The MICO Broker: An Orchestration Framework for
Linked Data Extractors

Patrick Aichroth, Marcel Sieland, Luca Cuccovillo, and Thomas Kéllmer

Fraunhofer Institute for Digital Media Technology IDMT,
Ehrenbergstrafie 31, 98693 Ilmenau, Germany
patrick.aichroth|marcel.sieland|luca.cuccovillo|thomas.koellmer@idmt.fraunhofer.de

Abstract. This paper describes the MICO broker, a management and orchestration frame-
work for Linked Data extractors. It outlines the initial version of the broker, illustrates
the key challenges and requirements for extractor orchestration in the MICO project, and
provides an improved MICO broker design and implementation that addresses these key
challenges. The paper describes the interaction with the Linked Data approach applied
in MICO for this purpose, especially regarding the broker data model, semi-automatic
workflow creation and workflow execution.

Keywords: extractor orchestration, cross-media analysis, metadata extraction, linked
data, workflow creation, workflow execution

1 Introduction

MICO! is a EU research project that provides a platform for distributed analysis of textual,
image, video and audio content, including cross-media metadata extractors, a common metadata
model, advanced metadata querying, cross-media recommendation, and persistence functionali-
ties based on Linked Data.

One of the core challenges of the project is the development of the MICO broker, which is
depicted as “service orchestration” within the overall architecture in Figure 1. The MICO broker
includes all necessary technologies to orchestrate heterogeneous media extractors, thereby sup-
porting complex analysis workflows which allow combination and reuse of otherwise disconnected
results from standalone extractors, to achieve improved analysis performance.

An example MICO workflow (a so called pipeline) is described in Figure 2): It uses mp4 video
containers as input, and consists of three partial workflows (see yellow/orange rectangles), which
can also be invoked individually:

1. shot detection, and shot boundary and key frame extraction
2. face detection, which operates on extracted boundary or key frames
3. audio demux, speech2text and named entity recognition

The resulting annotations can be used for queries such as “Give me all shots in a video where
a person says something about topic X”. It is important to note that the described workflow
could be further extended and improved, e.g., using speaker identification, face recognition, or
extraction of metadata from the respective MP4 container or API where the content may have
been crawled, all of which demonstrates: There is a huge potential in combining extractors which
are typically used in isolation.

The following will describe the challenges, design and implementation of the MICO broker to
support such workflows, thereby exploiting the Linked Data based MICO infrastructure: Section 2

! MICO project website: http://www.mico-project.eu/

2 Patrick Aichroth et al.

Fig. 1. overall MICO platform architecture

will describe the initial vl MICO broker functionalities and limitations, and section 3 will outline
the relevant requirements to be addressed. Section 4 will then provide an overview of the broker
approach and its components. The related broker model that extends the MICO metadata model
is outlined in section 5, and the approaches to workflow creation and execution are described in
sections 6 and 7. Section 8 will provide conclusions and an outlook.

2 MICO broker v1: Initial work and limitations

The initial v1 of the MICO broker was implemented on top of RabbitMQ [3], following the
principles of AMQP2. Extractor orchestration was implemented using two different message
queues: A content item input queue for receiving new content, and a temporary content item reply-
to queue created per content item, with each extractor providing results. For service registration,
broker vl provided a registry queue for analysis service registration, and a temporary reply-
to queue that was created by each service discovery event, to take care of service registration
and analysis scheduling. The implementation completely decoupled extractors from extractor
orchestration, in order to support free choice of extractor programming language and potential
distribution of extraction tasks. For convenience purposes, an Event API exposes a basic set of
instructions for extractors to interact with the broker, available in both Java and C++ (other
languages supporting AMQP could be used as well).

The described v1 proved to be quite stable and robust, especially regarding the RabbitMQ
messaging infrastructure. However, extractor orchestration was based on simple, mime-type-
based comparison: Upon registration of a new extractor process, all connections possible for
that mime type were established, including unintended ones and loops. Hence, it was clear that
further improvements were necessary.

2 Advanced Message Queuing Protocol 1.0, https://www.amqgp.org/

The MICO Broker 3

magelpeg native XML
IV
H Face Detection annotation ObjectDetection2RDF f---Annotation---»
image/png N

key frames and shot boundaries

+| Temporal Video
Segmentation

===Annotation===»

temporalvidec jon
- = facedetection (video-keyframes)
raw
video/mp4 > Audio Demux » audio > Diarization
native XML native XML
annotation Speech-To-Text annotation Kaldi2RDF ---Annotation---»
Annotlation
v Kaldi2Text

|

5 Redlink Text .
<-Annotation--- Analysis < text/plain

kaldi-speech-to-text(video,NER)

Fig. 2. example MP4 video analysis workflow in MICO

To address some of the most pressing questions, while still keeping compliance with the Event
API, some instant improvements were provided shortly after broker v1. The so-called pipeline
configuration tools, consisting of a mixture of bash scripts and servlet-based Web UI configura-
tions support

— Standard extractor parameter specification
— User-controlled pipeline configuration
— User-controlled service startup/shutdown.

Beyond this, however, the project soon required a more advanced approach for workflow or-
chestration and execution, including a distinction between syntactical versus semantic input and
output of extractors (substituting the simple mime type approach), support for multiple in-
puts and outputs, extractor parametrization, a more usable approach to defining workflows, and
support for dynamic routing in workflows and general support for EIP (Enterprise Integration
Patterns) for workflow execution.

3 MICO Broker requirements

Based on broker v1 experiences, an extensive list of requirements for orchestration was compiled,
and then prioritized, resulting in the following key points:

1. General requirements including backward-compatibility regarding the existing infrastructure
(in order to reduce efforts for extractor adaptation, especially regarding RabbitMQ, but also

4 Patrick Aichroth et al.

the Event API wherever possible); reuse of established existing standards / solutions where
applicable; and support for several workflows per MICO system, which was not possible with
vl.

2. Requirements regarding extractor properties and dependencies: support for extractor configu-
ration, and support for different extractor “modes”, i.e., different functionalities with different
input, output or parameter sets, encapsulated within the same extractors; support for more
than one extractor input and output; support for different extractor versions; and distinction
between different I/O types: mime type, syntactic type (e.g., image region), semantic concept
(e.g., human face).

3. Requirements regarding workflow creation: avoiding loops and unintended processing; ex-
tractor dependency checking during planning and before execution; simplifying the workflow
creation process (which was very complicated).

4. Requirements regarding workflow execution: error handling, workflow status and progress
tracking and logging; support for automatic process management; support for routing, ag-
gregation, splitting within extraction workflows (EIP support); and support for dynamic
routing, e.g, for context-aware processing, using results from language detection to deter-
mine different subroutes (with different extractors and extractor configurations) for textual
analysis or speech2-to-text optimized for the detected language.

4 Overview: MICO broker v2 and v3

MICO broker v2 and v3 address the requirements outlined in section 3. V2 focuses on changes and
extensions to the Event API, especially related to error management, progress communication,
provision of multiple extractor outputs, and registration. The goal of v2 was to provide an earlier
APT update, which gave extractor developers an opportunity to adapt to it, also considering
overall data model changes which are also influenced by the new broker model described in
section 5. V3, in contrast, was meant to focus on the addition of new broker components for
registration, workflow creation and execution.

The following describes the principles and assumptions for design and implementation, and
the components used to provide the respective functionalities.

4.1 Principles and Assumptions
Regarding extractor registration and model, assumptions and principles include:

— Some parts of extractor information can be provided during packaging by the developer
(extractor I/O and properties), while other parts can only be provided after packaging, by
other developers or showcase administrators (semantic mapping, and feedback about pipeline
performance): Registration information is provided at different times.

— Extractor input and output should be separated into several meta types (a) mime-types e.g.,
‘image/png’, (b) syntactic types e.g., ‘image region’, and (c) semantic tags e.g., “face region”.
Mime-types and syntactical types are pre-existing information that a extractor developer /
packager can refer to using the MICO data model or external sources, while semantic tags are
subjective, depending on the usage scenario, will be revised frequently, and are often provided
by other developers or showcase administrators. Often, they cannot be provided at extractor
packaging time, nor do they need to be, as they do not require component adaptation. As a
consequence, different ways of communicating the various input and output types are needed.

— A dedicated service for extractor registration and discovery can address many of the men-
tioned requirements, providing functionalities to store and retrieve extractor information,

The MICO Broker 5

E)

<<ttt |<_| tsminector 8]
omé;m extractor preparation
u
Data API

extractor deployment
e [y
extractor s ¢ ¢

I
o~ iy (process stanup) (workﬂow creation)
O O WorKMow executor
r:gul:r connect - ¢ ¢
Y o -] < P
A & -
\
<< ulifty==]
extractor registration service s workflow testing (opt.)
& "
>_ workflow planner {manwal}
discavery

workflow execution
v

X

Fig. 3. MICO broker components Fig. 4. MICO extractor lifecylcle

supporting both a REST API for providing extractor registration information, and a front-
end for respective user interaction, which is more suitable to complement information that
is not or cannot be known to an extractor developer at packaging time. It will use Marmotta
for the extractor model storage using Linked Data. Workflow planning and execution can
reuse this information for their purposes.

Existing Linked Data sources and the MICO metadata model (MMM) should be reused as
far as possible, e.g., for syntactic types, but that related information should be cached by
broker components for performance reasons; wherever applicable, extractors and extractor
versions, types etc. should be uniquely identified via URIs

Regarding workflow planning and execution, we came to the following conclusions:

Apache Camel is a good choice for workflow execution, supporting many EIP and all core
requirements for the project. It should be complemented by MICO-specific components for
retrieving data from Marmotta to put them into Camel messages, in order to support dynamic
routing.

The broker should not deal with managing scalability directly, but allow later scalability
improvements by keeping information about extractor resource requirements, and allowing
remote extractor process startup and shutdown.

Manual pipeline creation is a difficult process, due to the many constraints and interdepen-
dencies, depending on the aforementioned types, but also content, goal, and context of an
application. Considering this, we found that it would be extremely desirable to simplify the
task of pipeline creation using a semi-automatic workflow creation approach that considers
the various constraints. Additionally it is supposed to store and use feedback from showcase
admins on which extractors and pipelines worked well for which content set and use cases.
We need to support content sets and the mapping of such sets to their specific workflows.

4.2 Broker Components

The resulting broker includes and interacts with the components depicted in Figure 3. As men-
tioned above, the registration service provides a REST API to register extractors (which

6 Patrick Aichroth et al.

produce or convert annotations and store them as Linked Data / RDF), thereby collecting all
relevant information about extractors. It also provides global system configuration parameters
(e.g., the storage URI) to the extractors, and retrieval and discovery functionalities for extractor
information that are used by the workflow planner. The workflow planner is responsible for the
semi-automatic creation and storage of workflows, i.e., the composition of a complex processing
chain of registered extractors that aims at a specific user need or use case. Once workflows have
been defined, they can be assigned to content sets. Finally, the item injector is responsible of
injecting content sets and items into the system, thereby storing the input data, and triggering
the execution of the respective workflows (alternatively, the execution can also be triggered di-
rectly by a user). Workflow execution is then handled by the workflow executor, which uses
Camel, and a MICO-specific auxiliary component to retrieve and provide data from the data
store to be used for dynamic routing within workflows. Finally, all aforementioned Linked Data
and binary data is stored using the data store.

4.3 Extractor Lifecyle

From an extractor perspective, the high-level process can be summarized as depicted in Fig-
ure 4: Extractor preparation includes the preparation and packaging of the extractor imple-
mentation, including registration information that is used to automatically register the extractor
component upon extractor deployment, and possible test data and information for the ex-
tractor. As soon as extractor registration information is available, it can be used for workflow
creation, which may include extractor / workflow testing if the required test information
was provided earlier. For planning, or the latest for execution, the broker will then perform an
extractor process startup, and workflow execution will then be performed upon content
injections or user request, as outlined above.

The following sections will provide more details on the broker model, workflow planning and
execution, thereby clarifying how Linked Data is exploited within these domains.

5 MICO broker model and Linked Data

The data model of the MICO broker was designed to capture the key information needed to to
support extractor registration, workflow creation and execution, and collecting feedback from
annotation jobs (i.e., processing workflows applied to a defined content set), thereby addressing
the general principles outlined in section 4, and considering the key requirements from section 3.
It uses URIs as elementary data and extends the MICO MetadataModel (MMM)? presented in
[1, ch. 3]. The broker data model is composed of four interconnected domains, represented by
different colors in figure 5, which are described in the following:

— The content description domain (yellow) with three main entities: Contentltem captures
information of items that have been stored within the system. As described in [1, ch. 3.2],
MICO items combine media resources and their respective analysis results in ContentPart.
ContentltemSet are used to group several Contentltems into one ContentltemSet. Such a Set
can be used, to run different pipelines on the same set, or to repeat the analysis with an
updated extractor pipeline configuration.

— The extractor configuration domain (blue) with two main entities: ExtractorComponent,
which captures general information about registered extractors, e.g., name and version and
EztractorMode, which contains information about a concrete functionality (there must be at
least one functionality per extractor), which includes information provided by the developer

3 http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/

The MICO Broker 7

content desaription extractor configuration

¥ L H >
= o S Jecndortiode =] ExtractorCompmnent

E

|

"~ ContentitemSet_has_Contentitem » }
| input / output data descripion

+ |

|

|

|

N

3 contrttnset > >4/ contmmsetrype > ET . R .

L) o

!
Dt b3t) i % Diieiimtees O =
3

e
B
HH—1<]

I

i

Fig. 5. MICO broker model overview

at registration time, e.g., a human-readable description and configuration schema URI. For
extractors which create annotations in a format different from RDF, it includes a output
schema URI.

The input/output data description domain (green) stores the core information necessary
to validate, create and execute extractor pipelines and workflows: IOData represents the core
entity for the respective input or output to a given EztractorMode.

MimeType is the first of three pillars for workflow planning, as outlined in Section 4.1. RDF
data produced by extractors will be labeled as type rdf/mico. textitlOData_has MimeType
connects I/O data to MimeType. It has an optional attribute FormatConversionSchemaURI
which signals that an extractor is a helper with the purpose of converting binary data from
one format to another one (e.g. PNG images to JPEG).

The Syntactic Type of data required or provided by extractors is the second pillar for workflow
planning. For MICO extractors which produce RDF annotations, the stored URI should
correspond to an RDF type, preferably to one of the types defined by the MICO Metadata
model([1, ch. 3.4]). For binary data, this URI corresponds to a Dublin Core format [2].
Semantic Type is the third pillar for route creation and captures high-level information about
the semantic meaning associated with the I/O data. It can be used by showcase administra-
tors to quickly discover new or existing extractors that may be useful to them, even if the
syntactical type is not (yet) compatible — this information can then be exploited to request
an adaptation or conversion.

The platform management domain (orange) combines several instances related to platform
management: ExtractorInstance is the elementary entity storing the URI of a specific instance
of an extractor mode, i.e., a configured extraction functionality available to the platform. The
information stored in the URI includes the parameter and I/O data selection and further
information stored during the registration by the extractor itself.

Evallnfo holds information about the analysis performance of an FEztractorInstance on a
specific ContentltemSet. This can be added by a showcase administrator to signal data sets
for which an extractor is working better or worse than expected.

Pipeline captures the URI of the corresponding workflow configuration, i.e., the composition
of ExtractorInstances and respective parameter configuration.

UseCase is a high-level description of the goal that a user, e.g., showcase administrator,
wants to achieve.

Job is a unique and easy-to-use entity that links a specific Pipeline to a specific Content Item
Set. This can e.g. be used to verify the analysis status.

8 Patrick Aichroth et al.

UseCase_has_Job is a relation that connects a UseCase to a specific Job, which can be used
to provide feedback, e.g., to rate how well a specific Pipeline has performed on a specific
ContentltemSet

As outlined in 4.1, a key broker assumption is that some extractor information is provided at
packaging time by the developer (extractor properties, input and output) while other extractor
information will typically be provided after packaging time, by other developers or showcase
administrators. The registration service is one central point to register and query that extractor
information, which provides the information needed for workflow planning (see section 6) and
execution (see section 7). The registration service provides both a REST API for providing
extractor registration information, and a front-end for respective user interaction, to complement
information that is not or cannot be provided by an extractor developer at packaging time,
including feedback on how well certain pipelines or extractors performed for content sets.

6 Semi-automatic Workflow creation

During the MICO project, the manual creation of workflows turned out to be more complicated
and difficult than expected, as it depends not only on extractor interdependencies and constraints
on multiple levels, but also on the content at hand, and the context and goal of an application. In
order to address this problem, the idea of a semi-automatic workflow creation process emerged.
It was implemented using the idea of finding possible combinations of matching extractors using
the Linked Data information pillars outlined in sections 4 and 5. MimeType and syntactic Type
signal syntactical interoperability, and semanticTags signal a semantic match. Beyond that, if
available, feedback on how well workflows performed on content sets can be used as well.

It is important to note that these pillars do not represent a simple hierarchy: For instance, the
indication of two extractors providing and consuming a matching mimeType and syntactic Type,
but lacking the same semanticType can be used to signal to the service which extractors could
match and hence should be linked via a new semantic Type, requiring human feedback to create
this link. Vice versa, if it turns out that two extractors seem to provide similar output, as signalled
by syntactic Type and semantic Type, but the mimeType does not fit, this can be exploited as a
signal that a simple extension of the extractor to support a new mimeType, e.g., via format
conversion, could do the trick to create interoperability.

Figures 6 and 7 provide screenshots of the current workflow creation tool for MICO. In this
example, the creation process started from multimedia content with mp4 video and text, where
the user could incrementally add suitable extractors proposed by the GUI using the aforemen-
tioned pillars. However, Figure 6 shows a workflows that is validated, while Figure 7 shows the
same but invalid workflow, which is due to a slightly different audio demux extractor configura-
tion: The latter does not provide the output of type audio/wav, which leads to an incompatibility
that is signaled within the GUI. After completion, the user can store the resulting workflow as
a Camel route, which can then be used to execute the workflow.

7 Workflow execution and dynamic routing

Once workflows have been created and stored as Camel routes, using the semi-automatic approach
(see section 6), they can be assigned to content items and sets, and execution can be triggered
via the item injector or the user / showcase admin (see section 4).

The actual workflow execution is performed using four main components, two of which were
already mentioned in section 4): The workflow executor as master component, which uses the
other components and is based on Apache Camel, and the auziliary component, a MICO-specific

The MICO Broker

audio-demux-mp4 (audio_demux v1.0.0) speaker-diarization (speaker_diarization v1.0.0) 10Pbc-0recognmon-1x1 (open_nlp_text_analysis
v1.00)
Input #1: mico:Video Input #1: mico:Audio
Input #1: mico-Text
+ videomp4 v audiomay

« textiplain

Output #1: mico:Audio Output #1: mmmtermsDiarizationSody
Output #1: mmmterms TopicClassificationSody
+ audiowav ¢ audiomp3 application/rdfsxml
« applicationafexmi

. audio-demux-mp4

au 'av

vid p4 . speaker-diarization

-—- MICO User -—
. @ @ application/rdf+xml

@--- MICO System ---@

applicatienrdf+xm|
1 mmmterms: TopicClassificationBody]

topic-recogniti

Fig. 6. A complete extractor workflow

audio-demux-mp4 (audio_demux v1.0.0) speaker-diarization (speaker_diarization v1.0.0) mFggecong\omx\ (open_nip_text_analysis
v1.0.0)

Input #1: mico:Video Input #1: mico:Audio
Input #1: mico: Text

¥ videomp4 v audiowav.
v textpiain

Output #1: mico:Audio Output #1: mmmierms:DiarizationBody

Output #1: mmmterms: Topic ClassificationSody
audioway | v audio/mp3 v application/rafsxml

 application/rafxml

. audio-demux-mp4
vid p4 . speaker-diarization

--- MICO User -
. @ @ application/rdf+xml

text/plain
@-- MICO System —@

applicatien’rdf+xml

topic-recognition-txt

Fig. 7. An extractor workflow with one missing connection

10 Patrick Aichroth et al.

extension to Camel that allows Linked Data retrieval to support dynamic routing. In addition,
the RabbitM (@) message broker serves as communication layer to loosely couple extractors and
the MICO platform, and a MICO-specific Camel endpoint component that connects Camel with
the MICO platform, and triggers extractors via RabbitMQ.

MP4

injected data

lang_detect MICO extractor

Camel component

diarization

auxiliary component extracted audio data

detected language

il

diarization information

Kaldi (ENG) Kaldi (ITA)

Fig. 8. MICO workflow execution with dynamic routing

Dynamic routing based on Linked Data works as depicted in the short example workflow for
extracting spoken words from an mp4 video (figure 8). After audio demuxing (demuz), the
audio stream from the mp4 video is stored and provided to diarization* and language detection
(lang_detect. Both analyze the audio content in parallel, and store their annotations in Marmotta.

At this point, dynamic routing is applied to optimize performance: The auziliary component
loads the detected language from Marmotta and puts it into the Camel message header — it
knows where to locate the detected language, as lang_detect described by the storage location
with its registration data via LDPath [4]. Afterwards, the language information within the Camel
message header is evaluated by a router component, which triggers the Kaldi extractor optimized
for the detected language. Beyond this example, there are many use cases where such dynamic
routing capabilities can be applied.

8 Conclusion and outlook

This paper has described the challenges and requirements of cross-media extraction orchestration
based on Linked Data within the MICO project, and how they were addressed with a mix of
existing frameworks and MICO-specific extensions.

4 The segmentation of audio content based on speakers and sentences.

The MICO Broker 11

While all major requirements could be met, there is still a lot of potential for future improve-
ments: For semi-automatic workflow planning and creation, usability could be further enhanced,
e.g., by allowing definition and combination of sub-graphs. Moreover, project experiences within
the final project phase are likely to result in further demands with respect to process monitoring
and management, and regarding scalability improvements.

Acknowledgements

This work has been partially funded by the European Commission 7th Framework Program,
under grant agreement no. 610480.

References

1. Aichroth, P., Bjoerklund, J., Schlegel, K., Kurz, T., Kéllmer, T.: Dx.2.2 Specifications and Models
for Cross-Media Extraction, Metadata Publishing, Querying and Recommendations: Final Version.
Deliverable, MICO (October 2015), http://www.mico-project.eu/wp-content/uploads/2016/01/
Dx.2.2-SPEC_final _READY_FOR_SUBMISSION.pdf

2. Board, D.U.: DCMI Metadata Terms. Tech. rep., Dublin Core Metadata Initiative (jun 2012), http:
//dublincore.org/documents/dcmi-terms/

3. Pivotal Software, Inc.: Rabbitmq - messaging that just works (oct 2004-2015), https://www.
rabbitmq.com/

4. Schaffert, S., Bauer, C., Kurz, T., Dorschel, F., Glachs, D., Fernandez, M.: The Linked Media
Framework: Integrating and Interlinking Enterprise Media Content and Data. Proceedings of the
8th International Conference on Semantic Systems - .SEMANTICS ’12 (2012), http://dl.acm.org/
citation.cfm?id=2362504

