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Abstract

We present an implemented programming language called LOIS, which allows iterating through
certain infinite sets, in finite time. We argue that this language offers a new application of SMT
solvers to verification of infinite-state systems, by showing that many known algorithms can easily be
implemented using LOIS, which in turn invokes SMT solvers for various theories. In many applica-
tions, ω-categorical theories with quantifier elimination are of particular interest. Our tests indicate
that state-of-the art solvers perform poorly on such theories, as they are outperformed by orders of
magnitude by a simple quantifier-elimination procedure.

1 Introduction
A fragment of formal verification is concerned in designing algorithms which test properties of infinite-
state systems, such as reachability or verifying whether all runs satisfy a given formula [KF94, KM69,
FS01, DHPV09]. There are two components to this process: constructing an algorithm, and proving
its correctness and termination. Usually, the algorithm involves specific data structures for representing
infinite objects in a finite way. Consequently, the proof of termination and correctness needs to delve
into the specifics of these data structures, and is often more complicated than the actual underlying
mathematical idea.

This paper and its companion paper [KTb] introduce a programming language called LOIS (Looping
Over Infinite Sets), which manipulates infinite mathematical objects in a transparent way, by allowing to
iterate through infinite sets, in finite time. For instance, the code to the right below can be executed in
finite time (N denotes the set of all naturals); as a result, the set Y evaluates to the set of odd numbers
greater than 7.

set Y = ∅;
for (x : N)

i f (x>3) Y += 2*x+1;

i f (10∈Y)
cout << "10 is odd";

To the best of our knowledge, LOIS is the first imperative pro-
gramming language which allows to evaluate instructions (possi-
bly, nested) similar to the one above, on infinite sets, in finite
time. LOIS is implemented as a prototype library in C++; the
above instruction is executable after minor syntactic transforma-
tions [KTc]. When executing programs, LOIS invokes SMT (Satisfiability Modulo Theories) solvers for
testing validity of first-order formulas. The above program amounts to testing the validity of the formula
∃x.(x > 3) ∧ (2 · x+ 1 = 10) in (N, ·,+).

We believe that LOIS offers a convenient interface between formal verification, SMT solvers, and
abstract mathematical arguments. The main benefit is that no specific data structures need to be
employed to manipulate infinite mathematical objects. To illustrate our point, we give another example.

Example 1.1. Below is a simple LOIS program. It constructs an automaton with infinitely many states,
which for a given sequence over the alphabet Σ = N ∪ {#}, computes the maximal sum of an infix not
interrupted by #. To the left below, we use pseudocode similar to LOIS syntax.

∗This work is supported by Poland’s National Science Centre grant 2012/07/B/ST6/01497.
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set Σ = N∪{’#’};
set Q = ∅;
set I = {(0 ,0)};
set δ = ∅;

for m in N do
for n in N do

Q+= (m,n);

for (m,n) in Q do
for x in Σ do

i f (x==’#’)
δ+=((m,n),x,(m,0))

else
δ+=((m,n),x,

(max(m,n+x),n+x));

function reach(I,E) {
set S = ∅;
set R = I;

while (R != S) do {
S = R;
for (p,q) in E do

i f (p∈R) R += q;
}
return R;

}

set E = ∅;

for (p,a,q) in δ do
E += (p,q);

print(reach(I,E));

The statespace Q consists of all pairs (m,n) with m,n ∈ N. There
is one initial state, (0, 0). The transition relation δ ⊆ Q×Σ×Q is
such that reading # resets the second component of the state, and
reading a letter x ∈ N increases the second component by x, and
accumulates the maximal seen value in the first component. The
tuple (Σ, Q, δ, I) is an automaton (without accepting states), with
infinite-state space.

To understand LOIS on an intuitive level, imagine that an in-
struction of the form “for x in X do I” creates possibly infinitely
many threads indexed by elements x ∈ X, executed in parallel and
perfectly synchronously; the thread x executes the instruction I
with the value of x set to x.

We now compute the set of reachable states of the above automaton.
The function reach takes as argument a possibly infinite set E of
directed edges (pairs of vertices), a set of initial vertices I, and
computes the reachable set with a fixpoint algorithm. Contrary to
for loops, while loops are executed sequentially. In particular, in
a terminating program, they are executed finitely many times.

Finally, we compute the reachable states in the graph of
our automaton. The output is {(m,n) | m ∈ N, n ∈ N,m ≥ n}.
The while loop iterates three times, with R taking val-
ues {(0, 0)}, {(n, n) | n ∈ N}, and {(m,n) | m,n ∈ N,m ≥ n}.

Let us specify a set of accepting states, e.g. F = {(m, 3) | m ∈ N}, which can be constructed in LOIS,
similarly to Q. Now A = (Σ, Q, δ, I, F ) is a deterministic, infinite-state automaton accepting those
sequences, in which the maximal sum of an infix uninterrupted by # is 3.

function minimize(Σ,Q,q0,F,δ)
{

set E = ∅;
for (p,q,a) in Q×Q×Σ do

E+=((δ(p,a),δ(q,a)),(p,q));
set S=(F×(Q-F))∪((Q-F)×F);
set equiv =(Q×Q)-reach(S,E);

set classes=∅;
for q in Q do {

set class = ∅;
for p in Q do

i f ((p,q)∈equiv)
class += p;

classes += class
}

return classes
}

What is the minimal automaton equivalent to A? To find out,
we can try to run the well-known partition refinement algorithm
on A. Since this only works for deterministic automata, we
treat δ as a function Q × Σ → Q and q0 is the unique ini-
tial state. In the first phase, we compute in the variable equiv
the equivalence relation which identifies states that recognise the
same languages, i.e., (p, q) ∈ equiv iff for all words w ∈ Σ∗,
reading w from the state p, ends in an accepting state iff it
does from the state q. To compute equiv we use the function
reach described earlier. In the second phase, we compute the
equivalence classes of the relation equiv on Q, which are the
states of the minimal automaton; the transitions can be computed
similarly. For the automaton A described above, this returns

a minimal automaton with 11 states. Note that the same LOIS code as in the reach and minimize
functions can be used for classical, finite automata, as well as for various classes of infinite-state systems.
It can be readily converted into a very similar, executable LOIS program (this is done in [KTc]), with no
need of auxiliary data structures.

What is and what is not in this paper. Although the syntax of LOIS is simple and its semantics
intuitive, a formal treatment requires novel ideas and is deferred to another paper [KTb]. For our purposes
here, it suffices to know that each time one of the LOIS instructions for, if, while is executed, an SMT
solver is queried for the theory underlying the particular program, as explained in Section 2. The C++

library is described in [KTc]. This paper concentrates on the use of SMT solvers. In particular, we argue
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that LOIS provides a new application of SMT solvers to formal verification, using background theories
which are not the ones typically considered in the SMT community.

The outline is as follows. LOIS, together with its key underlying data structure, definable sets, are
introduced in Section 2. These rely on SMT solvers for various ω-categorical theories, which we describe
in Section 3. We show (in Section 4) that they outperform state-of-the-art SMT solvers by orders of
magnitude. In Section 5 we give some example applications of LOIS to verification of infinite-state
systems. We discuss the related work in Section 6.

2 Definable sets and LOIS

In this section, we define the central notion underlying this paper and the companion paper [KTb], that
is, of definable sets. We also briefly introduce LOIS.

Structures. We refer to the literature (e.g. [Hod97]) for structures, sorts, terms, and formulas. All
formulas are assumed to be first-order. Throughout the paper, fix an infinite underlying logical structure
A, which may involve relation or function symbols. For simplicity, we assume that A has only one sort
named A; generalizing to multisorted structures is straightforward. We say that A has decidable theory
if there is an algorithm which decides whether a given first-order sentence holds in A. Such an algorithm
is called an SMT solver for the theory of A. The structures (N,=), (Q,≤), (R,≤), (R,≤,+, ·), (N,≤,+)
have decidable theories (the last two due to results of Tarski and Presburger), and the structure (N,+, ·)
does not, by Gödel’s theorem. In this paper the underlying structure A is always assumed to a have
decidable theory.

Definable sets. An expression (defined recursively) is either a variable from a fixed infinite set of
variables, or a formal finite union of set-builder expressions, each of the form

{e | a1 ∈ A, . . . , an ∈ A, φ}, (1)

where e is an expression, a1, . . . , an are (bound) variables, and φ is a (guard) formula over the signature
of A and over the set of variables. Free variables in (1) are those free variables of e and of φ which are
not among a1, . . . , an. For an expression e with free variables V , any valuation val : V → A defines in the
obvious way a value X = e[val], which is either an element of A or a set, formally defined by induction
on the structure of e. We then say that X is definable over A, or with underlying structure A. When we
want to emphasize those elements of A that are used in a definition of X, we say that X is S-definable,
if X is defined using a valuation val : V → S, for a finite set S ⊆ A.

Example 2.1. Let Q be the rationals with order, with one sort Q consisting of rational numbers, and a
predicate < denoting the usual order on Q. The interval (1/4, 5/6) is {1/4, 5/6}-definable by the expression
{x | x ∈ Q, a < x ∧ x < b} and valuation a 7→ 1/4, b 7→ 5/6. Also its complement Q− (1/4, 5/6) is {1/4, 5/6}-
definable. More generally, definable subsets of Q (over Q) are precisely finite unions of open (possibly
half-bounded) intervals and points. The set of all open intervals in Q is a ∅-definable set, defined by the
expression {{x | x ∈ Q, a < x ∧ x < b} | a ∈ Q, b ∈ Q}.

Now consider the ordered field of reals R = (R,+, ·, 0, 1,≤). An example definable subset of R3 is
the half-ball {(x, y, z) | x ∈ R, y ∈ R, z ∈ R, x > 0 ∧ x2 + y2 + z2 ≤ 1}. A celebrated result of Tarski
characterizes definable subsets of Rk (over R) as precisely the finite unions of sets defined by systems of
equalities and inequalities between k-variate polynomials. The set of all balls in Rk is also ∅-definable.

Remark 2.2. In the above example we used a tuple (x, y, z) in an expression. This is syntactic sugar, as
tuples can be encoded as finite sets using e.g. Kuratowski pairs. Note that any finite set whose elements
are definable is itself definable. We will often use symbols, e.g. #, as expressions, formally represented by
∅-definable sets, e.g., ∅, {∅}, etc. In LOIS programs, we allow including symbols, tuples, arrays, objects,
and other data structures directly in sets.
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LOIS. Very roughly, the syntax of LOIS with underlying structure A extends the syntax of an imper-
ative language (e.g. C++ or Pascal) by:

• the pseudoparallel instruction for x in X,
• types set for representing sets and elem for control variables in a for loop,
• constants ∅ and A (the sort of A) of type set,
• set manipulations, such as insertion X+=x, and operations ∩,∪,−,×,
• tests X = Y,X ∈ Y,X ⊆ Y, x ∈ X for X,Y of type set and x of type elem,
• tests φ(x1, . . . , xn), where x1, . . . , xn are variables of type elem and φ is a formula using relation

and function symbols from A.
See our companion paper [KTb] for the formal semantics1, and [KTc] for the exhaustive list of construc-
tions available in our implementation. In Section 2 below we discuss how SMT solvers are employed by
LOIS.

Definable sets are the central data structure underlying LOIS programs, used to represent elements
of type set. They are effectively closed under boolean combinations, cartesian products, projections,
quotients, etc. In fact, they are closed under any function which can be implemented as a LOIS program,
as stated slightly informally below, and proved in our companion paper [KTb].

Theorem 2.3. Let I be a LOIS instruction with underlying structure A and let v be a valuation which
assigns S-definable sets to variables appearing in I, where S ⊆ A is a finite set. Then, executing I results
in a valuation JIK(v) which also assigns S-definable sets to the variables appearing in I. If the theory of
A is decidable and the instruction I has bounded recursion and iteration depth, then the valuation JIK(v)
can be effectively computed from v.

Queries generated by LOIS. We briefly describe when LOIS queries an SMT solver. This is part of
the formal semantics described in detail in our companion paper [KTb].

A context is a finite set of bound variables and formulas. During the execution of a program, LOIS
maintains a stack of contexts, modified by the for, if, while instructions. A statement of the form
for x in X do I is executed as follows. Assume that X evaluates to a definable set X, which is internally
represented by a union of set-builder expressions e1 ∪ · · · ∪ en. For each expression ei in this union, do as
follows. Suppose that ei is of the form {f | a1 ∈ A, . . . , an ∈ A, φ}. Then a context C comprising the bound
variables a1, . . . , an and the formula φ is pushed onto the stack. If the union of all contexts currently on
the stack is satisfiable, then the instruction I is executed with variable x set to f . Afterwards, the context
C is removed from the stack and we move to the next expression ei+1, until all expressions are processed.
The instruction if φ do I is equivalent to for x in {∅ | φ} do I, and while is implemented as a
sequential (finite) application of if instructions, as usual.

Satisfiability tests. As we see above, during the execution of a program, LOIS performs only a few
operations on contexts, which can be described as follows: (push) push a context onto the stack, (pop)
remove the topmost context from the stack, (check-sat) check if the union of all contexts on the stack
is satisfiable. Conveniently, many SMT solvers – in particular, the solvers conforming to the SMT-LIB
standard [BST10] – allow to execute the above three operations (push), (pop), (check-sat), for certain
background theories; this is known as incremental solving. LOIS can communicate with an external
incremental solver, using the SMT-LIB (v. 2) format. Also, for some theories, LOIS can use its internal
solver, described in Section 3.

Origin of the formulas. It is perhaps worth expounding on the origin and shape of the formulas
appearing in the set-builder expressions during the execution of a LOIS program. Whenever the in-
struction X+=x is executed, a new set-builder expression is appended to the expression defining X; the

1In our companion paper [KTb] two languages, LOIS and LOIS0 are introduced. They have the same syntax, but
slightly different semantics. This distinction will not be relevant in this paper. Additionally, there is the tool which is also
called LOIS, implemented as a C++ library allowing to execute programs in a syntax similar to that of LOIS (some minor
changes are required to embed LOIS into C++).
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guard in this expression is the union of those contexts on the stack which appeared after X was declared.
Boolean values are represented by formulas. For example, if X is represented by a single set-builder
expression of the form {f | a1 ∈ A, . . . , an ∈ A, φ}, then (X==∅) evaluates to ∀a1 . . . ∀an¬φ. Tests
for ∈,=,⊆ are defined mutually recursively – for example, X ⊆ Y is implemented by the code below.
For sets X,Y defined by expressions of nesting depth n, the result is a formula with quantifier prefix

function subset(X,Y) {
set F = ∅;
for (x : X)

i f !(x ∈ y) F+={∅};
return (F==∅);

}

∀∗∃∗ . . . and 2n alternations between ∀ and ∃.
From time to time, LOIS tries to simplify the formulas appearing

in the set-builder expressions, which turns out to be crucial for the
performance, since simpler formulas are easier to verify. LOIS also
performs basic syntactic transformations, such as removing quanti-
fiers which introduce unused variables. Additionally, LOIS runs its internal solver on the guards when
constructing sets, checking whether there are any parts which always turn out to be true or false during
the evaluation, and removing them. For relatively simple LOIS programs this simplification algorithm is
very effective.

3 Internal solver

LOIS has an internal solver which can handle several ω-categorical theories, in particular, of homogeneous
structures. These are important for many of the applications sampled in Section 5. In this section, we
discuss the algorithm, and test it against state-of-the-art SMT solvers.

ω-categoricity. For a structure A, its automorphism is a bijection of A to itself, which preserves the
relations and functions of A. An automorphism π of A can be applied to a tuple (a1, . . . , an) of elements
of A, yielding as a result the tuple (π(a1), . . . , π(an)); we say that two tuples ā, b̄ ∈ An are in the same
orbit if there is an automorphism which maps ā to b̄. An orbit is an equivalence class of this equivalence
relation. A countable structure A is ω-categorical if for every n ∈ N, the set of tuples An has finitely
many orbits.

Example 3.1. Consider the structure (N,=), whose automorphisms are all bijections of N to itself. The
orbits of N3 are identified by representatives (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 3). More generally,
the orbits of Nk correspond to partitions of the set {1, . . . , k}; in particular, (N,=) is ω-categorical. The
structure (Q,≤), whose automorphisms are the increasing bijections of Q, is also ω-categorical. Other
ω-categorical structures which arise in formal verification include the infinite random graph [Mac11] and
infinite homogeneous trees [BST13].

Homogeneity. Recall that we consider structures with relation and/or function symbols. An n-
generated structure B is a structure with an n-tuple of distinguished generators from which every other
element in B can be obtained using function symbols. An isomorphism of two n-generated structures
B, C is an isomorphism from B to C, which maps the ith generator of B to the ith generator of C, for
i = 1..n. A structure A is homogeneous if every isomorphism between two n-generated substructures of
A extends to an automorphism of A, for n ∈ N.

It is straightforward to verify that the structures (N,=) and (Q,≤) are homogeneous. Those, and
many other examples are discussed in [Mac11].

The following result is well known from model theory (cf. [Hod97]).

Theorem 3.2. Suppose that A is homogeneous, over a finite signature and for every n there is a bound
on the size of n-generated substructures of A. Then A is ω-categorical, and each formula is equivalent to
a quantifier-free formula.

The aim of this section is to give an effective version of Theorem 3.2. Observe that if every formula
can be effectively converted into an equivalent quantifier-free formula, then the theory of A is decidable.
The following lemma is a crucial, though immediate observation, relating homogeneity to ω-categoricity.



LOIS: an application of SMT solvers Eryk Kopczyński and Szymon Toruńczyk

Lemma 3.3. Let A be a homogeneous structure. If x̄ and ȳ are two n-tuples of elements of A, which
generate isomorphic n-generated substructures of A, then x̄, ȳ are in the same orbit.

To get a good grip on the complexity bounds, we introduce a few notions.

Extension bounds. An extension of an n-generated structure B is an (n + 1)-generated structure C
whose substructure generated by the first n generators of C is equal to B. For a structure A, an extension
bound is a function e : N → N such that for every n ∈ N, any n-generated structure B which embeds
into A has at most e(n) non-isomorphic extensions to a structure C which embeds into A. For example,
the 2-generated structure B = ({a, b},≤) with a 6= b, a ≤ b, has five (up to isomorphism) extensions
to a 3-generated structure which embeds into Q, corresponding to: c < a < b, c = a < b, a < c < b,
a < b = c, a < b < c. For the structures listed above such bounds are, e(n) = n+ 1 for the pure set, and
e(n) = 2n+ 1 for the rational numbers. If A has extension bound eA, then for n ∈ N, let e!A(n) denote
c0 · eA(0) · eA(1) · · · eA(n− 1), where c0 is the number of isomorphism types of 0-generated substructures
of A. Observe that e!A(n) is a bound on the number isomorphism types of n-generated substructures of
A. This implies:

Lemma 3.4. Let A be a homogeneous structure. If A has extension bound e, then An has at most e!A(n)
orbits. It follows that A is ω-categorical if and only if it has an extension bound.

Efficient algorithm. For many homogeneous structures one can implement a data structure allowing
to efficiently iterate through all (isomorphism types of) n-generated structures which embed into A, which
admits the following operations in amortized constant time (1) proceed to the next (isomorphism type)
of an n-generated structure which embeds into A, and (2) extend to the first (n+ 1)-generated structure
which embeds into A. Also, testing whether a quantifier-free formula ψ with n variables holds in the
current n-generated structure can be done in time O(|ψ|n). If there is such a data structure as described
above, we say that there is a constant-delay extension enumeration algorithm for A.

Proposition 3.5. Let A be a homogeneous structure. Suppose that A has extension bound eA and
constant-delay extension enumeration algorithm. Then, for a given sentence φ, deciding whether φ holds
in A can be done in time O(e!A(r) · |φ|2r), where r is φ’s quantifier rank.

Proof. If φ is a formula with free variables x1, . . . , xn, then let [φ] denote the set of isomorphism types
of n-generated structures B with generators b1, . . . , bn, such that for some embedding α of B to A, the
valuation which maps the variable xi to α(bi) satisfies φ, i.e., v,A, |= φ. It follows from homogeneity that
this does not depend on the choice of the embedding α.

We show by induction on the structure of a formula φ with n free variables, that given an isomorphism
type of an n-generated structure B, it can be decided whether B ∈ [φ] in time O(e(r−1) · · · e(1) ·e(0) · |φ|).
Proving this will prove the proposition. Indeed, sentences have 0 free variables, and due to the assumption
that A has no constants, there is only one 0-generated structure, namely the empty structure. Testing
whether this structure belongs to [φ] is equivalent to answering whether A |= φ.

In the inductive base, we consider predicates R(t1, t2, . . . , tk), where t1, . . . , tk are terms using function
symbols and variables. If B is an k-generated structure, then testing whether B |= R(t1, t2, . . . , k) can be
done in time linear in |φ|.

Now consider the inductive step. The case when φ is of the form ¬ψ or φ1 ∨ φ2 is easy. Suppose that
φ is a formula of the form ∃x.ψ. Given a structure B, to test whether B ∈ [φ], consider all extensions
B′ of B by one generator, and find out whether one of them satisfies B′ ∈ [ψ]. This can be done in the
required time, by inductive assumption.

The internal solver of LOIS uses the procedure from Proposition 3.5 for several theories of homogeneous
structures (see [KTc] for more details).
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4 Tests
We have tested LOIS with its internal solver, as well as with two state-of-the-art SMT solvers conforming
to the SMT-LIB standard, namely CVC4 [BCD+11] and Z3 [DMB08]. We have also tested the solver
SPASS, which is based on the superposition calculus [WDF+09]. In the tests, the underlying structure
was (Q,≤), which has the same first-order theory as (R,≤). For the external solvers, we used the LRA
logic (Linear Real Arithmetic), which is the weakest logic defined in the SMT-LIB 2 standard which
encompasses the theory of (R,≤). Six LOIS programs were used as benchmarks: testing basic properties
of orders, reachability and three minimisation algorithms. These examples arise naturally from our
motivations, discussed in Section 5. The results are presented in Figure 1. The tests indicate that
there is space for improvement for state-of-the-art SMT solvers in performing quantifier elimination in
formulas which do not involve arithmetic. In particular, the order test, which is a simple program testing
transitivity of the linear order on Q, is surprisingly difficult for external solvers. See [KTa] for an archive
containing the generated queries, command line options, and other details.

order reachable minimize1 minimize2 minimize3
internal 0.0: 0 0.0: 0 0.5: 0 33.8: 0 1.2: 0
Z3-4.3.2 7.4: 12 0.6: 1 5.0: 7 158.9: 229 2.7: 1
CVC4-1.4 0.1: 51 0.1: 11 3.8: 478 58.4: 241 9.3: 2
CVC4-1.4* 0.1: 85 3.7: 67 18.3: 57 hangs 10.3: 2
SPASS-3.5 110.6:107 3.7: 0 111.6: 0 905.9: 1076 256.1: 1
queries 159 180 8732 5962 28616

Figure 1: Results of tests. Columns correspond to tests, rows to solvers. An entry of the form t : u means
that the test took t seconds, and that to u queries the solver replied “unknown”. The last row shows the
total number of queries. In CVC4-1.4*, finite model finding is enabled.

5 Applications
This section serves as an illustration of the potential applications of LOIS to formal verification. The
point in case is that LOIS provides a new bridge between SMT solvers and formal verification. We give
some examples of classes of infinite-state systems known from formal verification, which can be naturally
modeled using definable sets, and that verification problems can be solved using simple LOIS algorithms.

Definable automata. Fix an underlying logical structure A. A definable automaton is defined just as
a nondeterministic finite automaton (NFA), but all its components are required to be definable over A,
rather than finite – the statespace Q, the alphabet Σ, the transition relation δ ⊆ Q× Σ×Q, the initial
and final states I, F ⊆ Q. The automaton from Example 1.1 is a definable automaton over (N,+,≤, 0),
and also over (N,+), as ≤ and 0 are definable using +.

Definable automata can be presented as input for algorithms, by using the expressions which define
them, and in LOIS, simply by using definable sets. As in automata theory, a central problem in ver-
ification to which many problems reduce is the reachability problem: does a given automaton have an
accepting run?
Example 5.1. Register automata of Kaminsky and Francez [KF94] are (roughly) finite-state automata
additionally equipped with finitely many registers which can store data values from an infinite set D, and
which process sequences of data values from D. In each step, basing on the current state and equality
or inequality tests among the values in the registers and the current input value, the automaton can
choose to store the current value in one of its registers (replacing the previous value), change its state, or
continue to the next input value. For example, we could consider a register automaton with two registers
recognizing the set of those sequences d1d2 . . . dn ∈ D∗ such that dn ∈ {d1, d2}. It is not difficult to
prove [KF94] that the reachability problem for register automata is decidable (in fact, in PSpace).
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Register automata are a special case of definable automata, where the underlying structure A is
(D,=), or equivalently, (N,=). Indeed, if a register automaton has m states and n registers, then the
corresponding definable automaton has statespace Q = {q1, . . . , qm}×An (we treat q1, . . . , qm as symbols;
cf. Remark 2.2), and input alphabet Σ = D. The transition relation δ ⊆ Q × Σ × Q is a definable set
over (D,=) as it is defined only using equalities and inequalities.

Many other models of infinite-state systems can be naturally viewed as special cases of definable
automata, over a suitably chosen structure A. This includes rational relational automata of Cer-
ans [ACJT96] (underlying structure (Q,≤)), vector addition systems [ACJT96] (VASs, related to Petri
nets – underlying structure (Z,≤, 0)), timed automata [AD94] (underlying structure (R,≤, 0,+1)), database
driven systems [Via09] (the underlying structure is a generalization of the Rado graph, see [BST13]),
Fraïssé automata [BKL14] (the underlying structure is the limit of a Fraïssé class of finite structures),
and many others.

For any definable automaton one can run the LOIS reachability algorithm described in Example 1.1.
It is clear that the algorithm is correct, i.e., it will produce the right output, whenever it terminates.
Therefore, two things remain: to provide an SMT solver for the theory of A, and to prove termination.
There are two generic principles of proving termination of the reachability algorithm for infinite-state
systems from the literature: the first one involves well-quasi orders (this includes VASs, and is discussed
broadly in [FS01]), and the second one involves ω-categoricity (this includes register automata, and is
discussed discussed in [FH12]). Below, we briefly mention the latter.

The following result is a simple consequence of ω-categoricity.

Proposition 5.2. The procedure reach from Example 1.1 terminates whenever the sets E ⊆ V × V and
I ⊆ V are definable over an ω-categorical structure A.

Together with Theorem 2.3, this yields the following.

Theorem 5.3. Reachability is decidable for all definable automata over a fixed ω-categorical underlying
structure with decidable theory.

This result implies decidability of the reachability problem for register automata from Example 5.1,
rational relational automata, and many others, generalizing slightly the results from [BKL11, BT12,
BKL14]. Note that thanks to LOIS and definable sets, a single algorithm can be used, and no specific data
structures are needed to prove decidability for a wide class of infinite-state systems. As a consequence, the
termination proof can focus on the mathematical content, and not on the specifics of the implementation.

On a side note, we remark that an analysis of the proof of Proposition 5.2, together with the re-
sults described in Section 3, yield optimal (PSpace) complexity bounds for the models mentioned above.
Finally, the ω-categoricity principle also yields sound and complete procedures for other problems concern-
ing infinite-state systems studied in the verification literature, e.g., reachability for definable pushdown
automata [MRT14] and definable tree automata (defined in the natural way), or the minimization of
definable automata, using the procedure presented in Example 1.1.

6 Related work

The idea of a programming language which allows working with infinite sets, thus providing a useful tool
in verification and in automata theory, was proposed by Bojańczyk et al. [BBKL12] – who proposed
a functional language called Nλ – and Bojańczyk and the second author [BT12] – who proposed an
imperative language. Differences between LOIS and these languages include the semantics (cf. [KTb]),
but most importantly, the fact that they are restricted to (some) homogeneous structures over finite
signatures, and do not employ SMT solvers, whereas LOIS allows handling any structure for which an
SMT solver is provided.

Declarative programming paradigms offer some form of manipulation of infinite sets. In logic pro-
gramming and constraint programming, predicates and constraints are typically infinite. In functional
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programming, the programmer manipulates functions as first-class objects. Furthermore, lazy evaluation
allows performing operations on infinite streams. However, our approach is fundamentally different, as
it represents sets internally by formulas, allowing to effectively scan through infinite set. In particular,
membership and equality of sets can be effectively tested. On the other hand, we can only handle definable
sets. In fact, both approaches – functional programming and manipulating infinite sets – are orthogonal,
and can be combined, as proposed in Nλ [BBKL12], and implemented in [KS] using definable sets. We
remark that [JKS12] is yet another, orthogonal extension of functional programming by the ability of
testing equality between certain infinite sets, namely regular coinductive datatypes, and uses equation
solvers for this purpose.

Superficially, LOIS is similar to Kaplan [KKS12] – an extension of the Scala programming language.
Its main purpose is to integrate constraint programming into imperative programming. It allows effective
manipulation of constraints, and relies on a verification tool Leon, which in turn invokes the SMT solver
Z3. Constraints are implemented as boolean valued functions (in Scala, functions are first-class objects)
whose arguments are integers or algebraic data types built on top of integers. As such, they can be
seen as certain logical formulas which can be defined as programs in a fragment of the Scala language.
However, this fragment is incomparable with first order logic, as it allows recursion but not quantification.
More importantly, the main objective of LOIS – to allow iterating over infinite sets – is not addressed in
Kaplan (one can perform list comprehension in order to iterate through the explicit set of solutions of
a constraint, which terminates only if this set is finite). It would be interesting to see whether iteration
over infinite sets defined by constraints can be incorporated into Kaplan.

SMT solvers have been applied in various branches of formal verification [BSST09, DMB11, AMP06,
DMB14]. In particular, in model checking they are used in predicate abstraction, interpolation-based
model checking, backward reachability analysis and temporal induction. LOIS offers yet another appli-
cation of SMT solvers in model checking: to analysis of infinite-state systems.
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