
Adaptation of Legacy Fortran Applications to Cloud

Computing

Eugene Tulika
1
, Anatoliy Doroshenko

1
, and Kostiantyn Zhereb

1

1 Institute of Software Systems of National Academy of Sciences of Ukraine,

Glushkov prosp. 40, 03187 Kyiv, Ukraine

eugene.tulika@gmail.com, doroshenkoanatoliy2@gmail.com,

zhereb@gmail.com

Abstract. We propose an approach to the semi-automatic transformation of leg-

acy Fortran applications for execution on cloud computing platforms. An archi-

tecture is proposed based on web-services choreography, which allows unlim-

ited scalability of the system and reduces overhead on message passing. The

approach is tested on an example program from the quantum chemistry field.

Keywords. virtualization, cloud computing, scalable parallelism, web-services

choreography.

Key Terms. ConcurrentComputation, DataGrid, HighPerformanceComputing,

FormalMethod, SoftwareSystem

1 Introduction

Fortran language exists since the 1950s and during this time positioned itself as one of

the best tools for scientific research. Language has huge support from the software

industry, new libraries and compilers are released that allow using modern technolo-

gies and standards. Examples are: compiler from Portland Group [1] for Fortran sup-

porting GPGPU and CUDA; High Performance Fortran Forum [2] creates compilers

and standards for high performance Fortran; OpenMP and MPI for parallel and dis-

tributed computation allow to use Fortran for modern cluster computing; Intel popu-

larizes Fortran [3] in order to support proprietary Intel compilers and programs;

Coarray Fortran language fork became a standard in Fortran 2003 and allows to sup-

port computation on distributed arrays [4]; there are many Fortran libraries [5] for

numerical analysis. Besides, conservative policy for backward compatibility makes

code written on old standards compatible with the new compilers. All this makes

Fortran an attractive platform for scientific research. However, Fortran suffers from

outdated standards that make it hard to write an efficient code for computations with

distributed memory. Another problem is a great amount of legacy code which was

written without taking into account distributed architectures.

Cloud computing became popular because of the need to reduce the cost of compu-

tations. The difference between cloud computing and other parallel approaches is

usage of scalability (ability to support more resources) vs. performance (running fast

ICTERI 2016, Kyiv, Ukraine, June 21-24, 2016
Copyright © 2016 by the paper authors

on given resources). Scalable systems can contain components which individually

perform poorly. Cloud computing is focused on reducing the cost and

time/performance balance using cheap components, and therefore allows using more

resources.

This paper describes work in progress aimed at parallelizing Fortran scientific ap-

plications for the cloud platform. We propose a methodology for semi-automatic par-

allelization of legacy applications. The paper also describes an architecture for run-

ning distributed applications on the cloud.

Related parallelization approaches for porting legacy applications to cloud plat-

form have been described, such as Pydron [6] and Bio-Cirrus [7]. The contribution of

this paper is 1) using rewriting rules technique to automate transformation steps and

2) using service choreography instead of orchestration to reduce overhead.

2 Description of the Studied Application and Problem

Statement

In this paper, we discuss our approach of transforming legacy scientific applications

based on an example Fortran application from the quantum chemistry field. Some

properties we discuss are specific to this application, such as time distribution of sub-

routines (Section 2) or the structure of control flow graph (Section 3). However, our

approach can be applied in the more general case.

The example application calculates the geometry of electron orbitals [8]. The ap-

plication was initially optimized for single-core performance, without any parallelism.

The sequential processing time has quadratic increase depending on the input size.

The first step of our approach requires identifying the most promising subroutines

for parallelization. The example program consists of data input, computation subrou-

tines, logging intermediate results into the file and data output. Profiling the applica-

tion before optimization shows the time distribution for the main computational steps:

 Data input from files and initialization – approximately 1% of time;

 Subroutine hcore calculates integrals for every atom – 60% of time;

 Subroutine iterc – optimization of the geometry of molecule, 30% of the time.

Therefore, the main focus of parallelization would be spent in subroutines hcore

and iterc. Time performance of algorithms in both subroutines has a linear depend-

ency on the input size. Each of two subroutines is applied independently for every

atom in the input, which allows parallelization. However, iterc depends on the

results of hcore, because the calculation of the Fock operator requires integrals

computed in hcore.

The generic question of Fortran parallelization for distributed architecture is widely

studied [16], [17]. As a part of this paper, Asynchronous Network technique with the

usage of web-service choreography is applied to the parallel algorithms. This provides

a robust framework for the development of applications which can be distributed

across cloud infrastructure without additional efforts, while usage of MPI for the

highly scalable applications requires manual control over data placement and inter-

process communication.

- 112 -

3 Equivalent Code Transformation for Scalable Parallelization

On the next step, we try to find and parallelize independent loops that allow unlimited

scalability. Structurally, the application can be modeled with the following graph:

 I -> A ([a1..n]) -> B ([b1..n]) -> O (1)

Graph vertices I, A, B, O stand for the sequential steps of computation: I – data in-

put and allocation of the memory, A – calculation of the integrals for every atom

(hcore), B – calculation of the Fock operator for every atom (iterc), O – final

steps and data output. Graph edges correspond to the control flow between parts of

the program, a1..n and b1..n stand for input data of subroutines. The goal of this step is

to transform program to the parallel form:

 I -> A1..n ([a1..n]) -> B1..n ([b1..n]) -> O (2)

We transform sequential loop A, into n parallel processes A1..n([a1..n]). Each process

Ai will perform calculations on a single segment of data ai. The same transformation

will be applied to B as well. After manual analysis of the data dependencies, it was

identified that there are no dependencies between iterations of the loop in code frag-

ment A, and processes A1..n can be invoked in parallel, same applicable to the process-

es B1..n . However, B had a dependency on the results of A and in order to address this

dependency barrier synchronization will be used between parallel processes Ai and Bi.

After selection of the model for parallel computation, we should ensure that code

fragments invoked in parallel do not have any side effects. This is done by replacing

subroutines with pure functions (introduced in Fortran 95 standard). The following

changes in code are needed:

1. Create FUNCTION instead of SUBROUTINE

2. Remove IMPLICIT statements – all local variables of the function should be ex-

plicitly declared.

3. Remove COMMON BLOCKs (global variables) – all corresponding global varia-

bles should be passed as an inputs/outputs of the function, and reads/writes to

global variables performed by the calling code.

4. Remove read and write operations – all such operations should be invoked before

and after the call to the pure function.

4 Automatic Code Transformation Using TermWare

TermWare [9] is a tool for automatic code transformation which can be applied to the

task of transformation to pure functions. TermWare allows describing transformations

in a declarative way which simplifies its development and makes them reusable. In

the earlier work [10] TermWare was used to build high-level algebraic models of

Fortran code and perform transformations on them. This paper uses a similar

approach but focuses on the transition of the subroutines to the pure functions.

As an example of transformation we use a set of rules to transform IMPLICIT

statements to explicit declarations of variables:

- 113 -

1. _MarkPure(Subroutine($name,$params,$return,$body))
-> Function($name,$params,$return,_MkImp($body))

2. _MkImp([$x:$y]) -> [_MkImp($x):_MkImp($y)]
3. _MkImp(NIL) -> NIL
4. _MkImp(Declare($var,$type,$val) ->

Declare($var,$type,$val) [check($var, $type)]

5. [_MkImp(Assign($var,$expr)): $y] [isUnchecked
($var)] -> [Declare_MARK($var, $type) : [Assign

($var,$expr) : $y]] [inferType ($var,$type)]

6. [$x:[Declare_MARK($var,$type) : $y]] ->
[Declare_MARK($var,$type):[$x:$y]]

7. Function ($name,$params,$return,
[Declare_ MARK($var,$type):$y]) -> Function

($name,$params,$return,[Declare($var,$type):$y])

Rule 1 triggers transformation, marking the body of the function with the marker

term _MkImp. Rules 2 and 3 walk through the body of the function and expand the

_MkImp marker to all operations. Rule 4 memorizes the variables which have explicit

declaration using the method check($var, $type) from the facts DB. Rule 5

finds variables without explicit declaration using method isUnchecked($var).

For these variables it determines the type with the method

inferType($var,$type) and adds declaration marked with De-

clare_MARK($var,$type). To determine the variable type, the method checks

the variable name against IMPLICIT statements in Fortran code, as well as default

convention that declares variables starting with 'i'-'n' as INTEGER and all others

as REAL. Rule 6 moves this declaration to the beginning of the function, and rule 7

removes the mark. As a result, term Declare($var,$type) is generated, which

later is transformed to the declaration of the variable in the code.

As an example of rules application, consider a simple procedure of square matrix

multiplication (Table 1).

Table 1. Initial and transformed source code for removing IMPLICIT declarations

Initial code Transformed code

SUBROUTINE MATR_MULT(N,A,B,C)

INTEGER,INTENT(IN) :: N

REAL*8,INTENT(IN)::A(N,N),B(N,N)

REAL*8,INTENT(OUT) :: C(N,N)

DO I=1,N

 DO J=1,N

 S = 0.0D+00

 DO K=1,N

 S=S+A(I,K)*B(K,J)

 END DO

 C(I,J)=S

 END DO

FUNCTION MATR_MULT(N,A,B)

INTEGER,INTENT(IN) :: N

REAL*8,INTENT(IN)::A(N,N),B(N,N)

REAL*8 :: MATR_MULT(N,N)

INTEGER :: I, J, K

REAL*8 :: S

DO I=1,N

 DO J=1,N

 S = 0.0D+00

 DO K=1,N

 S=S+A(I,K)*B(K,J)

 END DO

 MATR_MULT(I,J)=S

 END DO

- 114 -

END DO

END DO

In the initial code, some variables are used with no declaration. After

transformation, all the variables are declared. Also, note that the syntax for

SUBROUTINE is different from the FUNCTION. But such changes should not be

described as additional rules. A simple substitution of the term “Subroutine” with the

term “Function” is sufficient. During the code generation phase, all necessary changes

are added automatically, which is one of the advantages of the TermWare and high-

level algebraic models [10].

5 Transition to Distributed Application Executed on Cloud

Previously discussed transformation steps are not specific to any given parallel plat-

form. Starting from this section, we discuss additional steps needed for the cloud plat-

form. In order to transform application to distributed architecture, its source code has

to be transformed to support network calls. Functions Ai and Bi are converted into

web-services – separate programs with HTTP interface which can be invoked remote-

ly. The body of the program is transformed into transaction script which invokes re-

mote web-services and aggregates results. In order to use HTTP calls from the

Fortran, libcurl library is used with the C interface [11]. Transformations of the func-

tions to the separate web-services is done with the Java wrapper. Data for invocation

of the remote services is composed in the transaction script. The script collects all

input data of the program and sends messages to the remote services.

Cloud platform operation system, such as CloudStack, provides APIs to do scaling

– provisioning of the nodes with the predefined configuration on demand. This capa-

bility is used by transaction script: after reading the input data and extracting the

number of atoms, it makes a call to API of the cloud operating system and requires a

startup of the necessary amount of nodes of needed type. In the simplest case, pro-

cessing of N atoms will require 2N nodes, one for each Ai and Bi. However, the num-

ber of nodes, time they are actively working and the size of the used memory affects

the cost of computation. For optimization of the cost the optimal parameters of con-

figuration should be chosen, so that cost is minimized. In [12] a method of perfor-

mance optimization of the service-oriented program was proposed based on load es-

timation. A similar approach can be used for minimization of the cost.

Approach when transaction script calls remote web-services in a service-oriented

architecture is called Orchestration. Usage of Orchestration has disadvantages. Paper

[13] shows that usage of separate transaction script increases the amount of calls be-

tween processes in most patterns of message passing in distributed systems, which

increases overhead on data processing.

6 Transition to Choreography

Our goal is to reduce message passing overhead and eliminate a single point of failure

represented by transaction script, by using choreography. From the perspective of

distributed systems modeling, Choreography could be represented as an asynchronous

- 115 -

network [18]. The asynchronous network consists of the set of processes that com-

municate with each other. Communication can include: direct message exchange be-

tween nodes; broadcast when a node sends a message to each node including itself;

multicast when message is sent to the subset of nodes. During the transition to chore-

ography, transaction script is eliminated and its responsibilities are distributed be-

tween services. Unlike Orchestration or MPI where transaction script is waiting for

the results of web-services execution, services in Choreography don't know about

each other and send results of execution to the communication channel. During the

execution, the service takes into account the state of the process and type of inbound

message in order to determine its position relatively to other services. Having under-

stood its position and taking into account communication protocol, service decides on

what type of message should be sent back to the channel when the result is ready. The

protocol has the following format: “If current process role is Ai and message M1 is

received as input, procedure F should be invoked and message M2 should be passed to

the processes A2..m”. This format is identical to the description of finite state machine.

Communication Protocol can replace the part of transaction script responsible for

service invocation and results processing. Part of responsibilities related to data input

is transferred to web-service itself. Code fragment I performing initial data processing

is implemented by the new service I1 which plays the role of starting point in the ma-

chine description. Invocation of tail fragment O which outputs the result should be

implemented by a separate service O1, which will be executed after synchronizing all

the processes B1..n and will do the post-processing of the data and data output.

In order to follow the protocol, every web-service should have a controlling mech-

anism which executes state machine by the description of the protocol. Controlling

mechanism is written in Java. Choreography execution is initiated by an initial event,

e.g. the file with input data has been uploaded to the cloud data volume. Process I1 in

the waiting state receives this event from the file system and invokes Fortran code

responsible for initial data processing. After the event is processed, process I1 sends

broadcast message with the results of invocation to all the processes of the

asynchronous network. In the simplest case, this message is received by all the pro-

cesses A1..n , B1..n, I1, and O1. The processes B1..n, O1, and I1 ignore this message because

Bi and O1 processes do not have enough information yet to start, and process I1 al-

ready finished its part of the work. It means that only processes A1..n start execution.

An important aspect of choreography is the implementation of barrier synchroniza-

tion. In [15] global and local synchronizers are described that can be used for syn-

chronization of the processes of the asynchronous network. If global synchronizer is

used, then the separate process should be responsible for controlling the conditions of

the barrier. The local synchronizer is controlling just its neighbors. In this case mes-

sage "process reached barrier" is gradually distributed through the network which

allows reducing the amount of interactions between services.

In order to achieve better resource utilization using Choreography, following con-

siderations should be taken into account. If certain web-service, such as I1, is expected

to consume fewer resources than others, it should run on the smaller node (with less

RAM and CPUs). If some web-services are never expected to run simultaneously,

such as Ai and Bi, they should re-use the same node. Ideally, it should be the same

service with a same controlling mechanism which can play different roles in the pro-

tocol. This will guarantee that minimal amount of nodes are started at any point of

- 116 -

process execution. Choreography allows reducing the number of messages passed

between transaction script and web-services. It also allows better resource utilization

having non-blocking requests between web-services. Besides, it provides integration

framework with the generic rule sets defined which reduce the amount of code needed

to be written to convert the application into distributed system.

7 Testing of the Approach

In order to verify the proposed approach, we used a simplified task with the same

model of the data dependency – Gaussian elimination. Testing was performed on the

Amazon cloud platform and compares two different configurations of the system.

Both configurations have the same amount of processors – 8, and the same amount of

RAM – 32Gb. The first configuration consists from one server AWS m4.2xlarge (26

ECUs, 8 vCPUs, 2.4 GHz, Intel Xeon E5-2676v3, 32 GiB memory, EBS only) and is

used to run the sequential program. Second configuration consists of four servers

AWS m4.large (6.5 ECUs, 2 vCPUs, 2.4 GHz, Intel Xeon E5-2676v3, 8 GiB

memory, EBS only) and it is used to run the service-oriented application (with chore-

ography). We have measured the time spent on the processing of the square matrices

of different sizes. Comparison of execution time is in Fig. 1. For smaller matrix size,

the sequential program runs faster because of overhead in a parallel program. Howev-

er, for larger matrices the execution time of sequential program grows faster, and it

becomes less efficient.

Fig. 1. Comparison of the execution time of sequential and service-oriented versions

8 Conclusion

The paper describes the work in progress of scaling legacy Fortran code using cloud

platforms. Proposed architecture uses choreography of web-services which allows

- 117 -

unlimited scalability and reduces overhead on message passing. Scaling exercise is

performed on application from quantum chemistry field for calculation of atoms or-

bitals. One of the main results of the paper is a methodology for adjustment of the

legacy source code to the cloud infrastructure, including transition steps to distributed

scalable architecture. Our future research directions include automating additional

transformation steps using TermWare framework, applying our approach to different

applications, as well as testing different cloud configurations to find the most efficient

ways of parallelizing legacy applications.

References

1. PGI Compilers & Tools, http://www.pgroup.com/products/pvf.htm

2. High Performance, http://hpff.rice.edu

3. Fortran is more popular than ever; Intel makes it fast, https://software.intel.com/en-

us/blogs/2011/09/24/fortran-is-more-popular-than-ever-intel-makes-it-fast

4. Coarrays in the next Fortran Standard, ftp://ftp.nag.co.uk/sc22wg5/N1751-

N1800/N1787.pdf

5. Netlib Repository, http://netlib.org

6. Müller, S. C., Alonso, G., Amara, A., and Csillaghy, A.: Pydron: Semi-automatic parallel-

ization for multi-core and the cloud. In: 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14), pp. 645-659.(2014)

7. Karlsson, T. J. M., et al.: Bio-Cirrus: a framework for running legacy bioinformatics appli-

cations with cloud computing resources. In Advances in Computational Intelligence, pp.

200-207. Springer Berlin Heidelberg. (2013)

8. Doroshenko, A., Khavryuchenko, V., Iegorov, V., Suslova, L.: Modeling for quantum

chemistry computations (in Russian). Upravliayushchie sistemy i mashiny N 5, pp. 83-87.

(2012)

9. Doroshenko A., Shevchenko R.: A Rewriting Framework for Rule-Based Programming

Dynamic Applications. Fundamenta Informaticae 72 (1–3), pp. 95–108. (2006)

10. Tulika, E., Zhereb, K., Doroshenko, A.: Fortran Programs Parallelization Using Rewriting

Rules Technique (in Ukrainian). Problems in Programming N 2-3, pp. 388-397. Kyiv

(2012)

11. Libcurl – the multiprotocol file transfer library, http://curl.haxx.se/libcurl

12. Tulika, E.: Performance Optimization in SOA Using Load Estimation and Load Balancing

(in Ukrainian). Problems in Programming, N 2-3, pp. 193-201. Kyiv (2010)

13. Barker, A., Weissman, J.B. and Van Hemert, J.I..: Reducing data transfer in service-

oriented architectures: The circulate approach. Services Computing, IEEE Transactions on

Services Computing, N 5(3), pp. 437-449. (2012)

14. Peltz, C.: Web services orchestration and choreography. Computer, (10), pp. 46-52. (2003)

15. Lynch, N.A.: Distributed algorithms. Morgan Kaufmann, San Francisco (1996)

16. Golub G., Ortega J.: Scientific Computing: An Introduction with Parallel Computing, 215-

236. Academic Press (1989)

17. Schelter S., Boden C., Schenck M., Alexandrov A., Markl V.: Distributed matrix factoriza-

tion with MapReduce using a series of broadcast-joins. In Proceedings of the 7th ACM

conference on Recommender systems (RecSys '13). ACM, New York, NY, USA, pp. 281-

284. (2013)

18. Barker A., Walton C., Robertson D.: Choreographing Web Services. IEEE Transactions on

Services Computing, N 2(2), pp. 152-166. IEEE Computer Society. (2009).

- 118 -

