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Abstract. Investigations on the design and creation of high-performance
information systems based on a number of paradigms supporting a hu-
man activity in formalized text processing were started in the begin-
ning of 1960s – the time of the appearance of computers of such a high
performance that programming of complex intelligent processes became
possible. The so-called evidential paradigm is among them and it can be
considered as a certain way of the integration of all reasonable paradigms
intended for the development of languages for presenting formalized text
in the form most appropriate for a user, formalization and evolutional
development of a computer-made proof step, information environment
having an influence on a current evidence of a computer-made proof step,
and interactive man-assistant search of a proof. This paper contains a
short description of the evidential paradigm and its implementation in
the form of systems for presenting and processing formal knowledge.
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1 Introduction

The term “artificial intelligence” cannot be reduced only to the creation of de-
vices or their components that completely or partially simulate the physical
activity of humans; it also touches questions relating to the ability of a human
to do reasoning in the framework of formalized languages. Investigations in this
direction as well as in the direction of design and creation of high-performance
intelligent information systems, now called automated reasoning systems and
computer algebra systems started in the beginning of 1960s – the time of the
appearance of computing machines of such a high speed, information capacity,
and flexibility, that the programming of complex intelligent processes became
possible. As a result, several different paradigms of the intelligent processing of
computer formalized knowledge have appeared.
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Efficient processing of formalized knowledge presupposes carrying out deep
investigations in the fields of automated reasoning and construction of linguistic
tools intended for supporting daily mental activity of a human, which presup-
poses an auspicious combination of theory and practice.

Attempts to find a reasonable balance between theory and practice have
lead to creation and development of a number of certain paradigms reflected in
intelligent systems such as automated theorem-proving and computer algebra
systems.

In Ukraine, such investigations were initiated by Academician V.M.Glushkov
in the end of 1960s, who announced the Evidence Algorithm (EA) programme in
[1]1 intended for making research on automated theorem proving and symbolic
computations simultaneously in languages for presenting formalized texts in the
form most appropriate for a user, formalization and evolutionary development
of a computer-made proof step, information environment having an influence on
a current evidence of a computer-made proof step, and interactive man-assistant
search of a proof. In [4], the modern vision of the EA programme was called the
evidential paradigm.

The implementation of Glushkov’s approach in the framework of the evi-
dential paradigm has found its partial reflection in the form of the so-called
SAD system (System for Automated Deduction) intended for the presentation
and processing of (formalized) mathematical texts in English and accessible at
http://nevidal.org/. This paper is devoted to a short description of the peculiar-
ities and features of the evidential paradigm and SAD.

2 Some remarks on formalized knowledge processing

Let us consider some of the issues, with which computer science is constantly
dealing in solving problems associated with the formalized knowledge processing
based on the following paradigms: numerical, analytical (symbolic), deductive,
inductive and integrative.

The numerical paradigm reflects tools and methods for finding approximate
or exact solutions of problems of pure or applied mathematics. It is based on
constructing finite sequences of numerical calculations and actions over finite
sets of numbers.

The symbolic (analytical) paradigm is based on the ability of computers to
perform complex symbolic transformations, do numerical calculations, plot func-
tions, construct mathematical models of certain processes, and so on. It is focused
on the construction and use of computer algebra systems and appeared as an
alternative to the numerical paradigm in the middle of 1960s, when computers
with high enough performance were constructed.

The deductive paradigm reflects the declarative way of the representation and
processing of computer knowledge. It is based on the fact that existing knowledge
is represented in the form of certain formal texts or their pieces (usually axioms,

1 A detailed enough description of EA and the investigations connected with it can
be found in [2] and [3].
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definitions, propositions, theorems, etc.) and that an additional knowledge is
produced by means of applying certain inference (reasoning) rules for deducing
new facts. The systems for the representation and processing of knowledge based
on this paradigm are called automated reasoning systems, most of which exists
in the form of automated theorem-proving systems, as the deductive approach
is most relevant and efficient for tasks requiring reasonings “from general to
particular” used in many application areas.

The inductive paradigm is based: in the natural sciences – on the transition
from individual observations to general conclusions, while in mathematics – on
the induction method used for the “checking” of a selected property for partially
or fully ordered objects.

The integration paradigm “brings together” all of the above-mentioned para-
digms. It can be divided into two types:

– integration at the design phase, when the ability of hierarchical building-in
new components and subsystems into a designed system and connecting it to
available computer services is provided during the design time of the system and

– integration at the operation stage, i.e. combining existing computer services
into one (new) system (a special interest to the development of such services has
been caused by a wide use of the Internet for the date exchange and transition
of a necessary information, which, in its turn, led to the creation of relevant data
exchange standards).

As to the integration at the operation stage, there can be mentioned Open
Mechanized Reasoning Systems [5] and OpenMath [6] projects, in the framework
of which certain specification and communication languages for solving tasks of
theorem proving and symbolic computation were constructed.

The most famous representatives of the approach to the integration at the
design stage are the QED [7] project as well as the Mizar [8] and Theorema [9]
systems.

As for the Evidence Algorithm, it can be considered as the first representative
of the integration paradigm at the design stage, which gave a reason for calling
it by the evidential paradigm.

3 Peculiarities of evidential paradigm

The evidential paradigm is developed for mainly solving such problems of for-
malized text processing as proving a theorem under consideration or verifying a
given proof of a theorem.

According to the evidential paradigm, the scheme of the processing of formal-
ized (non necessary mathematical) texts is as follows (a more detailed description
can be found in [2]):

Text prepared by a user for proving/verifying a theorem =========>
(using a parser)

A first-order self-contained text =========>A computer–made proof/ve-
(using a prover)

rification =========>Text in a form comprehensible for a human
(using an editor)
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Thus, the following problems arise in the framework of the evidential paradigm:
creation of formal mathematical languages, construction of deductive methods
and tools, creation and usage of information environment, and development of
interactive modes.

Let us briefly describe each of them and some of the ways used for solving
them. Naturally, the main attention will be paid to the linguistic and deductive
tools satisfying the evidential paradigm requirements. In this connection, the
other tools are only slightly contoured.

3.1 Linguistic tools

The following requirements were formulated for a language that should be con-
structed in the framework of the evidential paradigm.

Its syntax and semantics should be formalized. It should allow writing the
axioms of a theory under consideration as well as auxiliary propositions, lemmas,
theorems, and their proofs to ensure the self-containedness of a text and word-
ing of definitions. The language thesaurus should be extensible and separated
from the language grammar. In addition, it should be close to the languages
of mathematical publications in order to provide convenience and comfort to a
user in creating and processing a text in interactive mode. Besides, it should give
the possibility to write formulas of the first-order language. Moreover, it should
allow to formulate tasks that are not directly related to the deduction search.

The first sketch of such a language appeared in 1970 [10]. Its final (Russian)
version called TL (Theory of Language) was published in [11].

In 2000, a new, improved, English-language version of TL called ForTheL
(FORmal THEory Language) was constructed [12]. The main objective of the
construction of ForTheL (and TL) was to provide an initial (mathematical)
environment for solving a task under consideration as well as for the further de-
velopment of evidential (logical) engines and strengthening of their capabilities.

Like any usual mathematical text, a ForTheL text consists of definitions,
assumptions, affirmations, theorems, proofs, etc. The syntax of a ForTheL sen-
tence follows the rules of the English grammar. Sentences are built of units:
statements, predicates, notions (that denote classes of objects) and terms (that
denote individual entities). Units are composed of syntactical primitives: nouns
which form notions (e.g. “subset of”) or terms (“closure of”), verbs and adjec-
tives which form predicates (“belongs to”, “compact”), symbolic primitives that
use a concise symbolic notation for predicates and functions and allow to con-
sider usual quantifier-free first-order formulas as ForTheL statements. Of course,
just a little fragment of English is formalized in the syntax of ForTheL.

There are three kinds of sentences in the ForTheL language: assumptions,
selections, and affirmations. Assumptions serve to declare variables or to provide
some hypotheses for the subsequent text. For example, the following sentences
are typical assumptions: “Let S be a finite set.”, “Assume that m is greater
than n.”. Selections state the existence of representatives of notions and can
be used to declare variables, too. Here follows an example of a selection: “Take
an even prime number X.”. Finally , affirmations are simply statements: “If p
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divides n− p then p divides n”. The semantics of a sentence is determined by a
series of transformations converting a ForTheL statement to the corresponding
first-order formula for processing it by the deductive tools of SAD.

ForTheL sections are: sentences, sentences with proofs, cases, and top-level
sections: axioms, definitions, signature extensions, lemmas, and theorems. A top-
level section is a sequence of assumptions concluded by an affirmation. Proofs
attached to affirmations and selections are simply sequences of low-level sections.

3.2 Deductive tools

From the very beginning of its appearance, EA has paid great attention to
developing machine proof search methods suitable for the various fields of math-
ematics and taking into account (informal) human reasoning techniques.

Deductive tools should satisfy the following requirements: (1) the syntactical
form of an original task under consideration should be preserved; (2) deduction
should be carried out within the signature of an initial theory (i.e. without
applying skolemization); (3) proof search should be goal-driven; (4) equality
(equations) handling should be separated from a deductive processes.

As a result, the sequent approach was selected as basic for the construction
of logical engines in the framework of the evidential paradigm. This permitted
to satisfy (1) in a good enough form. Besides:

– for satisfying (2), a technique for the optimization of quantifier handling
was proposed on the basis of an original notion of an admissible substitution,

– for satisfying (3), proof search was proposed in the form “driving” the
process of an auxiliary goal generation by taking a formula (goal) under consid-
eration into account,

– for satisfying (4), special methods for equality processing and equation
solving were developed (allowing the use of algebra systems and problem solvers
if necessary).

Investigations in this direction began in 1963, when the problem of automated
theorem proving in group theory was formulated by V. Glushkov. As a result, the
procedure admitted its interpretation as a specific, sound and complete, sequent
calculus later called the AGS (Auxiliary Goals Search) calculus was proposed in
[13]. It used Kanger’s approach to quantifier handling and, in this connection, it
was less efficient that the usual resolution-type methods.

Attempts to overcome this disadvantage of AGS led to the construction of
an original sequent calculus [14, 15] on the basis of a new notion of an admissible
substitution distinguished from that was used before its appearance. It was im-
plemented in the (Russian) SAD system and its implementation demonstrated
the usefulness of deductive approach to constructing such calculi.

Since then, these investigations were stopped until 1998, when the paper’s
authors started participating in the Intas project 96-0760 “Rewriting Techniques
and Efficient Theorem Proving” (1998-2000). This project gave an impulse for
modifying the calculus from [15] in several directions, one of which concerns the
case of classical logic (see, for example, [16]) and the others – non-classical ones.
As a result, a special research was conducted and there was obtained a wide
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spectrum of interesting results on efficient enough inference search in classical
and intuitionistic logics as well as in their modal extensions. Note that this
research for classical logic was used in implementing the logical engine of the
English SAD system.

Note that the (new) notion of admissibility is not enough for the construction
of sound calculi in the intuitionistic case. This situation can be corrected by
using the notion of compatibility firstly used in [17] for the construction of the
sound (and complete) tableau calculus with free variables for intuitionistic logic
and introduced in a number of calculi for modal extensions of classical and
intuitionistic logics [18].

3.3 Information environment and interactive modes

We distinguish three types of information environment. The first is a proof envi-
ronment intended for keeping all the data necessary for solving a task under con-
sideration. By now, it presents a certain self-contained ForTheL-text prepared
with the help of a user. All mathematical facts accumulated during previous ses-
sions and needed for solving a task form the second type of environment called
internal environment. The whole information that can be received via Internet
by means of using mathematical services existent in Internet give the third type,
the so-called external environment.

Interactive modes can serve for interfacing a computer assistant (in our case –
the SAD system) with both a user and computer mathematical services existent
in the external information environment. They can be designed and implemented
only after fixing the form of internal and proof environments.

4 SAD system

The earlier-mentioned English SAD system satisfies well enough the require-
ments of the evidential paradigm and now it can be considered as its three-level
implementation that is intended for theorem proving and text verification [19].

At the first level, its parser module analyzes an input mathematical text,
its structure, and its logical content, encoded in the ForTheL statements. After
this, the translation of the text into its internal presentation is made.

The result of translation gives a list of goal statements to be deduced from
their predecessors. Note that there exists a module for processing first-order for-
mulas presenting in a “dialect” of ForTheL, which can also be used if convenient.

At the second level, the goal statements are generated one-by-one and subse-
quently processed by the so-called foreground reasoner of SAD for reducing them
to a number of subtasks for a prover splitting a goal under consideration to sev-
eral simpler subgoals or generating an alternative subgoal. The module becomes
redundant when SAD solves a problem for automated theorem proving.

Proof search tasks are resolved by a background prover at the third level.
The SAD native prover is based on a special goal-driven sequent calculus for the
classical first-order logic with equality. Note that it exploits the above-mentioned
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notion of admissible substitution, which permits to preserve the initial signature
of a task so that special accumulated equations can be sent to a specialized
solver, e.g. an external computer algebra system (CAS). Additionally note that
the SAD system was implemented in such a way that it can use some other
external first-order provers, such as Otter [20], SPASS [21], or Vampire [22].

As a final step, the SAD outputs the result of its session.
Finally, note that by now, a number of experiments has been made in the

SAD. They are related to: inference search in first-order sequent logic (a user
may give his own problems or refer to a problem from the known TPTP problem
library), theorem proving in the context of a self-contained ForTheL-text, and
verification of self-contained ForTheL-texts.

The most interesting examples on verification are:
- Ramsey’s finite and infinite theorems;
- some properties of finite groups;
- theorem that the square root of a prime number is irrational;
- Cauchy-Bouniakowsky-Schwarz inequality from mathematical analysis;
- Chinese remainder theorem and Bezout’s identity in terms of abstract rings;
- Tarski’s fixed point theorem;
- theorem on the stability of the refinement relation over a set of program

specification.

5 Conclusion

The above-given material shows that the evidential paradigm is well in line with
the modern trends in the processing of formalized (not obligatory mathematical)
texts and that the SAD system looks fruitful from the point of view of imple-
menting the existing principles of the construction of computer mathematical
services being defined as information systems that are able to carry out numeri-
cal calculations and/or symbolic transformation and/or deductive constructions.
The paper’s authors hope that the ideas presented in the paper and used in the
SAD system, will attract the attention of researchers in the field of artificial in-
telligence and will be useful in developing computer services intended for formal
knowledge presentation and processing.
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