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Abstract. An important step in reliability evaluation of any system is selection 
of an appropriate mathematical representation. One of the possible mathemati-
cal representations is structure function that expresses dependency of system 
state on states of its components. This function must be completely specified for 
reliability evaluation of the analyzed system. The structure function is con-
structed based on complete information about the system structure and possible 
components states. However, there are a lot of practical problems when the 
complete information is not available because data from which it can be derived 
cannot be collected. As a rule, other mathematical representations and methods 
for evaluation of system reliability are used in these situations. In this paper, we 
propose a new method for construction of the structure function from uncertain 
or incomplete data. This method is developed based on application of Fuzzy 
Decision Tree. 
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1 Introduction 

As has been shown in paper [1], selecting a mathematical representation of an ana-
lyzed system is an important step in reliability analysis. Depending on the number of 
performance levels, two types of models can be recognized. These models are named 
as Binary-State Systems (BSSs) and Multi-State Systems (MSSs). 

A BSS admits only two states in investigation of the system and its components: 
perfect functioning and complete failure. However, in practice, many systems can go 
through different performance levels between these two extreme states [1, 2]. A MSS 
is a mathematical model that is used to describe such systems since it allows defining 
more than two levels of performance [2, 3, 4]. 

There are different types of mathematical representations of a system. In reliability 
engineering, structure function, fault trees, reliability block diagrams, Markov models 
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and Petri nets are typically used for the mathematical representation of real systems 
under study. Historically, mathematical models based on the structure function have 
been proposed firstly. In this case, a system is modeled as a mapping that assigns 
system state to all possible combinations of component states. The system perform-
ance level is known based on the states of all its components. This interpretation of 
the structure function supposes the exact definition of all possible states of the system 
and its components. Therefore, any uncertainty cannot be considered and taken into 
account. However, this indicates that methods based on the structure function ap-
proach have some difficulties in application on real-world problems because, as a 
rule, data about behavior of such systems are uncertain. Two approaches can be used 
to solve this problem.  

The first of them is development of a new model that takes uncertainties into ac-
count [5, 6, 7]. The application of a new mathematical model leads to a development 
of new mathematical methods for the analysis of this model. The second solution is to 
use one of the traditional models and develop new methods for construction of the 
structure function that will take uncertainties of the initial data into account. 

Specifics of the uncertainty have to be analyzed before the development of the new 
method for the structure function construction based on the uncertain data. There are 
different factors of uncertain data. In our investigation, we will take into account two 
of them. The first are ambiguity and vagueness of initial data. It means that initial data 
about the system operation are collected based on (a) measurement that can be inaccu-
rate and with an error or (b) experts that can have different opinions on one situation. 
Therefore, values of states of the components or system performance level cannot be 
indicated as exact (integers). Ambiguity and vagueness in a real system have been 
studied using the probability theory. However, it is worth pointing out that some un-
certainties that are not random in nature can play important roles in construction of 
the structure function [5, 6, 8]. The fuzzy logic makes it possible to define the struc-
ture function in a more flexible form for such data than the probabilistic approach. So, 
non-exact values are the first factor of the uncertainty of initial data, and it can be 
expressed using fuzzy values. 

Secondly, situations in which it is impossible to indicate some values of the system 
components states or performance level can exist. For example, it can be very expen-
sive, or it needs unacceptable long time. This implies that some information about the 
system behavior can be absent. Therefore, the data are incomplete.  

Based on the previous text, we have a task of construction of exact and completely 
specified structure function based on uncertain and incomplete data, what is a typical 
problem of Data Mining [9]. One of the approaches used for solving this problem is 
application of Fuzzy Decision Trees (FDTs), which are widely used in Data Mining 
for analysis of uncertain data and decision making in ambiguities [10, 11].  

In this paper, we propose a method based on the application of an FDT for con-
struction of the structure function. FDTs allow taking into account uncertainties of 
two types. The first of them is ambiguity of initial data. This can occur when it is 
expensive to obtain all data about real system behavior, or there are poorly docu-
mented data. This type of uncertainty is covered by fuzzy values in an FDT. It means 
that initial data can be defined and interpreted with some possibility and might not be 
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exact. The second type of uncertainty agrees with incompletely specified initial data. 
As a rule, if the exact values of the actual data about the system behavior cannot be 
determined, we need to rely on more data to get additional information necessary to 
correct the used theoretical model [6, 12]. An FDT allows reconstructing these data 
with different levels of the confidence [10, 11]. 

This paper is structured as follows. Section 2 discusses the concept of the structure 
function. The principal steps of the proposed method are considered in sections 3 – 5. 
These steps are Collection of data into a repository (section 3), Representation of the 
system model in the form of an FDT (section 4), and Construction of the structure 
function based on the FDT (section 5). 

2 Structure function of the system  

The structure function as a mathematical model was introduced in reliability engi-
neering as one of the firsts [13]. This function captures the relationships between 
components of the system and the system itself in such a way that the state of the 
system is known based on the states of its components through the structure function. 

Let us suppose that the system can be divided into n components (subsystems). A 
state of each component can be denoted by a random variable xi that can be in one of 
mi possible values. This variable takes value 0 if the component fails and one of val-
ues 1,…, mi -1 if the component works satisfactorily.  

Let us denote the structure function as (x). Then it agrees with the next map: 

(x) = (x1,…, xn):    {0,…, m1 -1}×…×{0,…, mn -1}{0,…, M -1} , (1) 

where (x) defines system state from complete failure ((x) = 0) to perfect function-
ing ((x) = M -1); x = (x1,…, xn) is a state vector; xi is the i-th component state that 
changes from complete failure (xi = 0) to perfect functioning (xi = mi -1). 

Next, let us suppose that the system is coherent. This means: (a) the system struc-
ture function is monotone: (xi, x) ≤ (xj, x) for any xi ≤ xj; and (b) there are no irrele-
vant components in the system. 

Every system component is characterized by the probabilities of individual states: 

pi,s = Pr{xi = s}, s = 0,…, mi -1 . (2) 

Please note that the structure function of MSS (1) is transformed into the structure 
function of BSS if mi = M = 2. 

Many reliability indices and measures can be calculated based on the system struc-
ture function. One of them is the probability of the system performance level that is 
calculated as follows [3]: 

Aj = Pr{(x) = j}, j = 0,…, mi -1 . (3) 

The structure function also allows calculating the boundary system states [14], 
minimal cut/path sets [15] and importance measures [16]. However, defining structure 
function as equation (1) for a real application can be a difficult problem.  
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As a rule, the structure function can be defined as a result of the system structure 
analysis or based on expert data [12, 17]. In system structure analysis, the system is 
interpreted as a set of components (subsystems) with correlations. These correlations 
can be defined by functional relations that are interpreted as the structure function (1). 
However, there are many structure-complex systems for which correlations and/or 
connections of components are hidden or uncertain (e.g. power systems, network 
systems). As a rule, other methods are used in reliability estimation for such systems 
[5, 18]. Construction of a structure function based on the expert data requires special 
analysis and transformation of initial data [12, 19]. We suggest the new method for 
construction of the structure function (1) that is based on the application of an FDT.  

In terms of Data Mining, the structure function can be interpreted as a table of de-
cisions [9, 20], where state vector x = (x1,…, xn) is interpreted as a set of input attrib-
utes and value of the structure function as an output attribute. This table of decisions 
can be constructed based on an FDT for all combinations of the input attributes. So, 
values of the structure function can be defined for all combinations of component 
states using the FDT: component states are interpreted as FDT attributes, and the 
structure function value agrees with one of M values (classes) representing system 
performance levels. The FDT is inducted based on some samples (not all) of the in-
puts and output attributes. In case of construction of the structure function, the sam-
ples are state vectors with the corresponding function value. These samples have to be 
collected as initial information about the system.  

The method proposed in this paper includes the following steps: 

 collection of data into the repository according to requests of FDT induction;
 representation of the system model in the form of an FDT that classifies compo-

nents states according to the system performance levels;
 construction of the structure function as a decision table that is created by inducted

FDT.

The structure function is constructed as a decision table that classifies the system 
performance level for each possible combination of components states. The decision 
table is formed based on the FDT that provides the mapping for all possible compo-
nents states (input data) in M performance levels. The FDT is inducted using uncer-
tain data that are presented in the form of a specified repository. 

3 Data repository construction 

Collection of data in the form of a repository is provided by the monitoring of values 
of system component states and system performance level. This repository can be 
presented in the form of a table where the columns agree with the input and output 
attributes. The number of the input attributes is n and the i-th has mi possible values 
(the i-th column includes mi sub-columns). Every row contains a real sample of com-
ponents states and the corresponding system performance level. 

For example, let us consider the offshore electrical power generation system pre-
sented in [2]. The purpose of this system (Fig. 1) is to supply two nearby oilrigs with 
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electric power. The system includes 3 generators: two main generators A1 and A3, and 
standby generator A2. Both main generators are at oilrigs. In addition, oilrig 1 has 
generator A2 that is switched into the network in case of outage of A1 or A3. The con-
trol unit U continuously supervises the supply from each of the generators with auto-
matic control of the switches. If, for instance, the supply from A3 to oilrig 2 is not 
sufficient, whereas the supply from A1 to oilrig 1 is sufficient, U can activate A2 to 
supply oilrig 2 with electric power through the standby subsea cables L. This implies 
that the system consists of 5 relevant components (n = 5): generators A1, A2, and A3, 
control unit U, and the standby subsea cables L. Furthermore, according to the de-
scription of the system activity in [2], we assume that the system and all its compo-
nents have 3 states/performance levels (M = 3 and mi = 3, for i = 1,…,5). Next, let us 
denote variables defining states of the system components in the following way: main 
generators A1 and A3 as x1 and x3 respectively, standby generator A2 as x2, and control 
unit U and standby subsea cables L as x4 and x5 respectively. 

Fig. 1. Outline of the offshore electrical power generation system [2] 

Let us suppose monitoring of the offshore power generation system that allowed 
collecting 108 (from 243 possible) samples of the system behavior. Some of them are 
shown in Table 1. The monitoring of this system permitted obtaining information 
about some combinations of component states and the corresponding performance 
levels of the system. However, this information is not complete because the data from 
the real monitoring are uncertain. This uncertainty is caused by the ambiguity of clas-
sification of component states and system performance levels into classes of exact 
values [12, 20]. Therefore, special type of data is used to define values of the input 
and output attributes in the repository. These data can be interpreted as quasi-fuzzy 
data that describe occurrence of every value of every attribute with some possibility 
ranging from 0 to 1. For example, the first row in Table 1 indicates the nonworking 
(x1 = 0) and insufficient (x1 = 1) states of generator A1 with possibility of 0.8 and 0.2 
respectively, while the possibility of the working state (x1 = 2) is 0. In case of stable 
generator A2, the state is indicated as nonworking (x2 = 0) with possibility of 0.8 and 
as other values (x2 = 1 and x2 = 2) with possibilities of 0.1. State of main generator A3 
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is nonworking (x3 = 0) with possibility 0.7 and insufficient (x3 = 1) or working (x3 = 
2) with possibilities 0.2 and 0.1 respectively. States of control unit U are defined as
x4 = 0 with possibility 0.8, x4 = 1 with possibility 0.2 and x4 = 2 with possibility 0. 
Only 2 of 3 states of the standby subsea cables L are relevant in this case because 
possibility of state x5 = 2 is 0. The relevant states have possibilities 0.7 for x5 = 0 and 
0.3 for x5 = 1. The system state is interpreted as a failure for this components states 
with the possibility 0.7 ((x) = 0) and as the sufficient state ((x) = 1) with the possi-
bility 0.3, while the state of perfect operation ((x) = 2) is not indicated since its pos-
sibility is 0. 

Table 1. Data obtained based on the monitoring of the offshore electrical power generation 
system 

x1 x2 x3 x4 x5 (x) No 
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

1 0.8 0.2 0.0 0.8 0.1 0.1 0.7 0.2 0.1 0.8 0.2 0.0 0.7 0.3 0.0 0.7 0.3 0.0 
2 0.8 0.1 0.1 0.7 0.1 0.2 0.6 0.2 0.2 0.8 0.2 0.0 0.0 1.0 0.0 0.8 0.1 0.1 
3 1.0 0.0 0.0 0.7 0.3 0.0 0.9 0.1 0.0 0.0 0.9 0.1 0.7 0.2 0.1 1.0 0.0 0.0 
4 0.8 0.1 0.1 0.8 0.1 0.1 0.0 0.9 0.1 0.1 0.9 0.0 0.8 0.1 0.1 0.2 0.7 0.1 
5 0.7 0.2 0.1 1.0 0.0 0.0 0.2 0.7 0.1 0.1 0.6 0.3 0.1 0.9 0.0 0.0 0.7 0.3 
6 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.7 0.2 0.1 0.5 0.3 0.2 0.7 0.2 0.1 
7 0.8 0.1 0.1 0.2 0.6 0.2 0.8 0.1 0.1 0.0 0.0 1.0 0.8 0.1 0.1 0.6 0.2 0.2 
8 1.0 0.0 0.0 0.0 0.9 0.1 0.0 0.9 0.1 0.0 0.9 0.1 0.7 0.3 0.0 0.0 0.6 0.4 
9 0.8 0.1 0.1 0.0 0.9 0.1 0.1 0.8 0.1 0.0 0.9 0.1 0.2 0.7 0.1 0.1 0.6 0.3 
10 0.7 0.3 0.0 0.1 0.8 0.1 0.0 0.1 0.9 0.8 0.1 0.1 0.8 0.2 0.0 0.7 0.1 0.2 
11 0.7 0.2 0.1 0.0 0.9 0.1 0.0 0.1 0.9 0.0 0.1 0.9 0.7 0.2 0.1 0.0 1.0 0.0 
12 0.1 0.6 0.3 0.8 0.2 0.0 0.2 0.8 0.0 0.1 0.7 0.3 0.0 1.0 0.0 0.1 0.6 0.5 
13 0.2 0.8 0.0 0.7 0.3 0.0 0.1 0.1 0.8 0.1 0.6 0.3 1.0 0.0 0.0 0.0 0.7 0.3 
14 0.1 0.8 0.1 0.2 0.7 0.1 0.0 1.0 0.0 0.3 0.6 0.4 0.9 0.1 0.0 0.2 0.8 0.0 
15 0.0 0.2 0.8 0.9 0.1 0.0 0.2 0.8 0.0 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.6 0.4 
16 0.0 0.1 0.9 1.0 0.0 0.0 0.0 0.1 0.9 0.1 0.6 0.3 0.0 0.2 0.8 0.2 0.5 0.3 
17 0.0 0.2 0.8 0.1 0.6 0.3 0.2 0.5 0.3 0.2 0.7 0.1 0.0 0.3 0.7 0.1 0.1 0.8 
18 0.0 0.2 0.8 0.2 0.7 0.1 0.0 0.2 0.8 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.0 0.3 
19 0.0 0.1 0.9 0.0 0.2 0.8 0.2 0.7 0.1 0.0 0.1 0.9 0.2 0.7 0.1 0.0 0.1 1.9 
 … … … … … … … … … … … … … … … … …  
108 0.0 0.0 1.0 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.8 0.2 0.0 0.0 1.0 

The data obtained based on the monitoring and presented in Table 1 can be inter-
preted as fuzzy data [21]. The possibilities of individual states of the system compo-
nents and of the system correspond to membership functions of fuzzy data.  

The data obtained based on the monitoring of the offshore electrical power genera-
tion system are incompletely specified because we have 108 of all 243 combinations 
of components states. Traditional mathematical approach for system reliability analy-
sis based on the structure function cannot be used in this case. Therefore, construction 
of structure function (1) based on incomplete data requires a special transformation 
and development of new methods. In this paper, we suggest the new method for con-
struction of the structure function based on an FDT. This method allows reducing 
indeterminate values and obtaining a completely specified structure function.  
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4 Construction of FDT for representation of system 

A decision tree is a formalism for expressing mappings of input attributes (compo-
nents states) to output attribute/attributes (system performance level), consisting of an 
analysis of attribute nodes (input attributes) linked to two or more sub-trees and leafs 
or decision nodes labeled with classes of the output attribute (in our case, a class 
agrees with a system performance level) [21]. An FDT is one of the possible types of 
decision trees that permit operating with fuzzy data (attributes) and that use methods 
of fuzzy logic. Construction of a structure function assumes manipulation with real 
data, but the analysis of these data is implemented based on the methods of fuzzy 
logic the data are uncertain [22, 23]. The uncertainty may be present in obtaining 
numeric values of the attributes (system components states) or in obtaining the exact 
class (system performance level) where the instance belongs to. 

There are different methods for inducting an FDT [10, 22, 24]. An FDT induction 
is implemented by the definition of the correlation between n input attributes {A1,…, 
An} and an output attribute B. The construction of the system structure function sup-
poses that the system performance level is the output attribute and component states 
defined by a state vector are input attributes. Each input attribute (component state) Ai 
(1  i  n) is measured by a group of discrete values ranging from 0 to mi -1, which 
agree with the values of states of the i-th component: {Ai,0,…, Ai,j,…, Ai,mi-1}. An 

FDT assumes that the input set A = {A1,..., An} is classified as one of the values of 
output attribute B. Value Bw of output attribute B agrees with one of the system per-
formance levels and is defined as M values ranging from 0 to M -1 (w = 0,…, M -1). 
The correlation between the terminologies and basic concepts of FDTs and reliability 
analysis are shown in Table 2. 

Table 2. Correlation between the terminologies of FDTs and reliability analysis 

FDT System reliability

Number of input attributes: n Number of the system components: n 

Attribute Ai (i = 1,…, n) System component xi (i = 1,…, n) 

Values of attribute Ai:  
  {Ai,0,…, Ai,j,…, Ai,mi-1

} 
State of component i:  

 {0, …, mi-1} 

Output attribute B System performance level (x) 

Values of output attribute B:  
  {B0, …, BM-1} 

Values of system performance level: 
 {0, …, M-1} 

Decision table  Structure function 

A fuzzy set A with respect to a universe U is characterized by a membership func-
tion μA : U  [0,1], which assign an A-membership degree, μA(u), to each element u 
in U. μA(u) gives us an estimation that u belongs to A. The cardinality measure of the 
fuzzy set A is defined by M(A) = uU μA(u), and it is measure of size of set A. For 
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u  U, μA(u) = 1 means that u is definitely a member of A and μA(u) = 0 means that u 
is definitely not a member of A, while 0 < μA(u) < 1 means that u is a partial member 
of A. If either μA(u) = 0 or μA(u) = 1 for all u  U, A is a crisp set. The set of input 
attributes A is crisp if μA(u) = 0 or μA(u) = 1.  

For example, let us consider input attributes A = {A1, A2, A3, A4, A5} and the out-
put attribute B for the offshore electrical power generation system in Fig. 1. This sys-
tem is represented by 5 input attributes. Each input attribute is defined as: Ai = {Ai,0, 
Ai,1, Ai,2}, for i = 1,…, 5, and the output attribute is B = {B0, B1, B2}. The values of 
the input attributes and the output attribute are defined in Table 3. These values are 
obtained based on the data from Table 1 and are used for the FDT construction as a 
training test. The principal difference of Table 1 and 3 is interpretation of initial date 
as attributes. The induction of the FDT based on this training test can be implemented 
using some of methods for FDT induction [10, 22, 24]. We propose to induct the FDT 
using the method based on the cumulative information estimates proposed in [25]. 
These estimations allow inducting FDTs with various properties. Criteria for building 
non-ordered, ordered or stable FDTs, as well as, development of this method have 
been considered in [26]. 

Table 3. A training set for the FDT induction 

A1 A2 A3 A4 A5 B No 
A1,0 A1,1 A1,2 A2,0 A2,1 A2,2 A3,0 A3,1 A3,2 A4,0 A4,1 A4,2 A5,0 A5,1 A5,2 B0 B1 B2 

1 0.8 0.2 0.0 0.8 0.1 0.1 0.7 0.2 0.1 0.8 0.2 0.0 0.7 0.3 0.0 0.7 0.3 0.0 
2 0.8 0.1 0.1 0.7 0.1 0.2 0.6 0.2 0.2 0.8 0.2 0.0 0.0 1.0 0.0 0.8 0.1 0.1 
3 1.0 0.0 0.0 0.7 0.3 0.0 0.9 0.1 0.0 0.0 0.9 0.1 0.7 0.2 0.1 1.0 0.0 0.0 
4 0.8 0.1 0.1 0.8 0.1 0.1 0.0 0.9 0.1 0.1 0.9 0.0 0.8 0.1 0.1 0.2 0.7 0.1 
5 0.7 0.2 0.1 1.0 0.0 0.0 0.2 0.7 0.1 0.1 0.6 0.3 0.1 0.9 0.0 0.0 0.7 0.3 
6 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.7 0.2 0.1 0.5 0.3 0.2 0.7 0.2 0.1 
7 0.8 0.1 0.1 0.2 0.6 0.2 0.8 0.1 0.1 0.0 0.0 1.0 0.8 0.1 0.1 0.6 0.2 0.2 
8 1.0 0.0 0.0 0.0 0.9 0.1 0.0 0.9 0.1 0.0 0.9 0.1 0.7 0.3 0.0 0.0 0.6 0.4 
9 0.8 0.1 0.1 0.0 0.9 0.1 0.1 0.8 0.1 0.0 0.9 0.1 0.2 0.7 0.1 0.1 0.6 0.3 
10 0.7 0.3 0.0 0.1 0.8 0.1 0.0 0.1 0.9 0.8 0.1 0.1 0.8 0.2 0.0 0.7 0.1 0.2 
11 0.7 0.2 0.1 0.0 0.9 0.1 0.0 0.1 0.9 0.0 0.1 0.9 0.7 0.2 0.1 0.0 1.0 0.0 
12 0.1 0.6 0.3 0.8 0.2 0.0 0.2 0.8 0.0 0.1 0.7 0.3 0.0 1.0 0.0 0.1 0.6 0.5 
13 0.2 0.8 0.0 0.7 0.3 0.0 0.1 0.1 0.8 0.1 0.6 0.3 1.0 0.0 0.0 0.0 0.7 0.3 
14 0.1 0.8 0.1 0.2 0.7 0.1 0.0 1.0 0.0 0.3 0.6 0.4 0.9 0.1 0.0 0.2 0.8 0.0 
15 0.0 0.2 0.8 0.9 0.1 0.0 0.2 0.8 0.0 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.6 0.4 
16 0.0 0.1 0.9 1.0 0.0 0.0 0.0 0.1 0.9 0.1 0.6 0.3 0.0 0.2 0.8 0.2 0.5 0.3 
17 0.0 0.2 0.8 0.1 0.6 0.3 0.2 0.5 0.3 0.2 0.7 0.1 0.0 0.3 0.7 0.1 0.1 0.8 
18 0.0 0.2 0.8 0.2 0.7 0.1 0.0 0.2 0.8 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.0 0.3 
19 0.0 0.1 0.9 0.0 0.2 0.8 0.2 0.7 0.1 0.0 0.1 0.9 0.2 0.7 0.1 0.0 0.1 1.9 
 … … … … … … … … … … … … … … … … …  
108 0.0 0.0 1.0 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.1 0.9 0.0 0.8 0.2 0.0 0.0 1.0 

The FDT resulted from the training set presented in Table 3 has been inducted by 
application of the cumulative information estimates using the method in [24]. This 
FDT is presented in Fig. 2. The nodes of this FDT agree with the input attributes. 
Every node has 3 branches according to the values of the corresponding input attrib-
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ute from the training test (Table 3). Every branch correlates with some values of the 
output attribute. The set of output attribute values in a branch is named as a leaf if the 
analysis finish and one of the values of the output attribute can be chosen according to 
algorithms proposed in [25, 26].  

B0=0.342 
B1=0.524 
B2=0.134 

B0=0.805 
B1=0.163 
B2=0.032 

A2

B0=0.003 
B1=0.809 
B2=0.188 

B0=0.000 
B1=0.778 
B2=0.222 

B0=0.926 
B1=0.067 
B2=0.007 

B0=0.793 
B1=0.200 
B2=0.007 

B0=0.998 
B1=0.002 
B2=0.000 

B0=0.604 
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B0=0.776 
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B0=0.790 
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B2=0.000 

B0=0.525 
B1=0.450 
B2=0.025 
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B1=0.000 
B2=0.249 

A5 

B0=0.990 
B1=0.000 
B2=0.010 

B0=0.000 
B1=0.017 
B2=0.983 

B0=0.000 
B1=0.007 
B2=0.993 

A4

A1A2 

A3 

Fig. 2. Non-ordered FDT constructed based on the data obtained by the monitoring of the off-
shore electrical power generation system from Fig. 1 

This FDT can be used for the analysis of all possible states of system components 
to construct the structure function of the offshore electrical power generation system. 
This process is considered below.  

5 Construction of structure function based on FDT 

According to [20], FDTs allow developing fuzzy decision rules or a decision table. A 
decision table contains all possible values of input attributes and the corresponding 
values of the output attribute that is calculated using the FDT. Such decision table 
agrees with the structure function. This implies that all possible combinations of val-
ues of the component states (all state vectors) have to be analyzed by the FDT to clas-
sify state vectors into M classes of the system performance levels. 

Each non-leaf node is associated with an attribute Ai  A, or in terms of reliability 
analysis: each non-leaf node is associated with a component. The non-leaf node 
agreeing with attribute Ai has mi outgoing branches. The s-th outgoing branch (s = 
0,…, mi -1) from the non-leaf node corresponding to attribute Ai agrees with state s of 
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the i-th component (xi = s). A path from the root to a leaf defines one or more state 
vectors (according to the values of the input attributes (component states) occurred in 
the path) for which the structure function takes value determined by the value of the 
output attribute. If any input attribute is absent in the path, all possible states have to 
be considered for the associated component. 

Let us consider construction of the structure function of the offshore electrical 
power generation system from Fig. 1 using the FDT depicted in Fig. 2. All possible 
component states (all state vectors) have to be used for calculation of the system per-
formance level by the FDT to form the decision table (structure function). Let us ex-
plain this idea for the first level of the FDT in more detail. 

Preliminary analysis of the data obtained based on the monitoring (see Table 3) 
shows that possible values of the output attribute B are distributed as follows: value 0 
– with confidence 0.493, value 1 – with confidence 0.209 and value 2 – with confi-
dence 0.298. These values are implied by frequency of every output value in the train-
ing test (Table 3). Attribute A3 is associated with the FDT root. So, analysis of the 
data starts from this attribute. This attribute has the following possible values: A3,0, 
A3,1, and A3,2. Value A3,0 of this attribute makes the output attribute B to be B0 (the 
system is non-operational) with the confidence of 0.805. Other variants, B1 and B2, of 
output attribute B can be chosen with the confidence of 0.163 and 0.012 respectively. 
If the attribute A3 has other values, i.e. A3,1 or A3,2, then the analysis is done similarly. 

If the value of attribute A3 is A3,0, than the next attribute in the analysis is A5, 
which have values A5,0, A5,1, and A5,2. Value A5,0 of this attribute agrees with a leaf 
representing the output attribute. Therefore, in this situation, the analysis is stopped 
and value of the output attribute is defined: value B0 of attribute B should be chosen 
with the confidence of 0.926, and values B1 and B2 with confidences 0.067 and 0.007 
respectively. Similarly, the process of the analysis of the non-ordered FDT continues 
for the other input attributes and their values.  

Next, let us consider state vector x = (0,0,0,0,0). The analysis based on the FDT 
starts with the attribute A3 (Fig. 2) that is associated with the 3-rd component. State of 
this component is 0 (x3 = 0) for the specified state vector. Therefore, the branch for 
value A3,0 of attribute A3 value is taken into account. According to this value, the 
identification of the output attribute value (system performance level) has to continue 
through attribute A5. According to the state vector, x5 = 0, therefore, attribute A5 has 
value A5,0. Now, value of the output attribute can be indicated because the branch has 
a leaf. So, value of the output attribute is defined as 0 with the confidence of 0.926 
without analysis of other attributes. Analysis of other state vectors is similar and al-
lows obtaining all possible values of the system performance level in the form of the 
structure function. The analysis of all possible state vectors from x = (0,0,0,0,0) to x = 
(2,2,2,2,2) allows us to construct the complete structure function of the offshore elec-
trical power generation system depicted in Fig. 1. 

It is important to note that this method of construction of the structure function 
based on FDTs permits to compute (restore) data missing from the monitoring. 

A representation of the system using the structure function allows calculating dif-
ferent indices and measures for estimation of system reliability. Probabilities of sys-
tem performance levels (3) are one of them. Suppose that probabilities of the compo-
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nents states of the offshore electrical power generation system have values shown in 
Table 4. In this case, the probabilities of system performance levels are: A2 = 0.73, A1 
= 0.20 and A0 = 0.07. Other measures can be computed using the structure function 
too. For example, importance measures for this system can be calculated using the 
algorithms considered in [15, 27, 28]. 

Table 4. Components states probabilities 

Probabilities Component state, s 
p1,s p2,s p3,s p4,s p5,s 

0 0.1 0.2 0.1 0.1 0.1 
1 0.4 0.4 0.4 0.2 0.1 
2 0.5 0.4 0.5 0.6 0.8 

Let us present a simple case study to verify the modelling approach described in 
the previous sections. We use structure function of the offshore electrical power gen-
eration system to examine efficiency and accuracy of the proposed method for con-
struction of the structure function based on uncertain data. Therefore, the structure 
function must be transformed to ambiguous and incompletely specified form. In the 
proposed methods, two types of uncertainty are included. The first is ambiguity of 
data values. Therefore, all integer values of components states and performance level 
have to be transformed to values with some possibilities. We can use algorithm from 
[29] to transform data from numeric to fuzzy cases in this case. The second type of 
the considered uncertainty in the proposed method is incompletely specification of 
initial data. This incompleteness is modeled by random deleting of some state vectors 
and the corresponding values of system performance levels. The range of deleted 
states was changed from 5% to 90%.  Each transformed structure function can be 
interpreted as uncertain data obtained by the aforementioned monitoring. We used 
these data to construct the structure function based on the proposed methods using 
FDT induction. The FDTs were inducted based on the method presented in [22, 25]. 
The structure function construction was implemented according to the concept intro-
duced in section 5. As a result, a single or a small group of state vectors might be 
misclassified. Therefore, we had to estimate this misclassification by the error rate. 
The constructed structure functions were compared with the exact specified function 
(it was defined at the beginning of the experiments), and the error rate was calculated 
as a ratio of wrong values of the structure function to the dimension of unspecified 
part of the function. The experiments were repeated 1000 times for every version of 
incompletely specified offshore electrical power generation system. The unspecified 
state vectors were selected randomly in proportion to dimension of the structure func-
tion from 5% to 85%. The results for the investigated system are shown in Table 5. 
The error rate depends on unspecified proportion of the initial data. This error in-
creases essentially, if the unspecified part is most than 80%. This indicates that the 
proposed method is acceptable for large range of incompletely defined initial data and 
can be used for construction of the structure function based on incompletely specified 
data. 
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This method can be considered for special cases and types of initial data with ap-
plication of other algorithms from Data Mining to improve the obtained results. For 
example, initial data can be obtained for similar samples and, in this case, special 
algorithms for pattern recognition and intelligent diagnosis can be used [30]. 

Table 5. The error rate for the construction of the structure function of the offshore electrical 
power generation system  

Unspecified state vectors, in % The error  

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

0.0661 
0.0637 
0.0682 
0.0661 
0.0670 
0.0662 
0.0648 
0.0663 
0.0657 
0.0659 
0.0671 
0.0673 
0.0679 
0.0700 
0.0743 
0.0813 
0.0995 
0.1465 

6 Conclusion 

The new method for constructing the structure function is proposed in this paper. This 
method allows obtaining a structure function based on incompletely specified data 
(for example, data obtained from some monitoring). The term “incompletely speci-
fied” assumes uncertainties of two types.  

The first type of uncertainty deals with some state vectors missing from the initial 
data. In practical application, it can be caused by the impossibility to obtain or indi-
cate all possible combinations of system component states.  

These uncertainties are considered and taken into account in the interpretation of 
the initial data as quasi-fuzzy data. This interpretation requires use of mathematical 
methods of fuzzy logic for the analysis. In this paper, an FDT is used for system be-
havior modeling and construction of the system structure function. This mathematical 
method transforms incomplete and uncertain initial data to a correct decision [10,24]. 
The induction of FDT is implemented based on cumulative information estimates [25] 
that take into account mathematical concept of entropy. These estimates are then 
adopted for the analysis of uncertain data. Therefore, the system structure function 
can be constructed using an FDT based on uncertain data, and the FDT transforms 
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incompletely specified data about system reliability/availability into a completely 
specified mathematical model that is known as the system structure function. 

The second type of uncertainty results from ambiguity of initial data. In this case, 
the system performance level and components states can be defined with some possi-
bilities. According to the typical definition of the structure function (1), performance 
level can have only one value for every state vector from set {0, …, M -1}. However, 
the boundary between two neighboring values can be diffused in real applications. 
Both such values can be therefore indicated with some possibility. The proposed 
method takes such ambiguity into account and permits indicating performance level 
using some values ranging from 0 to M -1 with a possibility that is considered in the 
next steps of the method and is not disregarded. The component states are indicated in 
a similar manner and the state of the i-th component is considered as a value ranging 
from 0 to mi -1 with possibilities. For example, the data in Table 1 are presented with 
consideration of such ambiguity: every value is indicated with some possibility. 
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