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ABSTRACT

Heterogeneous one-class collaborative filtering (HOCCF) is
a recently studied important recommendation problem, which
consists of different types of users’ one-class feedback such as
browses and purchases. In HOCCF, we aim to fully exploit
the heterogenous feedback and learn users’ preferences so
as to make a personalized and ranking-oriented recommen-
dation for each user. For HOCCF, we can apply existing
solutions for OCCF with purchases only such as Bayesian
personalized ranking (BPR) or make use of both browses
and purchases such as transfer via joint similarity learning
(TJSL). However, BPR may be not very accurate due to
the ignorance of browses, and TJSL may be not very effi-
cient due to the mechanism of joint similarity learning and
base model aggregation. In this paper, we propose a novel
perspective for the different types of one-class feedback via
users’ different roles, i.e., browser and purchaser. Specifi-
cally, we design a two-stage role-based preference learning
framework, i.e., role-based Bayesian personalized ranking
(RBPR). In RBPR, we first digest the combined one-class
feedback as a browser to find the candidate items that a user
will browse, and then we exploit the purchase feedback to
refine the candidate list as a purchaser. Empirical results
on five public datasets show that our RBPR is an efficien-
t and accurate recommendation algorithm for HOCCF as
compared with the state-of-the-art methods such as BPR
and TJSL.
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1. INTRODUCTION

Intelligent recommendation systems and technology have
played a more and more important role in various real-world
applications, with a wide spectrum of entertainment, social
and professional services. Some recent work show that one
important line of research have gradually transferred from
collaborative filtering (CF) with numerical ratings to one-
class CF (OCCF) with homogeneous one-class feedback such
as purchases [2] and heterogeneous OCCF (HOCCF) with
more than one types of one-class feedback such as browses
and purchases [3]. In this paper, we focus on the problem
setting of HOCCF, which is very common in real industry
scenarios.

The main challenge of HOCCF is the heterogeneity of the
two different types of one-class feedback, since a user’s pref-
erence behind a purchase action may be different from that
of a browse action. In a very recent work [3], a similari-
ty learning algorithm is proposed for this challenge, which
aims to combine browses and purchases in a principled way.
The improved performance in [3] shows the complementar-
ity of browses to the well exploited feedback of purchases
in OCCF models [1, 4]. However, the proposed algorithm,
i.e., transfer via joint similarity learning (TJSL) [3], may be
not efficient enough for large datasets due to the complex
prediction rule and base model ensemble.

In this paper, we interpret the HOCCF problem from a
novel view of users’ roles, i.e., a purchaser (as reflected in
a purchase feedback) is converted from a browser in a se-
quential manner. Based on this perspective, we propose
a two-stage framework, including browser-based preference
learning and purchaser-based preference learning. Those t-
wo preference learning tasks are connected via a candidate
list of items that a user will browse, which is assumed to
contain the potential items that a user will finally purchase.
In each of the two tasks, we apply the seminal work for
homogeneous one-class feedback, i.e., Bayesian personalized
ranking (BPR) [4], and for this reason, we call our approach
role-based BPR (RBPR).

In our empirical studies, we compare our RBPR with the
state-of-the-art methods of BPR and TJSL using various
ranking-oriented evaluation metrics on five public datasets.
The studies show that our RBPR is able to produce com-
petitive recommendations efficiently. We list our main con-
tributions as follows: (i) we propose a novel and generic
staged role-based preference learning framework, which is a
frustratingly easy, scalable and effective solution for collab-
orative ranking with heterogeneous one-class feedback; and
(ii) we conduct extensive empirical studies and obtain very
promising results.
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Figure 1: An illustration of role-based preference learning for heterogeneous one-class collaborative filtering
(HOCCYF), including browser-based preference learning and purchaser-based preference learning.

2. ROLE-BASED BAYESIAN PERSONALIZED

RANKING
2.1 Problem Definition

In HOCCF, we have a set of n users (i), a set of m items
(Z), and two different sets of user feedback, e.g., browses B
and purchases P. Our goal is to find some likely-to-purchase
items from unpurchased items for each user.

In order to fully exploit heterogeneous feedback in HOC-
CF such as browses and purchases, we propose not to model
those different feedback jointly as a whole as done in a recen-
t work [3], but separately in a staged manner. Specifically,
we model different feedback of a typical user via different
roles such as browser and purchaser. From the perspective
of browser and purchaser, in our role-based Bayesian per-
sonalized ranking (RBPR), we have two tasks of preference
learning, including browser-based preference learning and
purchaser-based preference learning. We illustrate the main
procedure of our proposed solution in Figure 1.

2.2 Browser-based Preference Learning

In the first step, we assume that a typical user is first
a browser before he/she is converted to a purchaser. And
thus, in our first task, we focus on answering the question
of “whether a user will browse an item”.

In order to address this task, we propose to combine the
two types of one-class feedback, i.e., browses and purchas-
es, together, and then apply an algorithm for homogeneous
one-class feedback such as BPR [4], i.e., BPR(BUP). Math-
ematically, we will solve the following optimization problem,

min Z Z Z fuij 5 (1)
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where B, and P, are item sets browsed and purchased by
user u, respectively, fui; is the tentative objective function
for a randomly sampled triple (u,%,7), and ©pup denotes
the set of model parameters to be learned [4].

Once we have learned the model parameters, we can gen-
erate a candidate list of items that a user is likely to browse.
Specifically, for a top-K recommended problem, we will gen-
erate 3K items in this step, so that the refinement in next
step may have more room for improvement.

2.3 Purchaser-based Preference Learning

In the second step, we assume that a user will most like-
ly choose an item from the candidate list that he/she has
browsed. For this reason, in our second task, we mainly an-
swer the question of “whether a user will purchase an item”.

Input: Users’ browses I3 and purchases P.
Output: Top-K recommended items for each user.

Step 1. Conduct browser-based preference learning
via BPR(BUP) as shown in Eq.(1) and obtain 3K
candidate items with highest predicted scores.

Step 2. Conduct purchaser-based preference learn-
ing via BPR(P) as shown in Eq.(2); predict the
scores on the 3K candidate items and refine the list.

Figure 2: The algorithm of role-based Bayesian per-
sonalized ranking (RBPR).

In order to solve this task, we propose to use the purchase
data only to refine the candidate list from the first step.
The reason is that the purchase feedback is more helpful in
answering whether a certain item will be bought by a user.
Due to the fact that a user’s purchase feedback are few, we
may not get good results if we only apply the second step,
i.e., only use the purchase feedback to find items that will
be bought by a user. This phenomenon is also observed in
our empirical studies.

Similarly, we again adopt BPR [4] for model training, but
use purchase feedback P only. Mathematically, we learn the
model parameters as follows,
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where ©p denotes the model parameters to be learned from
the purchase data only.

With the learned model parameters ©p, we can predict
the preference of each item i in the candidate list of each user
u, and then re-rank the items in the list. The refined list is
expected to better represent the purchase likelihood of a cer-
tain user, i.e., the recommendation may be more accurate,
which is also verified in our empirical studies. We illustrate
the effect of the difference between those two ranked lists in
Figure 1.

For the optimization problems in the aforementioned two
learning tasks, we can apply stochastic gradient descent to
learn the model parameters [4]. We put the two preference
learning tasks in one single algorithm in Figure 2 in order
to get a complete picture.



Table 1: Description of the datasets used in the experiments, including the numbers of users, items, purchases
and browses, and the number of purchases in validation and test data. Note that the data of ML100K, ML1M
and Alibaba are from [3], and the statistics of ML10M and Netflix are for the first copy of the three generated
copies of each dataset.

Dataset # user # item # purchase # browse # purchase (validation) # purchase (test)
ML100K 943 1682 9438 45285 — 2153
MLIM 6040 3952 90848 400083 - 45075
Alibaba2015 7475 5257 9290 60659 — 2322
ML10M 71567 10681 309317 4000024 308673 308702
Netflix 480189 17770 4554888 39628846 4556347 4558506

3. EXPERIMENTAL RESULTS

3.1 Datasets and Evaluation Metrics

In our empirical studies, in order to directly compare our
RBPR with the very recent algorithm for HOCCF, i.e., TJS-
L [3]. We first use the three public datasets in [3]*, including
MovieLens 100K (ML100K), MovieLens 1M (ML1M) and
Alibaba2015. The detailed description of those three da-
ta can be found in [3]. We also study the performance of
our RBPR on two large datasets, including MovieLens 10M
(ML10M)? and Netflix.

ML10M is a public data with about 10 million numerical
ratings in {0.5,1,1.5,...,4.5,5}, and Netflix is the dataset
used in the famous $100 Million competition with about 0.1
billion scores in {1,2,3,4,5}. For both ML10M and Netflix,
we first divide the data into five parts with equal number-
s of (u,%,74i) triples, we then take one part and keep the
(u, i) pairs with r,; = 5 as purchases for training, take one
part and keep the (u,?) pairs with r,; = 5 as purchases for
validation, and take one part and keep the (u,4) pairs with
rvwi = b as purchases for test, and finally take the remaining
two parts and keep all the (u, ¢) pairs as browses. We repeat
this procedure for three times in order to obtain three copies
of data.

We put the statistics of the datasets in Table 1.

For evaluation, we use five ranking-oriented metrics, in-

cluding Precision@5, Recall@5, F1@5, NDCG®@5 and 1-call@5.

3.2 Baselines and Parameter Settings

Because HOCCEF is a relatively new recommendation prob-
lem, very few solutions have been proposed. In our empirical
studies, we thus include the very recent algorithm TJSL [3]
for HOCCF and also the seminal work BPR [4] for OCCF.

e BPR (Bayesian personalized ranking) is an efficien-
t and accurate recommendation algorithm for homo-
geneous one-class feedback such as purchases, which
mines users’ preferences by assuming that a user prefer-
s a purchased item to an unpurchased item.

e TJSL (transfer via joint similarity learning) is the state-
of-the-art method for heterogeneous one-class feedback
such as browses and purchases, which jointly learns the
similarity between a candidate item and a purchased
item, and the similarity between a candidate item and
a likely-to-purchase item.

"http://www.cse.ust.hk/~weikep/TL4AHOCCF /
http://grouplens.org/datasets/movielens/10m/

For BPR, TJSL and RBPR, we fix the dimension as d =
20 and the learning rate as v = 0.01. For BPR and TJSL
on ML100K, ML1M and Alibaba2015, we directly use the
results from [3]. For RBPR on all the datasets and BPR
on ML10M and Netflix, we search the best tradeoff pa-
rameter from {0.001,0.01,0.1} and iteration number from
{100, 500, 1000} via NDCG@15. In order to make the re-
sults consistent and comparable with [3], we run five times
of RBPR on ML100K, ML1IM and Alibaba2015, and report
the averaged performance. For ML10M and Netflix, we re-
port the averaged results on three copies of data.

3.3 Results

We report the recommendation performance in Table 2.
We can have the following observations:

e RBPR and TJSL are better than BPR in all cases in-
cluding five evaluation metrics and five datasets, which
clearly shows that the feedback browses are useful for
learning and mining users’ hidden preferences, and RBPR

and TJSL are able to make use of users’ heterogeneous
feedback well.

e RBPR and TJSL are comparable on three small dataset-
s, e.g., TJSL is the best on ML100K, RBPR is the best
on MLIM, and TJSL and RBPR are comparable on
Alibaba2015.

e TJSL is too slow to generate recommendations on t-
wo large datasets within 24 hours, while RBPR can
produce significantly better results than BPR, which
shows that our RBPR is a more practical solution re-
garding the efficiency.

The overall performance in Table 2 shows that our RBPR
performs the best in making use of the heterogeneous one-
class feedback.

In order to check the performance improvement of our
two-stage role-based preference learning solution, we also
check the performance of the generated candidate items as
shown in Figure 1. Specifically, we denote the method for
generating the candidates as RBPR(Browser) since it is based
on the role of browser only, and the final recommendation as
RBPR(Browser,Purchaser). We report the performance on
Precision and NDCG in Figure 3 (other metrics are similar),
from which we can see that the second stage of candidate re-
finement using the purchase data can significantly improve
the performance. The improvement also verifies our main
assumption that there are usually two separate stages for a
user’s shopping action, i.e., browse and purchase.



Table 2: Recommendation performance of RBPR, BPR and TJSL on ML100K, ML1M, Alibaba2015, ML10M
and Netflix using Prec@5, Rec@5, F1@5, NDCG@5 and 1-call@5. The significantly best results are marked
in bold (p value < 0.01). Note that the results of BPR and TJSL on three small datasets are from [3]. We
” to denote the case that the training procedure does not finish within 24 hours.

use “—

Figure 3: Recommendation performance of RBPR with different configurations, i.e., RBPR(Browser) for

Dataset

Method |

Prec@5

Rec@5

F1@5

NDCG@5
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ML100K

BPR
TJSL
RBPR

0.0552+0.0006
0.0697 +0.0016
0.0654 +0.0013

0.1032+0.0019
0.1393+0.0028
0.1275+0.0048

0.0673+0.0007
0.0864 +0.0019
0.0803+0.0021
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0.1133+0.00a7
0.1058+0.0047
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0.3033+0.0071
0.2890+0.0047
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TJSL
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0.0928+0.0008
0.1012+0.0011
0.1086+0.0009

0.0829+0.0002
0.0968+0.0012
0.1017+o0.0015

0.0717+0.0003
0.0821 +0.0009
0.0858-+0.0009

0.1121+0.0010
0.1248+0.0010
0.1327+0.0016

0.3609+0.0018
0.3961 +0.0022
0.4151+0.0055

Alibaba2015

BPR
TJSL
RBPR

0.0050+0.0006
0.0071+0.0004
0.0076+0.0005

0.0193+0.0026
0.0283+0.0016
0.0304+0.0023

0.0077+0.0009
0.0110+0.0006
0.0118+0.0008

0.0138+0.0017
0.0200+0.0008
0.0220+0.0013

0.0246+0.0031
0.0347+0.0017
0.0367+0.0024

ML10M

BPR
TJSL
RBPR

0.0629+0.0002

0.0719+0.0013

0.0855:0.0006

0.0977 +0.0017

0.0603-+0.0003

0.0690+0.0014

0.0861+0.0004

0.0994 10.0020

0.2648+0.0017

0.2990+0.0050

Netflix

BPR
TJSL
RBPR

0.0716+0.0007

0.0797 +0.0002

0.0480+0.0005

0.0595+0.0004

0.0446+0.0005

0.0527 +0.0003

0.0818+0.0011

0.0939+0.0003

0.2846+0.0022

0.3174+0.0011
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browser only, and BPR(Browser,Purchaser) for both browser and purchaser.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we study an important recommendation
problem called heterogeneous one-class collaborative filter-
ing (HOCCF) from a novel perspective of users’ roles. Specif-
ically, we propose a novel role-based preference learning frame-
work, i.e., role-based Bayesian personalized ranking (RBPR),
based on a seminal work [4]. Extensive empirical studies
show that our RBPR is more accurate than the seminal work
for OCCF, i.e., BPR [4], and a very recent similarity learn-
ing algorithm for HOCCF, i.e., TJSL [3]. Furthermore, our
RBPR is very efficient with the inherited merits of BPR [4],
while TJSL [3] is difficult to produce recommendations on
two large datasets.

For future work, we are interested in extending and ap-
plying our role-based preference learning framework to oth-
er recommendation settings with more types of users’ roles
such as searcher, browser, purchaser, rater and friends.
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