, applying multiple various metrics increases complicated-
ness of the method. It also requires running software, which is not well known.

Authors of research [11] have empirically evaluated performance of Hierarchical
Clustering Technique (HCT) in predicting fault-prone modules using open source
software and metrics. The proposed technique has shown 85% accuracy. However,
developers should study thoroughly MatLab hierarchy clusterization algorithms to use
this method in practice.

Research [12] addresses the problem of predicting fault prone modules using data
mining techniques. In this study the authors applied different data mining rule-based
classification techniques on several commonly available datasets. The newly pro-
posed algorithm is an enhanced existing algorithm in terms of effectiveness (i.e. gen-
erating less number of rules) and accuracy (i.e. improving the results). Despite of
rules reduction the method itself and its automatization possibilities are too compli-
cated to enable its application.

The authors of work [13] have studied various metrics (requirement metrics, design
metrics and code metrics) and techniques to identify fault prone modules. The pro-
posed metrics are aimed to provide higher prediction results than existing techniques.
However, various metrics combined with their application algorithms substantially
increase complicatedness of this method.

The testing stage, aimed to improve reliability of a software system, is the most
expensive and time-consuming one. Moreover, since dimensions of software systems
have increased significantly during the past decades, effective utilization of limited
testing resource has become even more important than before. A software system is
typically composed by a number of modules. Each of them needs to be assigned with
some testing resource before the testing stage commences. Hence, a natural question
is how to allocate the testing resource to modules so that the reliability of a software
system is could be maximized. Such a problem was formally defined by Ohtera and
Yamada as the Optimal Testing Resource Allocation Problems (OTRAPs). In the
works [14-16] it was proved that an optimal allocation scheme may lead to significant
improvement in terms of the reliability of a software system. The available resource
should be allocated among modules in a way enabling maximum number of faults to
be removed from each module to achieve higher software reliability.

The optimization problems are formulated in work [14] as nonlinear programming
problems (NLPP), which are solved by means of software reliability improving model
based on a non-homogenous Poisson process which incorporates Log-logistic testing-
effort function. Work [15] suggests solving the OTRAPs by means of Multi-Objective
Algorithms known as Hierarchy Particle Swarm Optimization Algorithm Experimen-
tal results show that the proposed algorithm has overcome the drawbacks of the exist-
ing algorithm, and is more efficient. The main goal of the article [16] is to examine
the resource allocation plan for fault detection and correction process of the software
to save costs during testing and operational phases. The authors developed a model

- 430 -

for fault detection and correction process in pursue of the said aim. Methods proposed
in works [14-16] are complicated enough. Their application requires highly qualified
personnel.

Analysis of described methods shows situation, as follows. Methods [1] through
[5] don’t permit to plan and evaluate testing resources, since they require testing data.
Methods [6] through [16] require data on projects developed previously. Differences
between systems being currently developed and those already existing are inevitably
accompanied by substantial margin in evaluation. Allowances methods in realistic
development processes don’t work, thus reducing precision in reliability indicators’
evaluation. Methods are complicated in application. Input data processing requires
specific not commonly known software and efforts of skilled highly qualified person-
nel. All these items increase systems’ development costs and reduce popularity of the
methods. Methods don’t take into account rigid restrictions of the testing resources.
Analysis of described defects and drawbacks enables to offer general approaches to
reliability evaluation and management throughout systems’ lifetime taking into con-
sideration their complicatedness and limited resources assigned for development bas-
ing on comparatively simple and more precise methods.

The rest of the work is composed, as follows. Chapter 2 describes general ap-
proaches to reliability assessment and management. Chapter 3 presents the check
assumption and the description of the complexity-based prediction technique. Chapter
4 describes the case study in terms of the experimental verification methods, results’
analysis and discussion. Conclusions are represented in chapter 5.

2 Approaches to Reliability Assessment and Management

There are two key principles of reliability evaluation and reliability management. The
first one is technology-oriented. It means that proposed evaluation methods and aids
are based on complicatedness recording and may be applicable with various systems
development methodologies. Adjustable software may ensure their flexibility and
simplify their implementation into business – software corporate processes. The sec-
ond aspect of reliability management is based on resource considerations and enables
to calculate and put foundation under resources allocation for reliability evaluation
and ensuring. It comprises determining costs associated with achieving required reli-
ability and comparative analysis of expenditures and incomes derived from faults
detection in all the created products (specifications demands, project, initial code,
etc.) throughout the entire development stage and risks and losses reduction at the
operation stage. The technological- and resources-oriented approach to reliability
evaluation and reliability management supposes following methods to be applied.

Complicatedness evaluation method with appropriate metrics enables to identify
the most complicated and the most fault-prone requirements. These activities may
contribute to design faults identification and elimination at the earliest stages. Their
analysis will contribute to earlier faults identification and elimination in specifica-
tions. The project complicatedness should be also evaluated using metrics at the de-
velopment stage. Such an approach enables to analyse project, to identify most com-
plicated subsystems, components, interfaces, carry on their decomposition and im-

- 431 -

prove links. Such activities may contribute to earlier identification and elimination of
design faults.

One of proposed ways to reduce complicatedness and to improve program code re-
liability lies in its optimization (also known as refactoring). A large number of authors
of publications in software systems development state that the initial complicatedness
cannot be reduced. From their point of view, simplifying any software constructions
leads to other ones becoming more complicated. However, the problem of code com-
plicatedness quantification both at pre-optimization and post-optimization stages re-
mains still unsolved.

Once the initial code is written, the testing procedure should be scheduled and re-
sources should be allocated. Here total faults number in the system should be evalu-
ated basing on code metrics. Since lack of resources is a common situation they
should be spent in a most efficient manner. Selection and ranking modules with the
highest fault number method should be developed. Testing of such modules will en-
able to reveal maximum faults with minimum number of modules subject to testing.

Conditions analysis for development, testing and allowance for reliability models
enables to select a suitable model for evaluating achieved reliability indicators. Profile
of system application should be evaluated at the operation stage by means of multiple
metrics. Such a measure enables to improve efficient resources allocation to monitor
the system to improve its reliability.

The proposed approach is directed to achieve required reliability in the most cost-
saving manner. With testing being the most expensive and extended development
stage initially, within the framework of general approach, method of improving test-
ing efficiency should be developed. It determines the researches goal – complexity-
based fault number forecasting technique development and verification for ranking
software modules prior testing.

3 The Complexity-Based Prediction Technique of Fault
Number for Ranking of Software Modules

3.1 Check Assumption of the Prediction Technique

The proposed method is based on an assumption that the most complicated modules
(classes, components) contain the bulk quantity of faults. This assumption is logical
and is often applied in scientific publications, requiring, however, practical confirma-
tion. Five sets of experiment data have been used for verification [17]. The mentioned
data was placed with Internet resource of the PROMISE (PRedictOr Models In Soft-
ware Engineering) depository. The data was collected by numerous researchers and
experts in software faults forecasting and published as freeware. The data contains
evaluations based on various metrics criteria for various software systems for certain
periods of time. Selected software systems are developed for various purposes, are
implemented by means of various programming languages and methodologies, have
various initial code dimensions, various number of active developers, development
period, versions quantity, etc. The sole essential factor common for all reviewed soft-
ware system consists in their being non-commercial projects with freeware initial
code. The data in question represent complicatedness indicators by metrics and num-

- 432 -

ber of faults revealed in the course of modules’ testing for five various object-oriented
systems. Systems characteristics are shown in Table 1. Total volume of explored data
exceeds 1.000.000 initial code lines, contains 4.330 modules and 4.449 faults. Com-
parative analysis of data grouped in the Table 1 shows that the researched system very
substantially in their characteristics. Table 1 contains also complicatedness measures
per one module in metrics. Multiple metric of choice

is explained in the work [6]. Table

1 data analysis shows that complicatedness of software systems differs substantially
in a number of metrics. Significant total volume and specified differences in the
abovementioned Systems enable to regard this sample as a representative sample.
Actions described below are proposed to identify probable correlations between com-
plicatedness and faults quantity in an individual module. Total modules’ multitude

 for each system has been indexed seven (7) times (according to applied met-

rics number) in decreasing sequence of complicatedness numerical indicator per each
metric. A certain part has been derived from each multitude (10 %, … 50 %) of the
most complicated modules with highest complicatedness level under each metric. As

a result seven basic sub-collections have been obtained ,

, , , , ,

.

M RFC, WMC, LCOM,LOC, NPM,CE,CBO

modSET

WMC
modSUBSET LCOM

modSUBSET LOC
modSUBSET

CBO
modSUBSET

RFC
modSUBSET
CE
modSUBSETNPM

modSUBSET

Table 1. Data on Systems being under Research

 Abbreviated systems names and versions
 Systems characteris-

tics Luc 2.4 Xer 1.4 Ant 1.7 Xal 2.7 Cam 1.4

Modules quantity 340 588 746 910 1 746
Faults quantity 632 1 596 338 1213 670

Fault modules ratio 40% 26% 78% 1% 83%
Number of faults in a
module 1.86 2.71 0.45 1.33 0.38

Faults density per
1,000 lines 6.14 11.30 1.62 2.83 3.42

RFC Metric 25 19 34 29 21

WMC Metric 10 10 11 11 9
LCOM Metric 69 75 89 126 73
LOC Metric 303 240 280 471 112
NPM Metric 7 8 8 9 7
CE Metric 5 3 6 7 6
CBO Metric 11 6 11 12 11

Intersection of the sets by seven metrics formed newer modules’ sub-collections

, by six metrics , by five metrics , by four

metrics , by three metrics , by two metrics ,

7
modSUBSET

SUB

6
modSUBSET

SU

5
modSUBSET

SUBS4
modSET 3

modBSET 2
modET

- 433 -

by one metric . Actual quantity of faults per one module has been

counted for each enlisted sub-collection. The results are displayed in Table 2.

1
modSUBSET

Table 2. Average actual faults quantity per module

 Abbreviated systems names and versions Modules compli-
catedness Luc 2.4 Xer 1.4 Ant 1.7 Xal 2.7 Cam 1.4

7
modETSUBS 13,5 20,9 3,1 3,0 4,6

6
modET
5
modET
4
modET
3
modET
2
modET
1
modET

SUBS 5,4 13,2 1,9 2,3 2,0

SUBS 3,1 14,2 1,1 2,0 1,1

SUBS 2,1 5,8 1,4 1,7 1,2

SUBS 2,0 4,3 1,0 1,7 1,9

SUBS 2,3 3,8 1,0 1,5 1,6

SUBS 1,5 2,8 0,4 1,7 0,4

Data contained in Table 2 shows that the most complicated software system mod-

ules have the greatest number of faults. As modules complicatedness decreases, the
average fault number in module reduces confirming thus the validity of allowance
method.

The proposed method should be run once the initial code is written, prior its testing
commences. Complicatedness indicators of individual modules in metrics form the
method’s input data. Should the developers lack the corporative and practically
checked set of metrics commonly available and most informative for faults forecast-
ing object-oriented metrics considered in the work [6] may be applied as starters. The

set of applicable metrics is indicated as  1 nM M ,...,M . The method supposed

proceeding in five steps, as described below.
Step 1. Complicatedness indicators calculation split into metrics for individual

modules in a system being developed using standard or corporate software. ...

 Step 2. Total modules set should be indexed n times as the complicated-

ness indicator descends with each metric .

modSET

1 nM M
mod modSET ,...,SET

Step 3. A certain part of the most complicated modules by a specific metric should
be drawn from each indexed set. Dimensions of such a part should be determined
referring to testing resources’ restrictions. The less are these resources, the less is the
part of drawn modules. As a result n basic sub-collections have been obtained for n

metrics . 1 nM M
mod modSUBSET ,...,SUBSET

 Step 4. Once intersection for basic sub-collections is

determined, intermediate sub-collections should be formed with top complicatedness

indicators by the metrics . All the

1 nM M
mod modSUBSET ,...,SUBSET

1 nM M
mod mod... SUBSET n

modSUBSET SUBSET

- 434 -

modules within this sub-collections should be ranked as n. Choosing all and any n-1

metrics intersections for subset n 1
modSUBSET  should be determined with all the mod-

ules to be ranked as n – 1. Similar procedure should be applied until subset for any

single metric is built as SU with all the modules in it ranked as 1. Number of

ranks should be the same as metrics number.

1
modT

1
modSUBSET

mod SUBSET

BSE

n n
mod ,...,

SUBSET

 Step 5. Determining the sum of subsets for

 the resulting ranked modules sample

should be formed as .

1

1
modSUBSET ,SUBSET

R n n 1
mod mod modSUBSET ... SUBSET  

The resulting sample should include modules with top complicatedness indicators
simultaneously by n metrics (rank 7 in our example), n-1metrics (rank 6), … and,
finally, one metric (rank 1). Modules ranking in resulting sample is necessary to es-
tablish sequence of their testing. Top rank modules are the most complicated, sup-
posed to contain the most of faults, and are subject to be tested at the first turn. The
proposed method should be applied once the initial code is written and prior its testing
starts. Complicatedness indicators of individual modules within the developed system
form the input data with output data being the resulting ranked sample of modules
with faults. Basic sample dimensions should be determined by restrictions imposed by
testing resources.

4 Case Study

The method has been verified by means of commonly accessible experimental data
[17] and specially developed software. Number of selected modules has been calcu-
lated as well, as faults number in these modules for each system. As this data has been
being calculated the quantity of involved metrics has been varied as well, as the mod-
ules number with top complicatedness indicators corresponding to these metrics. Ob-
tained data has been analysed. The first subtask of the analysis was to define relations
between faults number and modules’ complicatedness and was estimated simultane-
ously by a number of metrics. The second subtask was to define relation between
faults number and that of selected modules. Selected ratio values encompassed 10%,
…, 50% including the most complicated modules. The parts dimensions were gov-
erned by probable restrictions in testing resources. Since the researched systems sub-
stantially varied in their characteristics, relative percentage indicators have been cal-
culated.

4.1 The Experiment Performance Technique

99% modules within one system under research contained faults making it remarkably
distinguished among others. Data processing and analysis showed that modules selec-
tion based on their complicatedness had not given increase in a quantity of faults in
them. Average data for four systems is represented in Table 3. Data is allocated in
two lines. The first line displays modules ratio from their total quantity. The lower
ratio shows faults ratio contained in these modules in relation to their total quantity.

- 435 -

Values highlighted as examples in the last column in Table 1 should be interpreted,
as follows. Base sample 20% of the most complicated modules per each metric forms
a resulting ranked modules sample 41,8% ratio of their total number, containing
74,8% ratio of total faults’ quantity.

The data in question should be applied in a manner, as follows. Tests are developed
for each selected module. These tests take a certain amount of labour expressed in
person-hours. Time consumed by running all such tests for all selected modules en-
ables to calculate testing expenditures required to reveal 74,8% of the total faults
quantity. At the further stage, restrictions imposed by labour, time, financial, hard-
ware and software resources should be considered. Should there be a lack in resources
required to test selected modules, basic sample dimensions should be reduced.

Factor md
k

m
 , with m being modules ratio in their total quantity and faults ratio

of their total number contained in appropriate modules is proposed to reduce the
number of analysed indicators and to facilitate the method’s efficiency analysis. The
higher is the k value, the more is the number of faults within the selected modules.

Table 3. Average calculated data on four systems under research

Mod-
ules’
ratio

Indica-
tors

Rank
7

Rank
6

Rank
5

Rank
4

Rank
3

Rank
2

Rank
1 

mod., % 2,0 1,3 2,5 2,5 3,8 3,3 8,0 23,3
10 %

faults, % 15,0 6,5 7,0 8,0 6,5 4,8 7,8 55,5

mod., % 2,3 1,8 2,8 3,5 4,0 3,8 8,8 26,8
13 %

faults, % 17,3 8,8 8,3 7,0 6,8 5,8 8,5 62,3

mod., % 2,5 3,0 3,5 5,3 5,0 4,8 11,0 35,5
17 %

faults, % 19,8 13,0 7,3 9,5 6,3 5,8 9,0 70,5

mod., % 4,5 4,0 4,5 5,5 6,0 5,5 11,8 41,8
20 %

faults, % 23,5 13,3 8,3 7,8 6,5 6,8 8,8 74,8

mod., % 6,3 5,0 5,5 7,0 7,0 6,3 13,5 50,5
25 %

faults, % 30,0 12,0 9,0 9,0 5,8 5,3 9,0 80,0

mod., % 9,0 7,5 8,0 8,8 6,5 8,3 14,5 62,5
33 %

faults, % 36,0 14,8 9,3 8,5 5,3 6,5 7,0 87,3

mod., % 17,8 13,3 10,5 9,8 9,0 9,3 11,5 81,0
50 %

faults, % 47,0 19,3 10,8 5,8 4,3 4,8 4,5 96,3

Basing on the k application, Table 3 data was transformed and represented in Table

4 format. The k values in Table 4 show how the selected and ranked modules share
exceeds the part of faults they contain.

- 436 -

Table 4. Method’s average efficiency factors k for four systems

Modules’
ratio

k
for rank 7

k
for rank 6

k
for rank 5

k
for rank 4

k
for rank 3

k
for rank 2

k
for rank 1

10 % 7,50 5,20 2,80 3,20 1,73 1,46 0,97

13 % 7,67 5,00 3,00 2,00 1,69 1,53 0,97

17 % 6,58 4,33 2,07 1,81 1,25 1,21 0,82

20 % 5,22 3,31 1,83 1,41 1,08 1,23 0,74

25 % 4,80 2,40 1,64 1,29 0,82 0,84 0,67

33 % 4,00 1,97 1,16 0,97 0,81 0,79 0,48

50 % 2,65 1,45 1,02 0,59 0,47 0,51 0,39

For example, k = 7,5 means that testing of 1% of the selected modules enables to

reveal 7,5% of faults. The following factor interpretation is proposed. If the
modules’ selection is inefficient from the point of view of their complicatedness
evaluated by metrics. If 1 k modules are selected with minor efficiency. Fi-

nally, if the modules are selected efficiently. E.g. if 13 % modules are selected
their testing may be efficient if they are characterized by high complicatedness levels
simultaneously by seven, six, five, four, three, and two metrics. If 20 % modules are
selected, testing of modules with high complicatedness values by seven, six, and five
metrics will be efficient.

k 1

1,5 
k 1.5

4.2 Results of Analysis

Analysis of Table 4 data enabled to identify two tendencies. The first tendency may
be followed in each horizontal data line. Efficient modules selection will be maximum
for modules with top complicatedness indications involving simultaneously all the
involved metrics. The k decreases as modules’ complicatedness reduces. The k is less
than 1 in the Table 4, last column. Thus, modules selection by a single metric is not
advantageous for faults detection. The second tendency may be followed in each data
column. Selection of the least part of the most complicated modules is the most effi-
cient. The k value decreases as the selected module number increases. Consequently,
the less is selected modules number, the higher is effect or modules complicatedness
evaluation by metrics.

Thus the method’s efficiency depends on metrics’ quantity determining simultane-
ously high complicatedness and on modules sample dimensions. The coefficient value
increases with the metrics’ number increase and sample dimensions decrease. Reverse
statement is valid, too. Maximum coefficient value amounted to 7,5 with average
value 2,34 and minimum value 0,39.

Selecting modules and tests for them enables to estimate testing expenditures to de-
tect a certain quantity of faults. Since restricted resources prevent testing all the mod-
ules, the unrevealed faults may cause risk of losses. Risks calculation and comparing
them with testing expenditures may enable managers to find adequate and economi-
cally grounded solutions. Tables 3 and 4 data may be helpful not only for efficient

- 437 -

testing efforts allocations, but also for efficient application of other code verification
methods, e.g. inspections, statistical analysis, etc.

 The proposed set of known metrics for code complicatedness evaluation is an ini-
tial, or starting, one. Software corporations’ experts may apply their unique corporate
metrics set, proven at practice. Discussable aspect is using obtained results not only
for code testing but its applicability for other verification methods, such as survey,
control, inspections, audits, statistical analysis. It is not still clarified, whether selected
modules contain fault-free modules, what is their quantity, how it depends on compli-
catedness level.

5 Conclusions

Elements are developed for technological and resources oriented approach to reliabil-
ity management at all the lifecycle stages in restricted resources environment. The
technique of complexity-based prediction of faults number for ranking software mod-
ules is proposed within the framework of general approach. Supposed statement that
the most complicated modules contain the bulk quantity of faults is proved experi-
mentally. The method is applicable after initial code is written prior its testing com-
mencement. The method’s input data consists of complicatedness indicators for indi-
vidual modules of the system being in development by metrics. The output data repre-
sents a sample of ranked modules of certain dimensions with a certain number of
faults. Sample dimensions are only restricted by testing resources.

The proposed method is aimed to efficient testing with restricted resources. Verifi-
cation of the method using a representative sample of experimental data demonstrated
its efficient operability. Proposed efficiency factor depends on number of metrics by
which modules have simultaneous high complicatedness rates and on modules sample
dimensions. The achieved results enable to control process of achieving required reli-
ability with restricted resources by means of allocating the testing efforts to a certain
number of modules with the highest faults quantity.

Sampling such modules and selecting tests for them enables to estimate a priori
testing costs by means of summing up testing time for all the selected modules.
Maximization of revealed faults number and improved systems’ operating reliability
may reduce expenditures and increase developers’ revenues. Risks of faults triggering
at the operation stage may be mitigated. Testing expenditures will be efficient invest-
ments into the systems’ reliability.

 The proposed method is simple enough to be applied in practice. The method does
not demand any additional data except the code complicatedness evaluation for the
system being in development. The method may be completely automated. Revealed
application restriction concerns systems with 99% faulty modules ratio. Only in such
a case method application may be inefficient. Prospective direction of further re-
searching may be implementation of the proposed method into business processes
involving various methodologies of software systems developments. Testing expendi-
tures calculation model and method of comparing expenditures with unrevealed faults
risk evaluation should be developed. Software implementation of the proposed
method should be described.

- 438 -

References

1. Cinque, М., Gaiani, С., Stradis, D., Pecchia, A., Pietrantuono R., Russo, S.: On the Impact
of Debugging on Software Reliability Growth Analysis: A Case Study. Computational
Science and Its Applications (ICCSA), pp 461—475, LNCS-8583 (2014)

2. Kharchenko, V. S., Tarasyuk, O. M., Sklyar, V.V.: The Method of Software Reliability y
Growth Models Choice Using Assumptions Matrix. Proceedings of 26-th Annual Int.
Computer Software and Applications Conference, COMPSAC, Oxford, England, pp. 541--
546 (2002)

3. Cotroneo, D., Pietrantuono, R., Russo, S.: Combining Operational and Debug Testing for
Improving Reliability. The Journal of Systems and Software, vol. 62, no. 2, pp. 408-- 423
(2013)

4. Mayevsky, D. A.: A New Approach to Software Reliability. Lecture Notes in Computer
Science. Software Engineering for Resilient Systems. Berlin, Springer, no. 8166, pp. 156--
168 (2013)

5. Yakovyna, V. S.: Influence of RBF neural network input layer parameters on software re-
liability prediction. 4-th International Conference on Inductive Modelling ICIM'2013,
Kyiv, pp. 344--347 (2013)

6. Yaremchuk, S. O.: Models, methods and technology of a priori estimation reliability indi-
ces of accounting and analytical information systems. Dissertation for scientific degree
of candidate of technical sciences in specialty Information technology. – Odessa Na-
tional Polytechnic University, Odessa, Ukraine, 210 p. (2015) (In Ukrainian)

7. Cotroneo, D., Pietrantuono, R., Russo, S.: Testing techniques selection based on ODC
fault types and software metrics. The Journal of Systems and Software, no. 86, pp. 1613--
1637 (2013)

8. Mausa, G., Grbac, T. G., Basic, B. D.: Multivariate Logistic Regression Prediction of
Fault-Proneness in Software Modules. MIPRO 2012/CTI, pp. 813--818 (2012)

9. Yu1, L., Mishra, A.: Experience in Predicting Fault-Prone Software Modules Using Com-
plexity Metrics. Quality Technology & Quantitative Management, vol. 9, no. 4, pp. 421--
433 (2012)

10. Sandhu, P. S., Khullar, S., Singh, S., Bains, S. K., Kaur, M., Singh, G.: A Study on Early
Prediction of Fault Proneness in Software Modules using Genetic Algorithm. International
Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 4,
no. 12, pp. 1891--1896 (2010)

11. Kaur, S., Mahajan, M., Sandhu, P. S.: Identification of Fault Prone Modules in Open
Source Software Systems using Hierarchical based Clustering. ISEMS, Bangkok, pp. 238--
244 (2011)

12. Najadat, H., Alsmadi, I.: Enhance Rule Based Detection for Software Fault Prone Mod-
ules. International Journal of Software Engineering and Its Applications, vol. 6, no. 1, pp.
75--86 (2012)

13. Kaur, I.: A Compound Metric for Identification of Fault Prone Modules. IOSR Journal of
Computer Engineering (IOSR-JCE), vol. 17, Issue 6, Ver. V, pp. 31--35 (2015)

14. Ahmad, N., Khan, M., Islam, S.: Optimal Allocation of Testing Resource for Modular
Software based on Testing-Effort Dependent Software Reliability Growth. ICCCNT-12,
Coimbatore, India (2012)

15. Pavithra, M.: Optimal Testing Resource Allocation Problems in Software System using
Heuristic Algorithm. Bonfring International Journal of Software Engineering and Soft
Computing, vol. 2, no. 4, pp. 1--9 (2012)

- 439 -

16. Nasar, M., Johri, P.: Testing and Debugging Resource Allocation for Fault Detection and
Removal Process. International Journal of New Computer Architectures and their Applica-
tions, no. 4, pp. 193--200 (2014)

17. The PROMISE Repository of empirical software engineering data,
http://openscience.us/repo/defect/ck/

- 440 -

http://openscience.us/repo/defect/ck/

