
Ontological Approach to the Assessment of Information
Sufficiency for Software Quality Determination

Tetiana Hovorushchenko, Oksana Pomorova

Khmelnitsky National University, 11, Institutskaya St.,
29016, Khmelnitsky, Ukraine

tat_yana@ukr.net, o.pomorova@gmail.com

Abstract. The aim of this study is the development of approach to the assess-
ment of information sufficiency for software quality determination (according
to ISO 25010: 2011). The proposed approach to assessment of information suf-
ficiency is based on the comparative analysis of fragments of ontology of the
subject domain "Software Engineering" and ontologies, that are developed on
the basis of software requirements and system specification of the developed
software. The approach provides the improvement the specifications for the
presence of measures, that are necessary to the determination of software qual-
ity sub characteristics and characteristics. The work of developed approach is il-
lustrated by the assessment of information sufficiency for software quality de-
termination of automated system for large-format photo print.

Keywords. Software, software project, software requirements specification
(SRS), software quality, ontology, ISO 25010:2011

Key Terms. Model-Based Software System Development, Software Compo-
nent, Software System, Method

1 Introduction

The software quality is basic factor for its successful implementation and exploitation.
According to the standards of ISO 25010 [1], ISO 25030 [2] the software quality is
the ability of the software to meet the stated and predicted needs when using under
certain conditions. This definition differs from the definition of software quality of
ISO 9000 [3] mainly because this definition of software quality provides for needs
satisfaction, while the definition of ISO 9000 [3] provides for requirements satisfac-
tion.The development of modern software system is user-oriented [4], namely the
software quality is the important characteristic in terms of the stakeholders (especially
customers). Obviously, even attracting the best experts for the development of
technologies and standards of the software systems quality assurance doesn't
guarantee sufficient software quality.

ICTERI 2016, Kyiv, Ukraine, June 21-24, 2016
Copyright © 2016 by the paper authors

mailto:tat_yana@ukr.net
mailto:o.pomorova@gmail.com

The essential and integral feature of modern software systems is their complexity,
so the attempts to describe the software objects with abstraction from their complexity
lead to the abstraction from their essence. The constant growth of the software
functions complexity inevitably leads to the increasing their volume and
laboriousness (effort applied) [5].One of the most important causes of poor quality of
large software projects are the increasing the number of components (subsystems) and
the interfaces between them, and uncontrolled complexity of software systems, in
opinion of the researchers The Standish Group International [6].Research [6] shows
that statistics of success of small, moderate, medium, large and grand software
projects is significantly different - Fig. 1.

Fig. 1. Statistics of success of small, moderate, medium, large and grand software projects
in 2011-2015

Analysis of Fig. 1 provides the conclusion that 62% of small projects are success-
ful while both only 6% of large projects and only 2% of grand projects are successful,
i.e. small projects are ten times more successful than large and thirty times more suc-
cessful than grand projects. This conclusion is confirmed by the statistics of software
projects, that is presented in [5], on the basis of the function points as the main mod-
ern units of software size - Fig. 2.

During the software project, we often can not estimate the share of the
informational indeterminacy of the project. Identification of the information, that
appears in the process of interaction of "subsystems-interfaces-data-external
influences", is especially difficult. Identification of future properties of developed
software, that will display this information, is even more difficult task.

The cause of appearance of informational indeterminancy of the project is the low
level of knowledge documentation, especially at the system level (Fig. 3 [7]).

- 333 -

Fig. 2. Statistics of success of software projects with size 10, 100, 1000, 10000, 100000 func-
tional points in 2010-2013

Fig. 3. How well system level knowledge is documented

Fig. 4 depicts the situation, characterized by premature design decisions and their
documentation, prior to understanding the design. Fig. 4 shows an area, referred to as
the “knowledge gap,” that is the result of the low level of knowledge documentation
and the root cause of many engineering failures [8].The size of knowledge gap is not
constant for software project – during the lifecycle it can increase and decrease, since
new information appears and it should be taken into account.The presented on Fig. 4
viewpoint on the knowledge gap does not quite correspond to reality. We assume that
partial consideration of the subject domain information in the software quality models
and impact of this information on only finished product lead to increase of the
knowledge gap size during the life cycle (new boundaries of knowledge gap are
delineated dotted line on Fig. 5), that can be the cause of the software accidents and
disasters [9]. For safe software functioning the knowledge gap size is desirable to
reduce. This can be done by the consideration of as much subject domain information
in the software quality models and standards.Reducing the knowledge gap size will
provide the improvement of the software quality.

Given the above, all the available knowledge and information about the software
system can be represented as the diagram, which has the sector that reflects the
volume of unsufficient (unknown) information (knowledge gap) - Fig. 6. This sector
consists of unconsiderated subject domain information.The size of this sector is not

- 334 -

determined, because it is unclear what information and how much information is
unknown. Sector of the unknown information should be narrow by fully consideration
of subject domain information.The smaller size of sector of the unknown information
indicates to the higher quality and safer work of software system, i.e. the main task is
the reducing the share of unknown information about software system.

Fig. 4. Knowledge gap

Fig. 5. Real size of Knowledge gap

Fig. 6. Field of knowledge about software system with sector of the unknown information

- 335 -

Then the actual task is the assessment of information sufficiency as to software
(for example, the possibility of obtaining of trustworthy information on the measures
for calculation of the values of the software quality characteristics and subcharacteris-
tics), on the basis of which software quality (by ISO 25010 [1]) is
determinated.Incompleteness and inaccuracy of such information lead to fall of
veracity of software quality assessments.So the purpose of this study is the
development the approach to the assessment of information sufficiency for software
quality determination.

2 Ontological Approach to the Assessment of Information
Sufficiency for Software Quality Determination

The most used model for software quality assessment is the model ISO 25010 [1].The
idea of this standard is that each of the characteristics is something we can analyse
directly at the software product.Model ISO 25010 proposes to assess the software
quality as a function of the eight characteristics, each of which is a function of several
subcharacteristics (total 31 subcharacterics).But subcharacteristcs, in turn, are the
functions of several measures.Analysis of [10-13], ISO 9126-2 [14], ISO 9126-3 [15]
and revised on their basis ISO 25023 [16] provide the determination the dependence
of quality subcharacteristics from the measures (total 203 measures).The basic idea is
that the assessment of quality, its characteristics and subcharacteristics should be
comprehensively performed, considering all these characteristics, subcharacteristics
and measures accordingly.

Some of the measures are part of several quality subcharacteristics.So, if such
measures are inaccurate or missing, then simultaneously use of these subcharacteris-
tics in determining the several quality characteristics will significantly affect to the
veracity of the software quality estimates.In such situation the condition of the
mitigation of influence of these subcharacteristics cross-correlation is the important
when using them in the quality models.Such mitigation is performed by identifying
the joint measures, improving the accuracy of their values, or, if possible, limitating
the simultaneous using of subcharacteristics that containing the same measures.

The information on determining the software quality characteristics and subchar-
acteristicsis conveniently presented as semantic networks or other structures, which
provide the displaying of the causal relationships between concepts. One of these
structures is ontology.The advantages of ontology are the systematic approach to the
study of the subject domain, the possibility of the holistic filing of known subject
domain information, the identification of the overlaps and gaps in knowledge on the
basis of the visualization of missing logical relationships.

Researhers have already used the ontologies in software design.E.Burov proposed
methods and tools for deve-lopment of software systems based on the ontological
models [17, 18]. I.Shostak & I.Butenko developed the ontological models and meth-
ods of forming the profile during the software certification [19]. L.Babenko proposed
the ontological approach to specifying the features of software systems and their
components [20].We use ontologies for assessment of information sufficiency for
software quality determination.

- 336 -

For development and visualization of ontologies the large number of software
tools, including universal, that provide the work with different subject domains, are
today developed: Ontolingua Server, SMART, Protégé, OntoEdit, WebOnto, ODE
(Ontological Design Environment), DOE (Differential Ontology Editor), CONE,
OntoEditor +. The authors use a free software Protégé 4.2, which provides the work
(creation, edition, vizualization and comparison) with ontologies of the various
subject domains (http://protege.stanford.edu/).

First and foremost, the base ontology of the subject domain "Software
Engineering" was developed. In it there is information about the software quality
characteristics, subcharacteristics and measures.For development of this ontology the
8 software quality characteristics by ISO 25010 [1] (Functional Suitability,
Reliability, Usability, Security, Performance Efficiency, Maintainability,
Compatibility, Portability) were used.For determination of the Functional Suitability
ISO 25010 proposed 3 subcharacteristics, which in turn are based on 15 measures.For
determination of the Reliability ISO 25010 proposed 4 subcharacteristics, which are
based on 30 measures.For determination of the Usability ISO 25010 proposed 6
subcharacteristics, which are based on 49 measures.For determination of the Security
ISO 25010 proposed 5 subcharacteristics, which are based on 23 measures.For
determination of the Performance Efficiency ISO 25010 proposed 3
subcharacteristics, which are based on 26 measures.For determination of the Main-
tainability ISO 25010 proposed 5 subcharacteristics, which are based on 33
measures.For determination of the Compatibility ISO 25010 proposed 2
subcharacteristics, which are based on 9 measures.For determination of the Portability
ISO 25010 proposed 3 subcharacteristics, which are based on 18 measures.The idea
of developed base ontology is shown on Fig. 7.

Fig. 7. Base ontology for subject domain “Software engineering” (part “Software quality”)

The components of the base ontology are: base ontology for Functional Suitability
(Fig. 8), the base ontology for Reliability (Fig. 10), the base ontology for Usability
(Fig. 12), the base ontology for Security (Fig. 14) , base ontology for Performance
Efficiency (Fig. 16), the base ontology for Maintainability (Fig. 18), the base
ontology for Compatibility (Fig. 20), the base ontology for Portability (Fig. 22).

The developed base ontology provides the following conclusions: 1) Functional
Suitability: subcharatceristcs Functional Completeness, Functional Appropriateness
have 4 joint measures; Functional Appropriateness, Functional Correctness have 2
joint measures; 2) Reliability: subcharacteristics Maturity, Availability,
Recoverability have 1 joint measure; Maturity, Fault Tolerance have 2 joint measures;
Fault Tolerance, Recoverability have 1 joint measure; 3) Usability: subcharacteristics
Learnability, Operability have 2 joint measures; Appropriateness Recognisability has
1 joint measure with the Learnability, Operability; Operability, User Error Protection
have 1 joint measure; Operability, User Interface Aesthethics have 1 joint measure;4)
Security: subcharacteristics Confidentiality, Integrity have 8 joint measures;5)
Performance Efficiency: subcharacteristics Time Behaviour, Resource Utilization

- 337 -

have 2 joint measures; Time Behaviour, Capacity have 1 joint measure; 6)
Maintainability: subcharacteristics Modularity, Modifiability have 3 joint measures;
Testability has 2 joint measures with Modularity, Modifability; Modularity,
Analysability have 1 joint measure; Analysability, Modifability have 1 joint measure;
7) Compatibility:subcharacteristics Co-existence, Interoperability have 1 joint
measure; 8) Portability: subcharacteristics Adaptability, Replaceability have 2 joint
measures; Adaptability, Installability have 1 joint measure.

In addition, there are measures, which are included in the formulas of several
subcharacteristics of different characteristics (for example, measure Operation Time
is included in subcharacteristics of all 8 quality characteristics).One of the basic
properties of the base ontology is precisely the possibility of manifestation of cross-
correlation of characteristics and subcharacteristics when using them in quality
models.Because the important condition is the mitigation of the cross-correlation of
such subcharacteristics when using them in quality models, therefore during
assessment of the software quality it is necessary to pay special attention to those
measures, which are part of simultaneously several subcharacteristics.

Ontological approach to the assessment of information sufficiency for software
quality determination (by ISO 25010:2011 [1]) consists of the next steps: 1) analysis
of the software requirements specification for the concrete software project for the
presence of measures, that necessary for determining the quality characteristics and
subharacteristics of software project and software; 2) the development of ontology for
determining the quality of the concrete software; 3) comparison of the developed
ontology with base ontology for software quality determination, components of which
are shown on Fig. 8, 10, 12, 14, 16, 18, 20, 22; 4) identification of measures, which
are absent in the ontology for determination of the quality of the concrete software;
5) identification of quality characteristics and subcharacteristics, that cannot be
calculated on the basis of the existing measures (at the same time should remember
about the basic idea of ISO 25010 [1], which says that the quality assessment should
be performed comprehensively, considering all quality characteristics;the assessment
of quality characteristics also should be performed comprehensively, considering all
subcharacteristics; the assessment of quality subcharacteristics, in turn, should be
performed comprehensively, considering all measures); 6) the presence of
subcharacteristics and characteristics, values of which cannot be determined on the
basis of measures, that available in the software requirements specification, indicates
the need to complement of this specification by the neccessary measures (at this stage
adding the necessary information and deleting other relevant information are
possible); 7) repeating the steps 2-6 until all quality characteristics and
subcharacteristics will be possible to identify or until the conclusion will be formed,
that data for software quality determination are insufficient.

3 Experiments: Assessment of Information Sufficiency for
Determination of Quality of Software of Automated System
for Large-Format Photo Print

During the study the specification of automated system for large-format photo print
was analyzed.On the basis of the specification analysis the available measures were

- 338 -

determined, that necessary for determining the quality characteristics and subcharac-
teristics of software project and software.These measures provides the development of
ontology for determination of the quality of this software, consisting of the: onto-logy
for Functional Suitability (Fig. 9), ontology for Reliability (Fig. 11), ontology for
Usability (Fig. 13), ontology for Security (Fig. 15), ontology for Performance Ef-
ficiency (Fig. 17), ontology for Maintainability (Fig. 19), ontology for Compatibility
(Fig. 21), ontology for Portability (Fig. 23) for concrete software project.

The comparison of the developed ontology for software project of automated
system with fragments of the base ontology for subject domain "Software enginee-
ring" provides to find that in the ontology for project the 4 measures (Number of Fun-
ctions, Operation Time, Number of Data Items, Number of Test Cases) are missing.

In addition, on the basis of the comparison of the ontology for software project of
automated system for large-format photo print with base ontology was found that in
the concrete ontology the data for determination of some quality characteristics and
sub-characteristics are insufficient due to the absence of the above 4 measures.

Analysis of Fig. 8 and Fig. 9 provides the conclusion that the data for
determination of all 3 subcharacteristics of Functional Suitability are insufficient.
Therefore, none of subcharacteristics cannot be calculated, so Functional Suitability
of software project cannot be determined too, and therefore the quality of the software
project cannot be determined.

Fig. 8. Base ontology for Functional Suitability

Analysis of Fig. 10 and Fig. 11 provides the conclusion that the data for determi-
nation of all 4 subcharacteristics of Reliability are insufficient. Therefore, none of
subcharacteristics cannot be calculated, so Reliability of software project cannot be
determined, and therefore the quality of the software project cannot be determined.

- 339 -

Fig. 9. Ontology for Functional Suitability for automated system for large-format photo print

Fig. 10. Base ontology for Reliability

Analysis of Fig. 12 and Fig. 13 provides the conclusion that the data for determina-
tion of 3 from 6 subcharacteristics of Usability are insufficient. Therefore, 3 subchar-
acteristics cannot be calculated, so Usability of software project cannot be deter-
mined, and therefore the quality of the software project cannot be determined.

- 340 -

Fig. 11. Ontology for Reliability for automated system for large-format photo print

Fig. 12. Base ontology for Usability

Analysis of Fig. 14 and Fig. 15 provides the conclusion that the data for determina-
tion of 2 from 5 sub characteristics of Security are insufficient. Therefore, 2 sub char-
acteristics cannot be calculated, so Security of software project cannot be determined,
and therefore the quality of the software project cannot be determined.

- 341 -

Fig. 13. Ontology for Usability for automated system for large-format photo print

Fig. 14. Base ontology for Security

Analysis of Fig. 16 and Fig. 17 provides the conclusion that the data for determina-
tion of all 3 sub characteristics of Performance Efficiency are insufficient. Therefore,
none of sub characteristics cannot be calculated, so Performance Efficiency of soft-
ware project cannot be determined, and therefore the quality of the software project
cannot be determined.

- 342 -

Fig. 15. Ontology for Security for automated system for large-format photo print

Fig. 16. Base ontology for Performance Efficiency

Analysis of Fig. 18 and Fig. 19 provides the conclusion that the data for
determination of 4 from 5 subcharacteristics of Maintainability are insufficient.
Therefore, 4 subcharacteristics cannot be calculated, so Maintainability of software
project cannot be determined, and therefore the quality of the software project cannot
be determined.

- 343 -

Fig. 17. Ontology for Performance Efficiency for automated system for large-format photo
print

Fig. 18. Base ontology for Maintainability

Analysis of Fig. 20 and Fig. 21 provides the conclusion that the data for determi-
nation of all 2 subcharacteristics of Compatibility are insufficient. Therefore, none of
subcharacteristics cannot be calculated, so Compatibility of software project cannot
be determined, and therefore the quality of the software project cannot be determined.

- 344 -

Fig. 19. Ontology for Maintainability for automated system for large-format photo print

Analysis of Fig. 22 and Fig. 23 provides the conclusion that the data for
determination of 2 from 3 subcharacteristics of Portability are insufficient. Therefore,
2 subcharacteristics cannot be calculated, so Portability of software project cannot be
determined, and therefore the quality of the software project cannot be determined.

Fig. 20. Base ontology for Compatibility

Fig. 21. Ontology for Compatibility for automated system for large-format photo print

- 345 -

Fig. 22. Base ontology for Portability

Fig. 23. Ontology for Portability for automated system for large-format photo print

Then the lack of 4 these measures in software requirements specification led to the
impossibility of detarmination of all quality characteristics and the quality of the
project and developed software.

For the concrete software project there are characteristics and sub characteristics,
that are impossible to define or possible to insufficient define according to available
information in the specification. Because the proposed approach to the assessment of
information sufficiency for software quality determination is iterative, then the com-
plement of the software requirements specification was conducted. The measures
Number of Functions, Number of Data Items were added, and then the new version of
the ontology for determination of the quality of the concrete software was created.

Comparative analysis of the new version of ontology with the base ontology
showed that changes have occurred in the determination of Functional Completeness,
Capacity, Appropriateness Recognisability, Analyzability, and Replaceability of the
concrete software project. But the lack other 2 measures in specification (Operation
Time, Number of Test Cases) leaves impossible the determination of all software
quality characteristics and the quality of the project and developed software (still
insufficient information).The process of complement the specification is iterative. But
customer of developed lautomated system has decided that further complement of the
specification is economically inexpedient therefore the conclusion about insufficient
data for determination of the software quality was formed.

- 346 -

4 Conclusions

The measures analysis is an effective mean of assessing the software quality upon
availability of veracity information for it conduct. One of the factors affecting the
veracity of such information is sufficiency of the volumes of information about
measures in the SRS. Therefore, solving the task of assessment of sufficiency
information about measures in the SRS generally enhances the veracity of software
quality assessment.

In the analysis of software quality subcharacteristics (as sources of information)
the cross-correlation of these subcharacteristics because they have joint measures.
Correlation of subcharacteristics, that displayed by base ontology, should be consid-
ered because it can reduce the accuracy and veracity of software quality assessment.

Knowledge of experienced professionals on interference and correlation of
software quality subcharacteristics are valuable, so they should be stored and used in
assessing the software specifications in terms of information sufficiency for software
quality characteristics and subcharacteristics.

For displaying of these knowledge we selected ontologies that became the basis of
the approach to the assessment of information sufficiency for software quality
determination (according to ISO 25010: 2011).

The proposed ontological approach provides the development of recommendations
for improvement of the software specification that illustrated by the example of the
assessment of information sufficiency for determination of quality for software of
automated system of large-format photo print.

References

1. ISO 25010:2011 Systems and software engineering - Systems and software Quality Re-
quirements and Evaluation (SQuaRE) - System and software quality models (2011)

2. ISO 25030:2007 Software engineering -- Software product Quality Requirements and
Evaluation (SQuaRE) -- Quality requirements (2007)

3. ISO 9000:2015 Quality management systems -- Fundamentals and vocabulary (2015)
4. ISO 10002:2014 Quality management – Customer satisfaction – Guidelines for complaints

handling in organizations (2014)
5. McConnell, S.: Code complete. Microsoft Press (2013)
6. The Standish Group International: CHAOS Report. Technical report, CHAOS Knowledge

Center (2015)
7. Maier, R.: Knowledge Management Systems. Information and Communication Technolo-

gies for Knowledge Management (2013)
8. Patterson, Jr F.G.: Life cycles for system acquisition. Encyclopedia of Life Support Sys-

tems, Systems Engineering and Management for Sustainable Development, 82--110 (2004)
9. Pomorova, O., Hovorushchenko, T.: The Way to Detection of Software Emergent Proper-

ties. In: Proc. 2015 IEEE 8-th Int. Conf. on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications. Vol.2, 779--784 (2015)

10. Abran, A., Al-Quitash, R.E., Desharnais, J.-M., Habra, N.: ISO-Based Models to Measure
Software Product Quality. Software Quality Measurement: Concepts and Approaches.
Chapter 5, 61--96 (2014)

- 347 -

11. Montagud Gregori, S.; Abrahao Gonzales, SM.; Insfrán Pelozo: A systematic review of
quality attributes and measures for software product lines. Software Quality Journal. 20(3-
4), 425--486 (2012)

12. Sun Her, J., Hyeok Kim, J., Hun Oh, S., Yul Rhew, S., Dong Kim, S.: A framework for
evaluating reusability of core asset in product line engineering. Information and Software
Technology. 49, 740--760 (2007)

13. Biscoglio, I., Marchetti, E.: Definition of Software Quality Evaluation and Measurement
Plans: A Reported Experience Inside the Audio-Visual Preservation Context.In Software
Technologies: 9th International Joint Conference, ICSOFT 2014, Revised Selected Papers,
CCIS 555, 63--80 (2015)

14. ISO 9126-2:2003Software engineering -- Product quality -- Part 2: External metrics (2003)
15. ISO 9126-3:2003 Software engineering -- Product quality -- Part 3: Internal metrics (2003)
16. ISO 25023:2015 Systems and software engineering -- Systems and software Quality Re-

quirements and Evaluation (SQuaRE) -- Measurement of system and software product
quality (2015)

17. Burov, E.: Complex ontology management using task models. International Journal of
Knowledge-Based and Intelligent Engineering Systems, 18(2), 111--120 (2014)

18. Burov, E., Pasitchnyk, V., Gritsyk, V.: Modeling software testing processes with task on-
tologies. British Journal of Education and Science, 2(6), 256--263 (2014)

19. Shostak, I., Butenko, I.: Ontology approach to realization of information technology for
normative profile forming at critical software certification. J. Military Institute of Kiev Na-
tional University named after Taras Shevchenko, 38, 250–-253 (2012)

20. Babenko, L.: Ontological approach to specification of software systems features and com-
ponents. Cybernetics and System Analysis, 1, 180--187 (2009) (in Russian)

- 348 -

