Shape Heuristics in Aristotelian Diagrams
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Abstract. Aristotelian diagrams have a long and rich history in philosophical logic.
Today, they are widely used in nearly all disciplines dealing with logical reasoning.
Logical geometry is concerned with the theoretical study of these diagrams, from
both a logical and a visual/geometrical perspective. In this paper, we argue that the
concrete shape of Aristotelian diagrams can be of great heuristic value in logical
geometry. A diagram’s shape can be used to visually represent certain logical prop-
erties and relations, and hence, through its shape, the diagram can help us to better
understand these properties and relations and reason about them. These claims are
explained and illustrated by means of a series of examples, consisting mainly of (i)
Aristotelian diagrams that represent an entire Boolean algebra of formulas, and (ii)
complementarities between Aristotelian diagrams.
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1. Introduction

Aristotelian diagrams are compact visual representations of the elements of some logi-
cal or conceptual field, and the logical relations holding between them. These diagrams
have a long and rich history in philosophical logic [1,2,3,4]. Today, they are still widely
used in logic [5,6,7], but also in fields such as cognitive science, linguistics, philosophy,
neuroscience, law and computer science [8,9,10,11,12,13,14] (see [15, Section 1] for
more examples). It thus seems fair to conclude that Aristotelian diagrams have come to
serve “as a kind of lingua franca” [16, p. 81] for a highly interdisciplinary community
of researchers who are all concerned, in some way or another, with logical reasoning.
Logical geometry® systematically investigates Aristotelian diagrams as objects of
independent interest (regardless of their role as lingua franca), from both a logical and a
visual/geometric perspective. Typical logical topics include the information contents and
logic-dependence of Aristotelian diagrams [15,17]. Typical visual/geometrical features
of Aristotelian diagrams include length, dimensionality, perpendicularity, collinearity,
convexity—or more generally: the diagram’s shape. For example, given a fragment of
four logical formulas and the Aristotelian relations holding between them, this can be vi-
sualized by means of a square (as is usually done), or alternatively a rectangle or a rhom-

'E-mail: lorenz.demey @hiw.kuleuven.be. This author holds a postdoctoral fellowship from the Research
Foundation-Flanders (FWO).

2E-mail: hans.smessaert@arts.kuleuven.be

3See www.logicalgeometry.org.

35



bus, or even—moving from two-dimensional to three-dimensional space—by means of
a tetrahedron (or some irregular variant thereof).

The main aim of this paper is to argue that shape plays an important heuristic role
in logical geometry. Building on earlier work [18,19,20], we will show that the shape of
an Aristotelian diagram can be used to visually represent certain logical properties and
relations, and consequently, through its shape, the diagram can help us to better under-
stand these properties and relations, and reason about them. We will further substantiate
and illustrate these claims, by presenting a series of examples and discussing the precise
heuristic role that shape plays in each of them.

The paper is organized as follows. In Section 2, we first introduce Aristotelian di-
agrams and their key properties, and then argue that a diagram’s shape can be of great
heuristic value in logical geometry. In Section 3 we discuss the heuristic role of shape
in Aristotelian diagrams that represent an entire Boolean algebra, and in Section 4 we
discuss various shape heuristics for complementarities between Aristotelian diagrams.
Finally, Section 5 wraps things up, and mentions some questions for further research.

2. Aristotelian Diagrams and the Heuristic Value of Shape

An Aristotelian diagram visualizes a set of logical formulas and the Aristotelian rela-
tions between them (see Fig. 1 for a basic example). These relations are defined as fol-
lows (relative to some given logical system S, which is taken to have the usual Boolean
connectives, and a model-theoretic semantics |=): the formulas ¢ and y are said to be

S-contradictory ifft SE-(pAy) and SE-(-@A-Y),
S-contrary iff SE-(pAy) and SE(-@A-W),
S-subcontrary iff SKE-(pAy) and SE-(-@A-Y),

in S-subalternation  iff SE@—y and SHEy—o.

This is a straightforward formalization of the traditional perspective on the Aristotelian
relations, according to which two formulas are, for example, contrary iff they cannot be
true together (cf. S = —(@ A ¥)), but can be false together (cf. S = (=@ A —y)).

Furthermore, almost all Aristotelian diagrams that have appeared in the literature
impose the following additional constraints on the formulas that are visualized: these
formulas are supposed to be (i) contingent and (ii) pairwise non-equivalent, and (iii)
they come in contradictory pairs (i.e. for a given formula ¢, the diagram contains both
¢ and —¢@). The historical and technical motivations for imposing these constraints are
discussed in more detail in [17, Subsection 2.1]. For our current purposes, it suffices to
note that although the contingency constraint means that an Aristotelian diagram should
not contain the non-contingent formulas | and T at all, some authors [21,22] prefer to
think of them as coinciding in the center of the diagram. From this perspective, 1 and
T still do not occupy any real vertices of the diagram, but they are ‘hidden’ in its center
(which is itself not a separate vertex of the diagram). For example, in the Aristotelian
square in Fig. 1(b), L and T can be thought of as coinciding in the square’s center, where
the two diagonals intersect each other.

An Aristotelian diagram trivially depends on the formulas that it visualizes: Aris-
totelian diagrams that visualize distinct (sets of) formulas are themselves distinct. Fur-
thermore, it has recently been realized that the logical system also plays a crucial role
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Figure 1. (a) Code for visualizing the Aristotelian relations, (b) an Aristotelian square with CPL-formulas,
and (c) an alternative (three-dimensional) visualization by means of a tetrahedron.

[15,23], since the Aristotelian relations are defined with respect to such a system.* After
these two parameters (formulas and logical system) have been fixed, the logical proper-
ties of the Aristotelian diagram are fully determined. From a visual/geometrical perspec-
tive, however, the Aristotelian diagram is still seriously underspecified—i.e. there are
still several ‘design choices’ that need to be made when constructing the actual diagram.’

Consider, for example, the propositional formulas pAg, pV g, -pA—g and —pV —gq,
and suppose that we are working in the system of classical propositional logic (CPL).
The Aristotelian relations holding between these formulas are fully determined (e.g. pAg
and —p A ~g are CPL-contrary, etc.), and we are only left with the task of visualizing
these formulas and relations in an appropriate manner. This, however, can be done in
various ways: the most common approach is to make use of a square, as in Fig. 1(b), but
we could also make use of rectangle, a rhombus, or even move from two-dimensional to
three-dimensional shapes, and make use of a tetrahedron, as in Fig. 1(c). These various
diagrams contain the same (logical) information, and hence they can be said to be infor-
mationally equivalent to each other [27]. One can also ask, however, whether these dis-
tinctly shaped diagrams are also cognitively or computationally equivalent to each other
[27], i.e. whether the information that they contain can equally easily be extracted or
inferred in all cases. Are all these diagrams equally helpful visualizations (of the given
set of formulas in the given logical system), or can some of them be argued to be ‘better’
than the others (and on what grounds)?

In the next two sections, we will show that in many cases, the concrete shape of an
Aristotelian diagram can have a powerful heuristic function. Roughly speaking, the idea
is that the (sets of) formulas represented by Aristotelian diagrams have various interest-
ing properties and relations amongst each other, and a diagram’s shape can be used to
visualize these properties and relations, thereby enabling the user to better understand
them and reason about them. Following the work of Gurr [28,29,30] on isomorphisms in
diagrammatic representations,® a well-designed Aristotelian diagram can be said to em-
body a kind of ‘isomorphism’ between the (set of) formulas’ logical properties and the
diagram’s visual/geometrical properties. The diagram thus simultaneously engages the
user’s logical and visual cognitive systems, and thereby facilitates inferential or heuris-

“#Consider, for example, the modal formulas (p and C—p. In the modal system D, these formulas are con-
trary, but in the minimal normal modal system K, they do not stand in any Aristotelian relation at all [24].

5 As described in [25,26], a similar situation arises in the study of Euler diagrams.

SThe cognitive effectiveness of diagrams has also been explained using notions that are closely related to
isomorphism, such as congruity [31] and iconicity [32].
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Figure 2. (a) JSB hexagon for a Boolean closed set of formulas in the modal system S5, (b) its representation
using bitstrings of length 3, (c) an alternative (3D) visualization by means of an octahedron.

tic free rides [33]: since the logical properties are directly visually manifested in the
diagram, it enables the user to grasp these properties with very little cognitive effort.

These considerations also imply a partial answer to the question concerning cogni-
tive differences between informationally equivalent diagrams (such as those in Fig. 1(b—
¢)). If we have Aristotelian diagrams D; and D, (for a given set of formulas and logi-
cal system), and the shape of D, triggers more heuristics than that of D;, then ceteris
paribus’ D; can be said to be a better or more effective visualization (of the given for-
mulas in the given logical system) than D.

3. Aristotelian Diagrams for Boolean Algebras

Our first series of case studies concerns Aristotelian diagrams that are Boolean closed,
i.e. that contain all contingent Boolean combinations of their formulas. Equivalently,
these diagrams can be characterized as visualizing an entire finite Boolean algebra, ex-
cept for its top and bottom elements.? It is well-known that finite Boolean algebras have
2" elements (with n € N), and can be represented as the powerset of an n-element set, or
equivalently, as the set {0, 1}" of bitstrings of length n.?

The first interesting case arises when n = 3, which yields 2* = 8 formulas/bitstrings.
After excluding T and L, we are thus left with 8 —2 = 6 contingent formulas/bitstrings,
which stand in various Aristotelian relations to each other, and constitute a diagram com-
monly known as a (strong) Jacoby-Sesmat-Blanché (JSB) diagram [17,18,19,23]. This
diagram can be drawn using various geometric shapes. By far the most common one is a
two-dimensional hexagon, as shown in Fig. 2(a-b). One of the alternatives, which can be
found in [21,34], is to make use of a three-dimensional octahedron, as shown in Fig. 2(c).
These hexagon- and octahedron-shaped diagrams represent exactly the same logical for-
mulas (or rather, their bitstring representations) and the Aristotelian relations holding
between them, and hence they are informationally equivalent to each other. However, as
will be shown below, these diagrams are certainly not cognitively equivalent, since the

7We do not mean to imply that factors other than heuristic value do not play any role at all. We only want to
argue for the relevance of heuristic value in diagram design, not for the irrelevance of any other factors.

8Recall the constraint that Aristotelian diagrams should only contain contingent formulas.

9 A systematic technique for mapping any set of formulas onto bitstrings is described in [23].
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Figure 3. (a) 3-dimensional cube for the Boolean algebra of bitstrings of length 3, (b) vertex-first projection
along the 111-000 axis, (c) vertex-first projection along the 101-010 axis.

hexagon enables more heuristic free rides—and is thus a more effective visualization—
than the octahedron.

It is well-known that the Boolean algebra of bitstrings of length n can be repre-
sented as an n-dimensional hypercube: every bit position corresponds to a dimension,
and the two values that it can take (0 and 1) define line segments in that dimension,
which are edges of the hypercube. The bitstrings thus not only serve as Boolean/logical
entities, but also as coordinates of the hypercube’s vertices. In the case n = 3, we thus
find a 3-dimensional hypercube, i.e. an ‘ordinary’ cube, which is shown in Fig. 3(a). We
now consider the vertex-first projection of this cube along the axis defined by the non-
contingent bitstrings 111 and 000, as shown in Fig. 3(b). The result of this projection
is a hexagon, with the bitstrings occupying the relative positions as in the hexagon in
Fig. 2(b) [18]. In other words, if it is visualized by means of a hexagon, then the JSB
diagram for the Boolean algebra {0, 1} turns out to be the vertex-first projection of the
well-known (hyper)cube representation of that same Boolean algebra.

Because of this geometric fact, the hexagon is a more effective diagram than the oc-
tahedron. First of all, the hexagonal shape serves to remind the user that she is working
with (an isometric projection of) a Boolean cube, and thus with the full Boolean alge-
bra {0, 1}3, i.e. with a Boolean closed set of formulas/bitstrings. Hence, there is an im-
mediate connection between a visual property (being a hexagon) and a logical property
(being Boolean closed). By contrast, the octahedral visualization of {0, 1}3 lacks this
connection, since the octahedron is not the vertex-first projection of the cube.

One might object at this point that the octahedron is related to the cube in other ge-
ometrical ways; most importantly, the octahedron is dual to the cube. However, unlike
taking a vertex-first projection, the process of dualizing the cube does not have the right
geometric properties. For example, by dualizing the cube we go from a polyhedron with
8 vertices (the cube) to a polyhedron with 6 vertices (the octahedron), but the geometri-
cal reason for this reduction from 8 to 6 vertices is the (convenient but ad hoc) fact that
the cube has 6 faces (recall that dualization involves turning faces into vertices and vice
versa). The octahedron’s 6 vertices thus have very little to do with the cube’s 8 original
vertices. All this stands in sharp contrast to the hexagon. By taking the vertex-first pro-
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jection of the cube, we also go from a polyhedron with 8 vertices (the cube) to a polygon
with 6 vertices (the hexagon), but in this case, the geometrical reason for this reduction
from 8 to 6 vertices is the highly relevant fact that two of the cube’s vertices lie exactly
on the projection axis, and hence will coincide with each other and lie in the center of the
(two-dimensional) result of the projection (i.e. the hexagon). The hexagon’s 6 vertices
are thus closely related to the cube’s 8 original vertices, viz. they correspond exactly to
the cube’s vertices that do not lie on the projection axis.

Furthermore, recall that the projection axis is defined by the non-contingent bit-
strings 111 and 000. This justifies the intuitive idea (ascribed in Section 2 to [21,22]) that
these non-contingent bitstrings are not entirely absent from an Aristotelian diagram, but
rather coincide in its center of symmetry.'® Similarly, the 6 vertices of the cube that do
not lie on the projection axis—and thus correspond to the 6 vertices of the hexagon—are
exactly the contingent bitstrings in {0, 1}?; this reflects the constraint that Aristotelian
diagrams should only contain contingent bitstrings. By contrast, the octahedral visual-
ization cannot explain why the JSB diagram only contains contingent bitstrings, nor why
the non-contingent bitstrings can be thought of as coinciding in the diagram’s center of
symmetry.

Finally, note that the Boolean algebra {0, 1} can not only be visualized by means of
an Aristotelian diagram, but also by means of a Hasse diagram. In [18] it is shown that
the hexagonal Hasse diagram (almost) coincides with the vertex-first projection of the
cube for {0, 1}3 along the projection axis defined by the bitstrings 101 and 010 (or any
other contradictory pair of contingent bitstrings); see Fig. 3(c). There is thus a very close
relationship between the hexagonal Aristotelian and Hasse diagrams for {0, 1}3: both are
vertex-first projections of one and the same cube, and their differences are entirely due to
the different projection axes. By contrast, the octahedral visualization of the Aristotelian
(or Hasse) diagram for {0, 1}3 does not allow for such a unified perspective.

To summarize: the hexagonal JSB diagram in Fig. 2(b) embodies a strong isomor-
phism between visual-geometric properties (e.g. being the vertex-first projection of a
cube) and abstract-logical properties (e.g. being Boolean closed). This isomorphism has
significant cognitive advantages, since it enables heuristic free rides: several logical prop-
erties, which might otherwise easily be forgotten or overlooked, are visually manifested
in the diagram’s shape, and thus can no longer escape the user’s attention. By contrast,
the octahedral JSB diagram in Fig. 2(c) does not embody an isomorphism, and is thus
less powerful from a cognitive-heuristic perspective. Hence, even though these two dia-
grams are informationally equivalent, they are certainly not cognitively equivalent.

Similar remarks can be made when we move to bitstrings of length 4. There are
2% — 2 = 14 contingent bitstrings of length 4, and there are various ways to visualize
these bitstrings and the Aristotelian relations between them. The most commonly used
diagram is the rhombic dodecahedron [5,21,36], or an irregular variant thereof [22,37].
An alternative visualization makes use of a nested tetrahedron [14,38].1! Although these

10Based on strictly diagrammatic considerations [35], one might expect that the non-contingent bitstrings—
which are typically considered to be of limited importance in logical geometry [17]—are in the periphery,
rather than the center of the Aristotelian hexagon. However, the geometric status of this hexagon—being the
vertex-first projection of the Boolean cube along the 111/000 axis—seems to override these considerations, thus
leading to the persistent intuition that the non-contingent bitstrings coincide in the diagram’s center [21,22].
Thanks to John A. Bateman for discussion about this point.

1See [19] fora comparison between the canonical rhombic dodecahedron and its irregular variants; see [39]
for a comparsion between the rhombic dodecahedron and the nested tetrahedron.
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Figure 4. (a) Buridan octagon for propositional formulas, and (b) its representation by bitstrings of length 4.

two diagrams are informationally equivalent, the former is the vertex-first projection of
a hypercube [18], and is therefore cognitively more effective than the latter.

4. Complementarities between Aristotelian Diagrams

We now turn to our second series of case studies, which concerns Aristotelian diagrams
that are not Boolean closed, but can be represented by bitstrings of length 4. Logi-
cally speaking, this means that the Boolean closure of these diagrams is (isomorphic to)
{0, 1}4, and hence, diagrammatically speaking, these diagrams can be seen as subdia-
grams of the rhombic dodecahedron for {0, 1}* (recall from Section 3 that the rhombic
dodecahedron is the best visualization of {0,1}*).

We begin by considering the Aristotelian diagram shown in Fig. 4(a), which shows
8 propositional formulas and the Aristotelian relations holding between them. This dia-
gram is sometimes called a Buridan diagram, because the first Aristotelian diagram of
this type can be found in the logical works of the 14th-century philosopher John Buri-
dan (who used it in the context of syllogistics, rather than propositional logic) [3,4]. It
is well-known that the Buridan diagram for propositional logic can be represented by
bitstrings of length 4, as shown in Fig. 4(b) [23]. Buridan diagrams are usually visual-
ized by means of an octagon, as in Fig. 4 [3,4,7,23]; an alternative visualization, which
can be found in [19,20,36], makes use of a rhombicube, as in Fig. 5(a). These octagon-
and rhombicube-shaped diagrams represent exactly the same logical formulas/bitstrings
and the Aristotelian relations holding between them, and hence they are informationally
equivalent to each other. However, just like in Section 3, we will show that they are cer-
tainly not cognitively equivalent, since one of them enables much more heuristic free
rides than the other one.

First of all, note that in the rhombicube, the visual property of verticality perfectly
represents the logical property of level (i.e. the number of 1-bits in the bitstring): the
level-1 bitstrings (1000 and 0001) are at the top of the diagram, the level-3 bitstrings
(1110 and 0111) are at the bottom of the diagram, and the level-2 bitstrings (1100, 1010,
0101 and 0011) all lie on a horizontal plane exactly in the middle. By contrast, in the oc-
tagon, this visual-logical isomorphism cannot be maintained: for example, in Fig. 4(b),
1010 is situated lower than 1100, even though these two bitstrings are of the same logical
level. An obvious solution to this problem seems to involve putting all level-2 bitstrings
on a horizontal line, exactly in between the horizontal line constituted by the level-1 bit-
strings and the horizontal line constituted by the level-3 bitstrings. This is problematic,
however, because the collinearity of the level-2 bitstrings entails that the Aristotelian re-
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Figure 5. (a) Buridan rhombicube inside the rhombic dodecahedron, (b) geometric complementarity between
Buridan rhombicube and JSB hexagon, (c) JSB hexagon inside the rhombic dodecahedron.

lations between these bitstrings can no longer be clearly visualized; for example, the line
representing the contradiction between 1010 and 0101 would overlap with the line repre-
senting the contradiction between 1100 and 0011 (see [18] for a more detailed discussion
about the diagrammatic issues pertaining to verticality, level and collinearity).

Secondly, as is clear from Fig. 5(a), the rhombicube is exactly the shape that a Buri-
dan diagram takes when it is seen as a subdiagram inside the thombic dodecahedron for
{0,1}*. In particular, the rhombic faces of the rhombicube coincide with the rhombic
faces of the rhombic dodecahedron. Through its shape, the rhombicube visualization of
the Buridan diagram thus immediately suggests that this diagram can be embedded inside
the rhombic dodecahedron for {0, 1}4, and hence, that its formulas can be represented by
bitstrings of length 4. By contrast, the octagon in Fig. 4(b) does not in any way suggest
that it can be embedded inside the thombic dodecahedron, and thus does not remind the
user that its formulas can be represented by bitstrings of length 4.

Finally, it should be noted that the 8 bitstrings constituting the Buridan diagram all
have different values in their first and fourth bit positions, which we will formalize by
saying that they satisfy the constraint pos; # pos,. Out of the 16 bitstrings in the Boolean
algebra {0, 1}*, exactly 8 satisfy the constraint pos, # pos,; these are the ones constitut-
ing the Buridan diagram. The remaining 6 bitstrings that do not satisfy this constraint—
i.e., that satisfy the complementary constraint pos, = pos,—constitute a JSB diagram.'?
There thus exists a logical complementarity between Buridan diagrams and JSB dia-
grams: the bitstrings constituting these two types of Aristotelian diagrams satisfy two
complementary constraints on bit positions.

When a JSB diagram is embedded inside the rhombic dodecahedron, it has the shape
of a hexagon, which cuts across that rhombic dodecahedron, as shown in Fig. 5(c).13
Furthermore, this hexagon perfectly cuts across the Buridan rhombicube, as shown in
Fig. 5(b); together, the Buridan rhombicube and the JSB hexagon form a perfect partition
of the rhombic dodecahedron, i.e. there exists a geometrical complementarity between
the Buridan rhombicube and the JSB hexagon. Hence, if the Buridan diagram is visual-
ized by means of a rhombicube, then it is geometrically complementary to (the hexago-

12There are actually 8, rather than 6, bitstrings that do not satisfy the constraint pos, # pos,, but two of them
are the non-contingent bitstrings 1111 (which has a 1 in its first and fourth bit positions) and 0000 (which has
a 0 in both its first and fourth bit positions), which do not occur in Aristotelian diagrams (cf. Section 2).

13Note that this is yet another reason for visualizing a JSB diagram by means of a hexagon, rather than an
octahedron, besides the reasons already given in Section 3.
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nal visualization of) the JSB diagram, which explicitly reminds the user of the underly-
ing logical complementarity between the two diagrams. By contrast, if the Buridan dia-
gram is visualized by means of an octagon, then there is no geometrical complementarity
with the JSB diagram, and the underlying logical complementarity runs the risk of being
overlooked.

To summarize: the rhombicube-shaped Buridan diagram in Fig. 5(a) embodies a
strong isomorphism between geometric properties (e.g. verticality, complementarity to a
hexagon) and logical properties (e.g. level, constraints on bitstrings). This isomorphism
has significant cognitive advantages, since it enables heuristic free rides: several logical
properties, which might otherwise easily be forgotten or overlooked, are visually mani-
fested in the diagram’s shape, and can thus no longer escape the user’s attention. By con-
trast, the octagonal Buridan diagram in Fig. 4(b) does not embody an isomorphism, and is
thus less powerful from a cognitive-heuristic perspective. Hence, even though these two
diagrams are informationally equivalent, they are certainly not cognitively equivalent.

5. Conclusion

In recent years, logical geometry has studied a wide variety of Aristotelian diagrams.
Most of these diagrams belong to fundamentally distinct families, but there are also pairs
of diagrams that contain exactly the same logical formulas and relations, and are thus in-
formationally equivalent to each other. We have argued that in such cases, the diagrams’
shape often plays a crucial role in their cognitive-heuristic effectiveness, and can thus
help us to determine whether the diagrams are also computationally equivalent to each
other.

This claim has been substantiated and illustrated by two series of case studies. First
of all, focusing on Boolean closed sets of formulas/bitstrings, we have argued extensively
that the hexagon is a more effective visualization of {0, 1} than the octahedron, since
it embodies a strong isomorphism between the bitstrings’ abstract-logical properties and
the diagram’s visual-geometrical properties. Secondly, focusing on logical and geomet-
rical complementarities between Aristotelian diagrams, we have argued that the Buridan
diagram can more effectively be drawn as a rhombicube, rather than as an octagon.

In ongoing work [40,41], we are investigating informationally equivalent visualiza-
tions of other types of Aristotelian diagrams, such as the so-called Sherwood-Czezowski
diagram. The principles discussed in this paper (being Boolean closed, complementari-
ties with other diagrams) do not suffice to make cognitively relevant distinctions between
these visualizations, so other, more fine-grained criteria will have to be looked for.
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