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ABSTRACT
The automated generation of playlists given a user’s most
recent listening history is a common feature of modern music
streaming platforms. In the research literature, a number of
algorithmic proposals for this “next-track recommendation”
problem have been made in recent years. However, nearly
all of them are based on the user’s most recent listening
history, context, or location but do not consider the users’
long-term listening preferences or social network.

In this work, we explore the value of long-term prefer-
ences for personalizing the playlist generation process and
evaluate different strategies of applying multi-dimensional
user-specific preference signals. The results of an empiri-
cal evaluation on five different datasets show that although
the short-term listening history should generally govern the
next-track selection process, long-term preferences can mea-
surably help to increase the personalization quality.
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1. INTRODUCTION
Due to the massive volume of online music, relatively large

personal music collections, and the dominant proportion of
long tail items in the music domain [20], music recommender
systems have gained popularity over time. Nowadays, music
recommendation is a typical feature of web platforms and
player applications like iTunes, Deezer or Spotify.

Generally, music recommender systems can be applied to
recommend different music-related items such as albums,
artists, or concerts. In this work, we focus on a specific
type of music recommendation: given a history of recent
tracks played by a user, our goal is to recommend a (per-
sonalized) list of tracks to be played next. We refer to such
recommendations as “next-track recommendations”, which
can both be used to generate playlist continuations and to
implement virtually endless radio stations given a number
of seed tracks.
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In recent years, a number of next-track recommendation
algorithms have been proposed, among them in particular
context-aware or location-aware ones or approaches that use
musical features, meta-data, or social tags [9, 15, 25]. How-
ever, even though long-term user preferences intuitively play
a key role in personalizing the recommendations, nearly all
the playlist generation approaches reviewed in the recent
surveys in [7, 18] only consider the user’s short-term listen-
ing history.

In this work, we therefore aim to explore the value of
long-term preferences for personalizing the next-track rec-
ommendation process. More precisely, instead of basing the
recommendations solely on the sequence of seed tracks from
the users’ recent listening histories, as done, e.g., in [7], [12],
or [15], we incorporate multi-dimensional signals extracted
from the users’ long-term preferences and their social net-
work into the recommendation process.

In particular, we look at a user’s long-term preferences
to identify and recommend (a) tracks that the user liked in
the past (track repetition), (b) tracks of artists that the user
liked in the past (favorite artists), (c) tracks that are se-
mantically similar to past liked ones (topic similarity), and
(d) tracks that are often played together with those that
the user likes (track co-occurrence). In addition, we look for
(e) tracks and artists that the user’s social friends liked and
consider them for recommendation. We use then a multi-
faceted scoring scheme to incorporate this heterogeneous in-
formation in the recommendation process.

Our focus is to optimize an accuracy criterion and we
use the track hit rate (recall) to assess to which extent our
algorithms are capable of selecting tracks that would also
be chosen by the users. Our results show that several of the
considered personalization signals (e.g., track co-occurrence
patterns in the users’ long-term preferences or favorite track
repetitions) can help to increase the hit rate. Since accuracy
is not the only quality criterion for music recommenders,
we will also discuss the effect of different personalization
strategies on the diversity of the resulting recommendations
and the coherence of the recommendations with the user’s
last played tracks.

2. PERSONALIZED NEXT-TRACK
RECOMMENDATION TECHNIQUES

In this section, we present the details of the proposed per-
sonalization approaches for next-track music recommenda-
tion. A general assumption of our approaches is that in typ-
ical applications the tracks that were most recently played
or most recently added to a playlist should primarily gov-



ern the selection of the immediate next tracks. Personaliza-
tion can then be helpful to further adjust the ranking of the
tracks based on the user’s long-term preferences or other
user-specific signals. Recommending tracks of one of the
user’s most favorite rock artists can, for example, generally
be a good strategy because many users tend to repeatedly
listen to their favorite artists. If the most recently played
tracks belong however to the genre “rap”, recommending
rock hits – even though the user might generally like each
of them – might lead to a poor recommendation quality and
user experience.

2.1 General Scoring Scheme and Terminology
In our work, we use a general scoring scheme that com-

bines a baseline (main) algorithm – which focuses on the
short-term profile – with personalization components. Given
a short-term listening history h (a sequence of tracks), our
goal is to determine a relevance score for each possible next
track t∗ using different personalization signals.

Similar to [17], we use a weighted scoring scheme to com-
bine the score of the baseline algorithm with additional per-
sonalization scores. The overall relevance score scoreoverall
for a possible next track t∗ given h is computed as

scoreoverall(h, t
∗) = wbase · scorebase(h, t∗) +∑

pers∈P

wpers · scorepers(h, t∗) (1)

where P is a set of personalization strategies, each with a
different weight wpers, and wbase is the weight of the base-
line algorithm. The scorebase and scorepers are functions to
compute the baseline score and the scores of the individual
personalization components, respectively. The selection of
the scores and their weights both depend on the available
data and the goals that should be achieved, see Section 2.3.6.

Note that for listening logs, the term short-term history
(h) refers to the most recent (current) listening session of
a user and the long-term history (lth) refers to all listening
sessions of a user before the current session (h). For playlists,
the term short-term history (h) refers to a playlist beginning
and the long-term history (lth) refers to all other shared
playlist by the same user. Since the terms listening session
and playlist both represent sequences of tracks, we will use
them interchangeably in the algorithm descriptions.

2.2 Short-Term Preference Model:
Baseline Algorithm

A comparison of various playlister algorithms in [7] showed
that in particular for recommendation lists of shorter lengths
a k-Nearest-Neighbor-based (kNN) approach outperformed
other and often more complex algorithms, including Bayesian
Personalized Ranking (BPR) [27], in terms of accuracy for
this task. As we are interested in high-quality next-track
recommendations, we will use a kNN-based approach as the
baseline algorithm as done in [17].

kNN was also used as a baseline in [15]. Small hit rate
increases were achieved at long list lengths by combining it
with tag-based track information. In [15] however, a very
small value for k = 10 was used. Since our experiments
show that larger values for k (k = 300) lead to significantly
higher hit rates, we will use kNN with k = 300 as a baseline.

The kNN-based approach takes the recent listening his-
tory h as an input and looks for other listening sessions in

the training data that contain the same tracks1. The main
assumption is that if there are additional tracks in a simi-
lar past session, chances are good that these tracks suit the
current listening history h, too. We refer to these similar
sessions as “neighbors”.

Technically, given a short-term history h, we first compute
the binary cosine similarity of h and the other sessions from
the training data. The similarity values are then sorted and
a set Nh of nearest neighbor sessions of h is determined. The
kNN score of a target track t∗ is then computed as the sum
of the similarity values of h and neighbor sessions nbr ∈ Nh

which contain t∗ (Equation 2). Note that the indicator func-
tion 1nbr(t∗) returns 1 if nbr contains t∗ and 0 otherwise.

scorekNN (h, t∗) =
∑

nbr∈Nh

simcosine(h, nbr) · 1nbr(t∗) (2)

2.3 Long-Term Preference Models:
Personalization Approaches

In the following sections we propose a number of ways to
compute the additional user-specific relevance scores.

2.3.1 Track Repetition
Listening to one’s favorite tracks repeatedly over time is

common in the music domain. To assess the importance
of repetitions, we examined the listening histories of 2,000
Last.fm and Twitter users as follows. Given the list of tracks
of a user’s listening history T = [t1, t2, · · · , tn], we measure
the proportion of repetitions Repp(u, T ) in the listening his-
tory of a user u as proposed in [29]:

Repp(u, T ) = 1− |Tuniq|
|T | (3)

where |Tuniq| is the number of unique tracks in the user’s
listening history and |T | is the length of his listening history.

The results show that, on average, more than 25% of the
tracks that the users listen to are repeated tracks. There-
fore, recommending and playing tracks that the user has
listened to in the past is a simple but promising personal-
ized strategy. To operationalize this idea we have to answer
the questions whether or not to play known tracks and which
tracks to select.

Using a coarse classification scheme, we could consider a
user – during a listening session – to be either in exploration
mode when she would like to discover new songs [19] or
in repetition mode when she prefers to listen to her favorite
tracks. To assess the general value of distinguishing between
the two modes, we use the following simple heuristic to de-
termine the user’s mode and to decide whether or not to
include track repetitions: If a pre-defined proportion of the
user’s recent history (e.g., 50%) consists of tracks that the
user has played in the past, we assume that the user prefers
to listen to known tracks. More elaborate schemes are of
course plausible [19].

Different strategies are also possible to determine which
tracks from the user’s long-term history to recommend. In
this paper, we examined the following approaches given a
recent listening history h:

1As mentioned above, we will use the terms “listening his-
tory” or “listening session” in the following descriptions even
though in some of the experiments later on “other shared
playlists” of a user are meant.



R1: Repeat tracks from the user’s history that are generally
popular in the community in terms of play-counts.

R2: Repeat tracks which have been listened to by the user
at the same time of the day as the tracks from h.

R3: Repeat tracks which have been performed by the same
artists as in h.

R4: A weighted combination of the time-based (R2) and
artist-based (R3) strategies.

To be able to combine these approaches with the baseline
method as described in Section 2.1, various ways of com-
puting a repetition score scorerep are possible. In our ex-
periments, we first build a set Ru of repetition candidates
for each user u using one of the above mentioned strategies
(R1-R4). Given the current listening history h of u, we then
compute a score for a target track t∗ based on the recency
of the past listening event and the number of times t∗ has
been repeated in the user’s long-term history.

The experiments on different datasets reported in [2] re-
veal a typical tendency of users to re-consume or repeat more
recently-consumed items. Therefore, as a score, we use the
weighted relative recency of the last time point ts(t∗) when
the target track t∗ was played by the same user (Equation 4).
If a candidate track was not played by the user before, the
score is zero. Otherwise, it is the relation between ts(t∗) and
the timestamp of the beginning of the current listening ses-
sion ts(h) weighted by the number of times the target track
has been repeated in the user’s long-term history cntlth(t∗).
To further increase the relative importance of the tracks in
the recent history, an exponential decay function can also
be applied as suggested in [2].

scorerep(h, t∗) = cntlth(t∗) · ts(t
∗)

ts(h)
· 1Ru(t∗) (4)

2.3.2 Favorite Artists
Music lovers typically have their favorite artists and online

services like Spotify quite obviously recommend tracks per-
formed by artists that a user played in the past. In the pro-
posed “Favorite Artists” personalization approach we adopt
this idea and assign higher preference scores to tracks by a
user’s favorite performers. However, instead of only consid-
ering artists that the user actually knows, we also consider
artists that are similar to the known ones.

Technically, we extend the CAGH (Collocated Artists –
Greatest Hits) method from [7], which assigns higher scores
to the most popular tracks of artists that are similar to those
appearing in the recent listening history.

scoreCAGH(h, t∗) =
∑
b∈Ah

simartist(at∗ , b) · cnt(t∗) (5)

Ah is the set of artists in current history, cnt(t∗) is the num-
ber of occurrences of t∗ in the training data, and at∗ is the
artist of the target track. As a measure of similarity of two
artists simartist(at∗ , b), we count how often two artists ap-
pear together in the sessions of the training set [7].

To personalize the CAGH method, we extend it by also
taking into account artists that are similar to those that
were played in the user’s long-term history. The favorite-
artist score scorefavA of a target track t∗ with artist at∗ is
then computed as a weighted combination of the original

CAGH score (Equation 5) and its application on the long-
term history lth of the user:

scorefavA(h, t∗) = α · scoreCAGH(h, t∗) +

(1− α) ·
∑

b∈Alth

simartist(at∗ , b) · cnt(t∗) (6)

where Alth is the set of artists of the tracks in the long-term
history, at∗ is the artist of the target track, and cnt(t∗) as
well as simartist(at∗ , b) are computed as described above.
The weight factor α is used to balance the relative impor-
tance of the two factors.

2.3.3 Topic Similarity
Users of music websites like Last.fm are able to annotate

tracks with tags. Such tags often describe the genre, mood,
artist, or the release year of a track and these social tags
can be used for detecting the topic of a certain playlist [15].
Our assumption is that at least some users have long-term
preferences to listen to tracks that relate to a certain topic
or tracks that have the same tags.

In [17], it was shown that considering the topical match
of target tracks with the history (using tags from Last.fm)
can be helpful to improve the recommendation accuracy.
Two versions of a “content-based” recommendation method
using averaged TF-IDF (Term Frequency/Inverse Document
Frequency) vectors were proposed. One focused only on the
recent listening history and one also included the long-term
listening preferences.

Given a recent history h, we compute a tag-based simi-
larity score scoretag as the cosine similarity of the averaged
TF-IDF vector of the recent history and the TF-IDF vector
of the target track t∗. In our work, we use the extended
version of the scoretag for personalization. We define the
topic-similarity score scoretopicSim as a weighted combina-
tion of scoretag and its extended version considering the
long-term history as follows:

scoretopicSim(h, t∗) =β · scoretag(h, t∗) +

(1− β) · simcosine(TFlth, ~t∗)
(7)

where TFlth is the averaged TF-IDF vector of all playlists
(listening sessions) of the user’s long-term history and ~t∗ is
the vector representation of t∗. The weight factor β is used
to balance the relative importance of the two factors.

2.3.4 Extended Track Co-occurrences
Similar to the long-term content-based model in Equation

7, we propose to extend the kNN-based scheme (Equation
2) in a way that it considers the user’s long-term listening
history in combination with the recent history when deter-
mining the nearest neighbors.

In particular, for each listening session from the user’s
long-term history s ∈ lth, we determine a set Ns of similar
sessions (nearest neighbors) as described in Section 2.1. The
extended long-term kNN score kNNlth of a target track t∗ is
then computed as the sum of the similarity values of all the
user’s sessions s ∈ lth and their respective neighbor sessions
nbr ∈ Ns which contains t∗, i.e., 1nbr(t∗) = 1 if nbr contains
t∗ and 0 otherwise.

scorekNNlth(lth, t∗) =
∑
s∈lth

∑
nbr∈Ns

simcosine(s, nbr) · 1nbr(t∗)

(8)



2.3.5 Social Friends
The final personalization approach explored here leverages

the listening preferences of the social friends of a user. Our
hypothesis is that the preferences and behavior of friends
can have an influence on a user.

In one of our experiments described in the next section,
we will therefore utilize the listening logs of a user’s Twitter
friends2 and incorporate the favorite tracks of friends into
the next-track selection process. We consider a track as a
favorite, if a user listened to it at least n times.

To compute the respective personalization score, we first
build a set FFu of favorite tracks for the friends of u. For
a target track t∗, the Favorites-of-Friends score scorefof is
then a weighted sum of the occurrences of t∗ in the favorite
tracks of the user’s friends cntff (t∗). A popularity weight
for each friend pop(f) can be computed based on, e.g., the
number of the followers of each friend, which gives higher
relevance to the tracks of more “popular” friends.

scorefof (h, t∗) =
∑

ff∈FFu

cntff (t∗) · pop(f) (9)

2.3.6 Combining the Scores
As mentioned above, we use a weighted scoring scheme to

compute the final relevance score (Equation 1) as done in
[17] and assume that the resulting personalization effect will
lead to higher recommendation accuracy.

Generally, the selection of the scores and their weights
both depend on the data that is available and the goals
that should be achieved. If, for example, discovery is the
main goal, including tracks from social friends might be suit-
able. If the goal is to generate a thematic (e.g., mood-based)
playlist, a similarity-based approach seems more helpful.

In this work, we systematically tested different values for
the weight of each score and selected the best ones (listed in
Table 1) according to the accuracy results on the test set.
In addition, to be able to combine the scores with differ-
ent scales, we apply zero-one normalization by rescaling the
scores to values between 0 and 1. Given a list of values E,
the normalized score for an element ei ∈ E is computed as

normalized(ei) =
ei − Emin

Emax − Emin
(10)

where Emax and Emin are the maximum and minimum val-
ues of E respectively.

3. EXPERIMENTAL EVALUATION
We conducted a series of experiments to assess the value

of personalizing the next-track recommendation process and
the effectiveness of the proposed techniques both in terms
of accuracy as well as artist diversity and coherence.

3.1 Datasets
We used three playlist datasets and two datasets that con-

tain listening logs of several thousand users.
Playlists: The playlist datasets are obtained from three

different platforms. The Last.fm dataset was collected using
the public API of the service. The Art-of-the-Mix (AotM)
data was published by [24] and contains playlists by music
enthusiasts. The 8tracks dataset was shared with us by the

2Twitter friends are the users that the specified user is fol-
lowing on Twitter.

Table 1: Weights of personalization scores (wpers)
as well as the weights α from the extended CAGH
version (Equation 6) and β from the topic similar-
ity method (Equation 7) for different datasets. The
weight of the baseline score in all combinations is
set to one (wbase = 1), except for the scorekNNlth , for
which the baseline weights are listed in parenthesis
after each wpers. Note that not all methods can be
applied for all datasets (indicated by a “–”).

#NP 30Music Last.fm AotM 8tracks

wrep 2.0 0.2 – – –

wfavA 1.5 1.5 2.0 0.5 0.2

wtopicSim – – 0.3 0.3 0.3

wkNNlth 0.5 0.7 0.9 0.4 0.7

(0.5) (0.3) (0.1) (0.6) (0.3)

wfof 0.3 – – – –

α 0.9 0.9 0.9 0.4 0.8

β – – 0.9 0.6 0.7

8tracks platform. A particularity of the last dataset is that
each playlist can only contain two tracks per artist. To be
able to personalize the recommendations we created subsam-
ples of these datasets such that there are at least 4 playlists
for each user. We chose this comparably low threshold to
have at least 1,000 playlists in the smallest dataset.

Listening logs: The listening log datasets are sampled
from two public datasets. First, we created a subset of
the #nowplaying (NP) dataset which contains music-related
tweets of users on Twitter3. Specifically, we sampled users
who have posted at least 50 tweets over time. Second, we
used the recent 30Music dataset [28], which contains listen-
ing sessions retrieved from Internet radio stations through
the Last.fm API. Similar to the playlist datasets, we created
subsamples of these datasets in a way that there are 9 lis-
tening sessions for each user. Having sufficient past sessions
allows us to repeatedly apply the sliding-windows evaluation
procedure as described in the next section.

The listening logs provide the timestamps of each listen-
ing event, which allows us to apply a time-based repetition
scheme as described in Equation 4. Furthermore, the #now-
playing dataset includes the Twitter IDs of the users. We
used this information to retrieve the friends of the users on
Twitter and explore the effect of our proposed social score
on this dataset. Table 2 summarizes the statistics of the
used datasets. All datasets used in the experiments except
the non-public one from 8tracks are available online4.

3.2 Metrics and Measurement Method
We use the accuracy measurement protocol that was also

used in [6, 7, 15]. The data is split into training and test sets
and we then hide the last track of each playlist or listening
session in the test set. The goal is to predict this last hidden
track. We generate recommendation lists of length 100 and
a “hit” is counted when the hidden track was in the top-100
list. Therefore, the hit rate is the fraction of playlists in the

3See http://dbis-nowplaying.uibk.ac.at for more details.
4http://ls13-www.cs.tu-dortmund.de/homepage/ifup2016/
datasets.zip

http://dbis-nowplaying.uibk.ac.at
http://ls13-www.cs.tu-dortmund.de/homepage/ifup2016/datasets.zip
http://ls13-www.cs.tu-dortmund.de/homepage/ifup2016/datasets.zip


Table 2: Statistics of the used datasets. Note that
for the listening logs datasets, “Sessions” refer to
the listening sessions and for the playlists datasets
to the playlists.

Measure #NP 30M Last.fm AotM 8tracks

Sessions 9,288 9,000 2,762 1,040 6,714

Users 1,032 1,000 426 142 996

Tracks 76,652 123,315 17,815 11,413 39,875

Artists 15,638 26,122 3,209 2,770 9,122

Avg. S/U 9.00 9.00 6.48 7.32 6.74

Avg. T/S 23.89 25.34 11.72 16.98 12.97

Avg. A/S 12.56 9.76 4.55 12.76 12.06

test set for which the hidden track was found. Besides the
hit rate we also report the Mean Reciprocal Rank (MRR),
which takes the position of the hit into account. Note that
in the literature on the generation of playlists and virtually
endless radio stations top-n lists of this and even much larger
sizes are common [6, 7, 15].

We furthermore assess the diversity and coherence of the
resulting recommendations based on the artists and, where
applicable, based on the tags of the tracks. As done in [17],
we use the inverse Intra-List-Similarity (ILS) [31] to quantify
the diversity level. The overlap of artists (tags) in the his-
tory and the next-track recommendations is used as a proxy
to assess the coherence level.

For the playlist experiments, we report the results of a
four-fold cross-validation procedure. For the time-ordered
listening logs, we use a four-fold sliding-window validation,
in which the newest session of each user is used for testing
and the 5 previous sessions for training (windowsize = 5).
After each iteration, the window is moved one session toward
the previous sessions (stepsize = 1).

3.3 Evaluation Results
We will first focus on the effects of the individual per-

sonalization strategies before we report selected results of
combining different scores. We use a significance level of
p = 0.05 for all statistical tests (Student’s t-tests) through-
out the section. Results that are statistically significantly
different from the baseline are printed in bold face along
with an up/down arrow which indicates whether the respec-
tive value is higher/lower than the baseline value.

3.3.1 Track Repetition
Reusing the same track in more than one shared playlist

is comparably uncommon. We therefore focus on the value
of repeated recommendations of known tracks based on the
listening logs, for which we also have timestamp informa-
tion. Table 3 shows the results for the different repetition
strategies (R1 - R4) proposed in Section 2.3.1.

To highlight the effect of making repeated recommenda-
tions, Table 3 shows the evaluation results for those sessions,
for which we assumed that the user is mainly listening to al-
ready known tracks, i.e., when more than 50% of the recent
tracks are repetitions. On average, this was the case for
about 22% of the sessions in the #nowplaying dataset and
about 15% of the sessions in the 30Music dataset.

The results clearly show that if our heuristic assumes that
the user’s listening mode is repetition (and not exploration)

and we then correspondingly increase the scores of already
known tracks, the accuracy of the recommendations can be
significantly enhanced. All the proposed strategies for se-
lecting the candidate tracks for repetition led to an increase
of the accuracy measures compared to the baseline of up to
15%. When applying the measurement to all sessions (re-
gardless if the user is in repetition or exploration mode) the
effects are less pronounced but we still observe a statistically
significant improvement over the baseline. For the #now-
playing dataset, applying the hybrid strategy to all sessions
increases the hit rate from 21% to 27%, and for the 30Music
dataset from 17% to 21%. Overall, the hybrid method (R4)
that combines both the time aspect as well as artist infor-
mation led to the best accuracy results for both datasets5.
More elaborate schemes, e.g., to detect the user’s listening
mode, are of course possible, but in the context of this work
we are more interested in the general usefulness of including
repetitions in the recommendations.

In regard to diversity (inverse ILS) and coherence (over-
lap), repeating popular tracks from the user’s long-term his-
tory (R1) leads to more diverse recommendation lists in
terms of artists. In contrast, the artist-based strategy (R3)
for finding the candidate tracks by design decreases the artist
diversity and increases the coherence of the recommenda-
tions with the listening history. Even though the popularity-
based strategy (R1) seems to be effective in terms of accu-
racy as well, it can be risky in a sense that recommended
next tracks have little to do with the last few tracks, which
might lead to a decreased quality perception.

3.3.2 Favorite Artists
Table 4 shows the accuracy (upper part) and diversity

and coherence results (lower part) for the personalization
strategy which assigns higher scores to tracks by the fa-
vorite artists of a user. Our focus is again on the listening
log datasets, but we also report the results for the playlist
datasets to analyze if the proposed techniques work for this
problem setting as well.

The obtained results show that including long-term artist
preferences is beneficial in terms of the hit rate in all cases
except for the AotM dataset, where we only observed a small
but not significant improvement. This phenomenon can be
explained by the nature of the AotM platfom, where artist
“reuse” by users is very infrequent.

Again by design, the artist diversity (inverse ILS) de-
creases when the favorite artists are played more often. The
favorite-artists scheme also leads to a stronger coherence
(overlap) of the next tracks with the most recently listened
to tracks. Note that the desirable level of diversity and co-
herence of the recommendations depends on the domain and
the goals that should be achieved.

3.3.3 Topic Similarity
Table 5 shows the results when we bias the recommenda-

tions towards tracks that have a “topic” that often appeared
in the user’s long-term history. Again, this personalization
approach based on social tags can help to measurably in-
crease the recommendation accuracy.

Since we used social tags as the personalization source in

5For the hybridization, we systematically tested different
weights and selected the best ones according to accuracy.
For #nowplaying, the ratio of R2 to R3 is 3:7 and for 30Mu-
sic this ratio is 1:1.



Table 3: Results for repetition schemes – accuracy, diversity, and coherence. The applied strategies are R1
= popularity-based, R2 = time-based, R3 = artist-based and R4 = a weighted combination of time-based
and artist-based strategies.

Accuracy (hit rate @ 100) Accuracy (MRR @ 100)

kNN300 +R1 +R2 +R3 +R4 kNN300 +R1 +R2 +R3 +R4

#NP .493 .531↑ .607↑ .643↑ .662↑ .135 .125 .132 .135 .151↑
30Music .486 .521↑ .662↑ .672↑ .686↑ .200 .206 .218↑ .237↑ .233↑

Artist diversity (inv. ILS) Artist coherence (overlap)

#NP .777 .795↑ .786 .689↓ .712↓ .238 .241↑ .319↑ .603↑ .509↑
30Music .744 .764↑ .694↓ .641↓ .653↓ .205 .199↓ .254↑ .351↑ .319↑

Table 4: Results for a favorite-artist scheme –
accuracy, artist diversity, and coherence

kNN300 vs. kNN300+favA

hit rate @ 100 MRR @ 100

#NP .213 .290↑ .051 .049

30Music .171 .261↑ .055 .065↑
Last.fm .273 .312↑ .087 .077↓
AotM .100 .118 .039 .042

8tracks .090 .094↑ .018 .018

inv. ILS overlap

#NP .807 .707↓ .155 .349↑
30Music .795 .634↓ .121 .292↑
Last.fm .536 .381↓ .321 .476↑
AotM .784 .775 .118 .117

8tracks .981 .976↓ .049 .077↑

this experiment, we exceptionally report here the tag diver-
sity (inverse ILS) and coherence (overlap) of the recommen-
dations in Table 5. The tag diversity by design decreases as
we are looking for tracks with similar tags. At the same time
a better coherence of the next-track recommendations can
be achieved with this approach. As there is no tag informa-
tion available for the listening logs, we could not repeat the
measurement for the remaining two datasets. Our conjec-
ture is that the effects might be less pronounced for listening
logs, because playlists are often carefully designed around a
certain “theme”, which is advantageous for a content-based
technique.

3.3.4 Extended Track Co-occurrences
In Table 6, we report the results of considering a user’s

long-term history to find similar listening sessions (neigh-
bors). Considering the users’ long-term preferences in this
way again leads to an increase in accuracy. Furthermore,
due to the richer user profile, the recommended tracks be-
come more diverse in terms of the artists. The exceptions are
the Last.fm and 30Music datasets. One explanation might
be that many of the shared playlists and the listening logs
from Last.fm contain only one or very few artists. Therefore,
considering the long-term preferences of the users can fur-
ther limit the number of artists of the recommended tracks.
Note that the 30Music listening logs are also collected from
Last.fm. In terms of coherence, the recommendations are
often less connected to the current listening context.

Table 5: Results for topic similarity –
accuracy, tag diversity, and coherence

kNN300 vs. kNN300+topicSim

hit rate @ 100 MRR @ 100

Last.fm .273 .302↑ .087 .094

AotM .100 .136↑ .039 .043↑
8tracks .090 .108 .018 .019↑

inv. ILS overlap

Last.fm .379 .256↓ .391 .425↑
AotM .564 .452↓ .429 .447↑

8tracks .611 .495↓ .403 .417↑

3.3.5 Considering Social Friends
In this approach we consider the recommendation of fa-

vorite tracks of the social friends as a means for personal-
ization. In the particular measurement reported here, we
considered a track as a favorite if a user listened to it at
least 5 times.

The results in Table 7 show the positive effect on accuracy
of including these tracks in the recommendations for the
#nowplaying dataset, which is the only dataset for which
information about social friends was available. The obtained
effects on the hit rate are small but significant. We still
consider the result promising given that for more than 30%
of the users no Twitter friends could be identified who also
posted tracks.

3.3.6 Combining the Scores
So far, we have reported the effects of applying the dif-

ferent personalization strategies in isolation. Depending on
the available data, different scores can be combined (Equa-
tion 1). We have run a variety of additional experiments
using different weights to analyze the effects of combining
the scores. Similar to the individual strategies, we system-
atically tested different values for the weight of each score –
this time in combination with all other scores – and selected
the best ones (listed in Table 8) with respect to accuracy.
In this section, we discuss the results of these combinations
reported in Table 9.

The results for playlist datasets are based on a combina-
tion of favorite artists, topic similarity and long-term kNN
scores. For the #nowplaying listening log dataset, we used a
combination of all scores (except topic similarity) and for the
30Music dataset the combination includes favorite artists,



Table 6: Results for track co-occurrences –
accuracy, artist diversity, and coherence

kNN300 vs. kNN300+lth

hit rate @ 100 MRR @ 100

#NP .213 .235↑ .051 .048

30Music .171 .177 .055 .055

Last.fm .273 .280↑ .087 .086

AotM .100 .104 .039 .038

8tracks .090 .101↑ .018 .019

inv. ILS overlap

#NP .807 .824↑ .155 .140↓
30Music .795 .713↓ .121 .123

Last.fm .536 .472↓ .321 .321

AotM .784 .882↑ .118 .078↓
8tracks .981 .985 .049 .048

Table 7: Results for Favorites-of-Friends –
accuracy, artist diversity, and coherence

kNN300 vs. kNN300+fof

hit rate @ 100 MRR @ 100

#NP .213 .216↑ .051 .051

inv. ILS overlap

#NP .807 .811↑ .155 .152↓

repetition and long-term kNN scores (see Table 8).
The results indicate that a weighted combination of multi-

ple scores with the baseline method can further increase the
accuracy. Specifically, the multi-score combinations outper-
form every other single-score combination with the baseline
in terms of hit rate across all five datasets.

The multi-score method also has effects on the diversity
and coherence of the recommendations, which are the com-
bined result of the individual scoring methods. For instance,
for the Last.fm dataset, all of the single combinations reduce
the artist diversity and as a result, the multi-score combi-
nation also generates recommendations that are not only
less diverse than the baseline but also less diverse than each
of the single combinations. As another example, consider
the coherence of the recommendations for the #nowplay-
ing dataset. Two of the single combinations (kNN + rep
and kNN + favA) lead to a higher coherence than the kNN
method, whereas the other two combinations (kNN + lth
and kNN + fof) lead to a lower coherence than the kNN
method. The multi-score combination, which is a combina-
tion of all these four scores with the kNN method, leads to
a higher coherence than the baseline method. The explana-
tion for this effect is that the first two scores with weights
of wrep = 2.0 and wfavA = 1.5 have a higher influence on
the recommendations than the other two scores with lower
weights (wkNNlth = 0.5 and wfof = 0.3). Therefore, this
multi-score combination – similar to the first two single com-
binations – generates more coherent recommendations.

Generally, how to set the diversity and coherence level of
the recommendations depends on the goals that should be
achieved. For instance, if a user is in exploration mode and
intends to discover new tracks or artists, a more diverse rec-

Table 8: Weights of the baseline scores (wbase), the
personalization scores (wpers) of the multi-score com-
binations as well as the weights of α for the extended
CAGH version (Equation 6) and β for the topic sim-
ilarity method (Equation 7) for different datasets.
Note that not all methods can be applied for all
datasets (indicated by a “–”).

#NP 30Music Last.fm AotM 8tracks

wbase 0.5 0.7 0.9 0.4 0.7

wrep 2.0 2.0 – – –

wfavA 1.5 4.0 2.0 2.0 1.0

wtopicSim – – 0.3 1.0 0.3

wkNNlth 0.5 0.3 0.1 0.6 0.3

wfof 0.3 – – – –

α 0.9 0.9 0.9 0.4 0.8

β – – 0.9 0.6 0.7

ommendation list would be desired. Similarly, when a user
is creating a playlist with a specific theme, e.g., a workout
playlist, she would probably prefer tracks with a coherent
tempo. This can be achieved by selecting and weighting
the individual personalization components in our multi-score
combination approach according to the desired goals.

Overall, we view our results to be promising as we could
show the benefits of incorporating various forms of personal-
ization signals into the recommendation process even though
the available data for each user is partially very sparse and,
in the case of the social tags, relatively noisy.

4. RELATED WORK
Next-track recommendation can be considered a specific

type of music recommendation where the goal is to gener-
ate a playlist as a continuation of a recent listening experi-
ence. A variety of playlist generation strategies have been
proposed over the last decade (see [7]). They base their rec-
ommendations, e.g., on content similarity [21], collaborative
filtering [13, 15], Markov models [12], discrete optimization
[3], and hybrid techniques [23]. While personalization is
considered a key feature in general recommender systems re-
search and also for various types of music recommendation
[18], most existing approaches to playlist generation from
the literature only rely on the users’ most recent listening
histories and not on their long-term preferences.

A few exceptions exist. In [29], the value of considering
repetition patterns is explored to develop a novelty model
for generating personalized music recommendations. In [10],
a method is proposed that leverages the online friendship re-
lations and other signals for recommending. In contrast to
these works that focus on one single source for personaliza-
tion, we propose an extension of the general faceted weighted
track scoring approach from [17]. Instead of musical features
and track meta-data in the scoring process used in [17], here
we rely on a variety of user-specific listening patterns and
the user’s social network. Adding musical features to the
process is however generally possible.

There are other examples of combining music recommen-
dation algorithms in the literature [11, 23, 30]. In the latter,
for instance, music tracks are recommended by combining



Table 9: Results when using multiple scores – accuracy, artist diversity, and coherence. The Scores are rep
= track repetition, favA = favorite artists, topicS = topic similarity, kNNlth = extended track co-occurrence,
fof = social friends, and all = combination of all applicable scores. Note that not all methods can be applied
for all datasets (indicated by a “–”).

Accuracy (hit rate @ 100) Accuracy (MRR @ 100)

kNN +
rep

+
favA

+
topicS

+
kNNlth

+
fof

+
all

kNN +
rep

+
favA

+
topicS

+
kNNlth

+
fof

+
all

#NP .213 .268↑ .290↑ – .235↑ .216↑ .323↑ .051 .052 .049 – .048 .051 .054

30Music .171 .212↑ .261↑ – .177 – .269↑ .055 .061↑ .065↑ – .055 – .053↓
Last.fm .273 – .312↑ .302↑ .280↑ – .315↑ .087 – .077↓ .094 .086 – .076

AotM .100 – .118 .136↑ .104 – .143↑ .039 – .042 .043↑ .038 – .022↓
8tracks .090 – .094↑ .108↑ .101↑ – .115↑ .018 – .018 .019↑ .019 – .014

Artist diversity (inv. ILS) Artist coherence (overlap)

#NP .807 .810 .707↓ – .824↑ .811↑ .756↓ .155 .255↑ .320↑ – .140↓ .152↓ .397↑
30Music .795 .716↓ .634↓ – .713↓ – .599↓ .121 .162↑ .292↑ – .123 - .356↑
Last.fm .536 – .381↓ .464↓ .472↓ – .363↓ .321 – .476↑ .369↑ .321 – .485↑
AotM .784 – .775 .764↓ .882↑ – .823 .118 – .117 .136↑ .078↓ – .082↓

8tracks .981 – .976↓ .974↓ .985↑ – .912↓ .049 – .077↑ .065↑ .048 – .206↑

a collaborative-filtering, an artist-based and a clustering-
based algorithm through rank interpolation. Similar to our
scoring scheme, their goal is to increase the recommenda-
tion accuracy as well as other factors like novelty, diversity,
and serendipity. However, their main focus lies on creating
more serendipitous recommendations and the technique is
not based on exchangeable baseline methods.

In our work, we utilize seed tracks for estimating the
desired characteristics of the next-track recommendations.
Our seed tracks stem partially from hand-crafted playlists
shared by users on different music platforms as in [5] and
partially from listening logs collected from Internet radio
stations and online social media as in [16]. Other approaches
exist in which only one single seed track [22] or the start and
the end tracks are specified [14]. Relying only on one single
track is in principle possible with our approach but would
not allow us to reliably guess the underlying theme of the
current playlists or listening sessions. As we are interested
in (endless) next-track recommendations, the provision of a
desired end track is not reasonable for us.

In order to assess whether a track fulfills the desired char-
acteristics of a listening history, various types of information
can be used, e.g., musical features extracted from the audio
signals [26], meta-data features about artist, genre, or the
release year [1], as well as popularity or usage data [24], and
other social web data like tags [15]. In this paper, we used
the user-specific signals extracted from the usage data as
input source.

To evaluate the quality of our proposed algorithms, we
compare the next-track recommendations of each algorithm
with the respective listening history, i.e., a hand-crafted
playlist or a listening session. The assumption is that the
desired quality level of certain criteria such as diversity can
be determined from these listening logs. To compare the ac-
curacy of different algorithms in Section 2.3, we use the hit
rate measure and the configuration proposed in [15], i.e., we
hide the last track in each test listening history. For measur-
ing the diversity and coherence of recommendations, as done
in [17], we use the inverse ILS and the overlap of artists (or

tags) in the history and the recommendations respectively.
Generally, other evaluation approaches are possible as well
as discussed in [7], among them user studies [4] and log anal-
ysis [8].

5. CONCLUSIONS
In this work, we have proposed and evaluated a num-

ber of strategies to leverage a variety of signals for per-
sonalizing next-track music recommendations based on the
users’ long-term preferences. One general insight of our
work is that even though the selection of the immediate
next tracks should be primarily governed by the most re-
cently played tracks, personalization based on user-specific
signals extracted from the long-term preferences can further
improve the quality of the recommendations.

Technically, in order to extract potentially relevant user-
specific signals, we analyzed a larger number of“hand-crafted”
and publicly shared playlists as well as long-term listening
logs. Specifically, we explored the value of track repetition,
favorite artists, topic similarity, track co-occurrence, and so-
cial friends as possible personalization signals. These signals
were then incorporated in a multi-faceted scoring scheme
that combines a baseline algorithm that focuses on the short-
term interests with one or more long-term personalization
components.

Despite the noisiness, sparseness and partial incomplete-
ness of the data, the results show that our proposed strate-
gies not only help to further increase the recommendation
accuracy but can also help to influence other quality dimen-
sions like diversity and coherence depending on the desired
goals. Generally, deciding on (a) the types of auxiliary infor-
mation that should be incorporated in the recommendation
process and (b) the relative importance of short-term and
long-term preferences has to be done with the particularities
of the given application domain in mind.

Conducting user studies to evaluate our approaches with
respect to the perceived quality of the next-track recommen-
dations and user satisfaction is part of our ongoing work.
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