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Abstract. Software correctness is an actual topic in many industries
nowadays. Significant system properties should be checked in order to
use these software safely. The properties proof task is applicable to pre-
viously developed systems also, if the property is new one or when the
system is transferring to another runtime environment – for example, to
multi-core processor. The method for software properties proof in inter-
leaving concurrent environment with communication via shared memory
was developed to solve the problem of simultaneous check the required
property over the family of programs being run arbitrary times in par-
allel – instead of doing separate proofs for every number of program in-
stances being run concurrently. Application of this method to real-world
industrial tasks is demonstrated in this work.
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1 Introduction

Software correctness problem (or programs’ properties check & proof) is impor-
tant and challenging in many industries and for different reasons [1]. The problem
of software correctness has transformed over the time but still remains the ac-
tual one. The huge variety of program system’s properties needs to be proven
(or checked and warranted somehow) in order to use this software safely. First
of all, it concerns safety-critical systems, but also these questions are important
for many other software systems:

– do software program behaves as expected? (software validation)
– do software give us the results we need when it completes the work? (safety

properties verification)
– is software system processing the request in a timely manner? (program

liveness verification)
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There are three main approaches to solve these problems [2]:

– testing,
– model checking and
– theorem proving.

While testing techniques itself can’t cover all the use cases, even behavioral,
they can’t warrant the total safety of the system. Moreover, Dijkstra in [3] insists
on the main testing limitation – it can show an error, but it can’t demonstrate
the absence of errors. The two other approaches mentioned above tries to do
that. But, the model checking has well-known state explosion problem [4] while
pure theorem proving is rather hard technique, even for professionals. One of
the advanced approaches address the problem is symbolic model checking which
incorporates the pros of both latter. Detailed comparative analysis can be found
in many sources, for example in [2].

Software correctness problem is actual in many cases and for different indus-
tries:

– when we deal with safety-critical (or life-critical) systems whose failure or
malfunction may result in death or serious injury to the people OR loss
or damage to the equipment or property OR environmental harm (aircraft,
space, nuclear industries etc.),

– concerning any system especially important or mission-critical ones (finan-
cial, banking, real-time systems etc.) – to prove its correct behavior (or its
correct results of work) and other formal properties,

– to check the properties of existing (already developed) systems in new cir-
cumstances – to be sure if previously known properties keep true for the
system being migrated to another environment with changed characteris-
tics (for example, transferring the system from single-CPU environment to
multi-processor or multi-threading architecture).

So, methods for program properties check and proof are required in wide
range of situations.

2 The Task and the Method

2.1 Problem Overview and Complexity

Classical questions of the program safety (partial correctness) and liveness (total
correctness) are complicated by many contemporary programming techniques
like object-oriented programming (OOP), concurrency, Web Services, closures
and so on. For example, OOP actualizes type checking problem due to dynami-
cal but strong typing, signature problems due to polymorphism and inheritance
(plus virtual methods and dynamic linking) and visibility in the scope prob-
lems (or accessibility in the scope, i.e. kind of security). Many of them can be
addressed to [1], where OOP is deeply investigated from the start and closely
integrated into the method. Web Services usage, for example, arouses questions
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on accessibility, reliability and discoverability (including semantic specifications
like RDF) etc. But we will concentrate on concurrency and its’ challenges in this
work.

Main troubles of concurrency are non-determinism and inter-process commu-
nications complexity. The definitive difference between parallel and sequential
worlds is that the state of program (shared memory data or messages in com-
munication channels) can be changed between two consequent statements of one
of concurrently running processes by another one, being executed in interleav-
ing manner. In other words, the (global) state can be influenced by side effect
of another concurrent process, which is impossible behavior for pure sequential
programs.

Concurrency as the ability to execute more than one operation somehow
at the same time can be formalized via the inter-process communication (IPC)
mechanism. There exist two main approaches for IPC: message passing and
shared memory. While the first approach is investigated in details, for example,
in [5], the latter is rather less researched [2]. Moreover, the classical Hoare logic
for reasoning on programs [6] can’t be directly applied to interleaving shared
memory concurrency because of possible side effect of parallel programs to each
other [7].

2.2 Interleaving Concurrency with Shared Memory

Thus here we will concentrate on interleaving concurrency with shared memory
environment, which is present de facto in many cases (runtime environments)
in different industries and in various systems (hardware as well as software) all
over us:

– hardware multi-processor and multi-core architectures (of course with shared
memory), primarily SMP-architectures (Symmetric Multi-Processing),

– supercomputing, namely with UMA and NUMA (Uniform and Non-Uniform
Memory Access) architectures,

– multi-tasking Operating Systems,
– software services and applications running in parallel on hardware with

shared memory (like UMA, NUMA),
– servers (hardware as well as software ones, like a reactive system executing

request – response cycles):
• Web Server
• Application Server
• SQL Server (DataBase Management Systems as well as Data Warehouse

Systems)

All samples mentioned above have common characteristics of environment:

– interleaving concurrency – means that control can be passed to any other
concurrent pretender to CPU time at any time moment (also known as
’process context switch’ system operation),
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– shared memory – is the mean for IPC, where each process can write the
values to and read the values from the so-called shared variables (at any
time moment) in order to communicate with each other,

– it represents the most wide MIMD model (Multiple Instruction Multiple
Data) in Flynn’s taxonomy.

2.3 The Model of Environment

The formal model for interleaving concurrency with shared memory proposed
in [8, 11] is the special subclass of IPCL (Interleaving Parallel Compositional
Languages) [8]. Such programs will have the following form: P1

k1 ||P2
k2 ||...||Pn

kn

where Pj – are sequential programs running in parallel (in interleaving con-
current mode) kj times, and || – is the interleaving concurrency operation sign.
Proposed construction is an adequate model for program systems being executed
in interleaving concurrent runtime environment with shared memory [8, 2].

We should notice also that proposed model follows the recommendations
(”best practices”) and considers warnings (avoidances) by C.A.R. Hoare [5]
about parallel execution operation (like fork), that, in general, multithreading is
an incredibly complex and error-prone technique, not to be recommended in any
but the smallest programs and, thus, concurrency can be afforded only at the
outermost (most global) level of a job, and its use on a small scale is discouraged.

2.4 Program Properties

The problem formulation and the method for program properties proof can be
found in [8, 2]. Two types of properties defined there are:

1. Hoare-style: {PreCondition(S)}Program{PostCondition(S)}
2. Invariant-style: Inv(S), which keeps true throughout all execution time

where PreCondition(S), PostCondition(S) and Inv(S) are predicates over the
current state (S).

The state S includes current ”instruction pointers” (labels or marks) of each
sequential sub-program running in parallel as well as the data – shared and local
for every such sub-program. These two property types are the kinds of safety
properties, while the liveness properties (first of all – termination problem) are
out of our scope here because of its algorithmically undecidability in common
case.

Here are some examples of such properties:

– race condition analysis,

– critical section condition,

– ”transactionality” (integrity, consistency) of the system,
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3 Known Alternative Approaches Overview

We should note that the right way which addresses software correctness problem
is formal specification combined with stepwise refinement from an abstract model
(specification) to the specific one (final code) with verification of these steps. In
this case we obtain correct programs by construction. Testing techniques can
be complementary only to other, more precise or formal methods, because of
impossibility to test things totally. Formal methods can also be useful for proving
properties of already existing systems – for example, while being transferred to
another run-time environment with different characteristics or when we need to
be sure in some (probably new) properties of the system and we can’t (or don’t
want) replace current system (for some new system with these properties being
proven).

Starting our consideration from famous Petri Nets regarding verification of
parallel programs, we should note that this formalism was developed for con-
current processes behavior modelling and not for verification purposes. So, it
can not cope with state-based properties check and proof, and fits for reasoning
about flow-like properties only (data-flow or concurrent processes behavior).

Although there is a broad range of approaches to handle this issue – most of
them have remarkable disadvantages in terms of using them on practice as they
are too complicated or too theorized. Moreover, some of them are not applicable
to cope with real tasks in general. For instance, without specifying the details,
original Owicki-Gries method [9] requires the quadratic number of verifications
relating to the program operators count. While the extended version of the
rely-guarantee Owicki-Gries method [7] needs the implementation of additional
variables as well as non-evident formulating of rely- and guarantee- conditions
in order to tackle this task. In TLA [10] (Temporal Logic of Actions) Lamport
offers to construct a model which is not much easier than the two previous ones.
Moreover, TLA is characterized with a big difference between the program and
its proving formula. In such a way IPCL [8, 2, 11] might be one of the most
efficient solutions. While IPCL is up to solve the verification problem of the
parallel software, in fact, it describes the so-called serializability mechanism.
Though ultimately, we will work with sequential processes which steps will be
interrupted by parallel running programs in an unpredictable way.

Many approaches have been adopted to deal with shared memory concur-
rency, but majority of them have different disadvantages [2]. One of the lacks is
that known methods can be applied to a fixed program whilst we often have deal
with the family of the same fixed structure program running arbitrary instances
of it in parallel. So do Web and SQL servers, which run any arbitrary number
of the same scripts (requests, queries) concurrently. So does operating system,
executing various count of the same services and applications at any given time
slice.

Consequently, we rather need the method for reasoning over the family of
programs than the method which operates with a fixed program when the run-
time environment is shared memory interleaving concurrency. In the latter case
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we need to reason over many programs (each number of program copies running
concurrently) instead of parameterized form of one of them.

4 The Method and Its Applications

The method for program properties proof in compositional nominative languages
IPCL with interleaving concurrency and shared memory communication mech-
anism is described in [8, 2, 11] in details.

It operates over IPCL, which includes common compositions: ”;”, ”if-then-
else”, ”while-do”, vector assignment operator ((a, b) := (c, d)) and the inter-
leaving concurrency ”——”, which has obvious structural operational (not pure
compositional) semantics [8, 2, 11]. Because of it, IPCL is similar to any common
universal (structural, imperative) programming language. Thus, every program
(from C, PHP, C#, Java, JavaScript, even SQL etc.) could be rewritten in IPCL
without substantial problems – to apply the method.

Main stages of the method are the following [8]:

– to label (to mark-up) the program in IPCL according to its syntax tree –
each particular operator should have a label (a mark),

– to specify the notion of a state – the vector, which components include:
• labels (marks) of every particular sequential sub-program of the whole

IPCL-program,
• the single shared data of the whole program,
• and local data for every particular sequential sub-program (if present),

– to construct transition system (i.e. the model of the program execution, or
operational semantics), which fix all possible transitions between states (re-
ally, macro-transitions or transitions schema because of its countable quan-
tity) – this could be done algorithmically by the program syntax tree using
labels and states fixed above [8],

– to fix start and final states of the transition system (of the program),
– to formulate the required precondition and postcondition over start and final

states respectively,
– the main step is to formulate invariant of the system – it should incorporate

the program behavior as a whole, in a single predicate, and it could be
completed by human only for now,

– to prove that
• each of macrotransitions keeps invariant true,
• precondition on starting states implies invariant,
• invariant on final states implies postcondition.

We will not go into details of the method, but concentrate on examples of
the method applications.

Here we note that by the years the method mentioned above was successfully
applied to prove some properties of the industrial software systems, which are
the banking systems mainly. Let us discuss those examples.

Here we consider some of the method applications to the classical algorithms
and tasks (for demonstration purposes) as well as to the commercial (industrial)
software systems.
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4.1 Methodological Samples

First, we would like to mention some ”classical” examples:

– parallel addition to shared variable consistency [12],
– Peterson’s Algorithm for mutual exclusion correctness proof [13].

In first article it is proven that i := i + 1||i := i + 1 increases the value of i
by 2. The main result is that the proof is two times shorter that in any other
known formal techniques [12].

Correctness of the well-known Peterson’s Algorithm (for mutual exclusion)
is the subject of the latter paper. The fact that two concurrent processes can
not appear in their critical section at the same time is proved in [13]. The proof
again is a half of length of else known classical one (for example, in TLA).

More of that, the more generous task was discussed there – because the
proof was made simultaneously over the family of each number of program run
concurrently in first case, and it could be done in the second case.

4.2 Presentation System

Infosoft e-Detailing 1.0 is commercial presentation support system designed to
hold the almost synchronous online+offline presentations with one lecturer (man-
ager) and one-or-more listeners (clients). The usage of this system basically lies
in switching slides on a manager’s device which is almost immediately followed
by an automatic switching to the same slide on each of the clients’ devices con-
nected to the current presentation session.

The most important from the correct functioning point of view is to make
sure that every client will see the same slide that manager has switched to. Work
of the system consists of cycles, namely switching a slide on manager’s device
and then switching a slide on all of clients’ devices. The amount of such cycles is
unlimited, the only stopping criteria is that everyone has left their presentation
session. Typical cycle would look like this: manager sends to the server, and
clients are reading from it, the index of a current slide (currently using HTTP
+ AJAX + Long Poll technologies) – in such a way the asynchronous slide
replication is achieved on all the devices.

In [14] the safety property proof of Infosoft e-Detailing 1.0 software system
using correctness proof methodology [8] in IPCL is presented. Operational se-
mantics of the system with interleaving concurrency was described by means of
transition system, program Invariant as well as Pre- and Post- conditions were
formulated in accordance with the methodology. Application of the method to
the real-world system and its usage simplicity were demonstrated in [14].

The detailed proof was given in [15] also. Thus partial correctness of an
Infosoft e-Detailing 1.0 software system was proven.

4.3 Electronic Exchange

In the case with Currency Stock Electronic Exchange for Joint-Stock Company
”State Oschadny Bank of Ukraine” compositional-nominative languages and the
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method were used to formulate properties of the system (that each bid/ask offer
is presented to stock exchange participants and that buy/sell deal is closed only
once for each offer, with only one dealer, in despite of their concurrent work) and
then to prove it [16]. We will not go into details here because of more interesting
next example.

4.4 Remittances Payment System

Now let us consider the system for international remittances from Vigo Remit-
tance Corp. paying out developed for Joint-Stock Company ”State Oschadny
Bank of Ukraine”.

In this case the fact that no money remittance can be paid out twice needs to
be proven [17]. The task was stated, transitional system according to the method
was built for the model with simplified state (i.e. without local data), and the
program invariant was formulated and proved to keep true over the software
system at any given time. Conclusions about the convenience and adequacy of
method application to prove the correctness of parallel systems were made as
well as correctness property of the banking system for remittances payments was
proven, namely that each money transfer can be authorized to pay out only once
(due to authorization procedure) [17].

The simplified state [18] modification of the method is applicable when there
is no local data within processes. In this case the state itself as well as the
reasoning over the system can be significantly simplified [18].

5 Conclusions

Application of the method for concurrent programs, communicating via shared
memory, properties proof to real-world industrial software was demonstrated in
this work.

There are many questions left out of scope:

– software tools for automatic support for reasoning over such families of pro-
grams,

– more deep research of the proposed methodology through more industry
samples (i.e. real-life software systems),

– the absence of native support of OOP in IPCL and compositional languages
for now,

– non-compositional nature of interleaving concurrency etc.

But now we can affirm that the method developed is applicable and usable
to proof the properties of real industry software systems.

Partial correctness of the software systems, namely Infosoft e-Detailing 1.0,
Currency Stock Electronic Exchange for Joint-Stock Company ”State Oschadny
Bank of Ukraine” and the system for international money transfers from Vigo
Remittance Corp. paying out according to an initial problem statement has been
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proven using the correctness proof methodology [8, 11] in an IPCL language.
Considering the difficulties in the process of such proofs in parallel environments,
one can state:

– correctness proof method in IPCL is well suited for the verification of parallel
programs or the software correctness proof in terms of safety properties;

– the method allows shortening the proof at the expense of choosing an ade-
quate abstraction level [19] due to universality of a compositional nominative
approach [19, 20] and by fixing the appropriate basic function set of semantic
algebra.

Taking into account the flexibility of the methodology, existence of ’simpli-
fied state’ model for reasoning in some cases [2, 12], and universal nature of the
approach [21], it can be recommended for program properties proof (particu-
larly safety property or partial correctness) for wide range of industrial software
which is executed in interleaving concurrency environment with shared memory
interaction, primarily for server-side software of client-server complexes, because
of the method’s usability and advances. The same conclusion was obtained in
[14, 15, 17, 22] also.
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